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Abstract

In this paper a Fuzzy logic based Controller has been proposed to reconfigure multi-processor system on chip (MPSoC)
architecture according to the workload requirements. Mamdani and Sugeno Inference Engines are compared and 
analyzed to enhance the smooth regulation of reconfiguration in design space. The proposed MPSoC platform consists 
of 16 cores, where each core has private L1 cache and a shared L2 cache. The design space exploration parameters 
evaluated are CPUs operating frequency, number of cores, throughput and energy consumption. Marssx86 simulator 
is used to build the target machine and SPLASH-2 benchmarks are executed on this configured architecture. Mamdani 
Inference Engine for the said implementation has shown up to 14%-23% decrease in Energy-Delay2Product (ED2P) for 
various benchmark applications. Hence the performance of Mamdani inference engine was found to be better than the 
Sugeno one for this particular implementation.
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Introduction1. 

MPSoC performance can be improved by reconfiguring its 
architecture. Design Space Exploration (DSE) is a process 
of finding an optimum objective or feasible architectural 
design to gain in performance. DSE is composed of two 
parts; problem space and solution space (Cant´o, 2013).  
Problem space comprises of available resources of a 
system, which are reconfigurable (e.g. number of cores, 
clock frequency, cache size and associativity, chip area, 
issue width, interconnects schemes and peripherals etc.), 
while Solution space is an objective need to be fulfilled (e.g. 
power, heat density, energy, throughput, performance and 
quality of service). Problem space is usually reconfigured 
using search algorithms.

Various search algorithms are used for exploration in 
design space. DSE searching algorithms can be divided 
into three main classes i.e. exhaustive search, random 
search, and heuristic search. In Exhaustive Search, all 
possible solutions of problem domain are explored to find 
the feasible solution, which satisfies the desired statement 
of problem. This method is quite useful when the design 
space is small, otherwise with large design space the 
computation time is too long. DSE related examples 
for exhaustive search are discussed in Baghdadi (2000); 

Blythe & Walker (2000); Lahiri (2001). On the other 
hand, in Random Search, the problem is explored on the 
basis of randomness to reach the possible solution. Tabu 
search (Kreutz, 2005), simulated annealing (Gajski, 1998; 
Orsila, 2006) and Monte Carlo approximation (Bruni, 
2001) belongs to this class of search algorithms. However, 
in heuristic search, a guided search through knowledge 
of search space is used to reach the possible solution.   
Genetic algorithms (Kang & Kumar, 2008), Hybrid 
Ant Colony Optimization (Sedighpour 2014), Markov 
Decision Process (MDP) (Beltrame, 2010), Evolutionary 
Algorithms (Erbas, 2006) and Fuzzy Based Rule(s) (Qadri 
et al., 2014) are few techniques of heuristic search. In this 
paper, fuzzy logic, which is based on heuristic search is 
implemented in the DSE process to achieve the optimum 
solution. This paper is a continuation of a novel work 
proposed by Qadri et al. (2014).

A fuzzy logic based controller had been proposed 
to reconfigure architecture according to the workload 
requirements and a balance had been made between 
throughput and energy consumption. The reconfigurable 
architecture was divided into two levels i.e., core and 
SoC. At core level, solution space contained L1 miss 
ratio, energy consumption and throughput, while problem 
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space had L1 cache associativity, L1 cache size and clock 
frequency. At SoC level, solution space contained L2 miss 
ratio, energy consumption and throughput, while problem 
space has L2 cache associativity, L2 cache size and 
number of cores. The controller was devised on Mamdani 
inference engine with triangular membership function, 
while this paper shows comparison of Mamdani and 
Sugeno inference engines using Gaussian membership 
function.

This paper has been organized as follows. Section 
2, provides details about previous methodologies and 
strategies opted in the design space exploration process.
Section 3, elaborates the proposed fuzzy logic based design 
space exploration engine. Section 4 reports about, the 
proposed framework setup and simulation environment. 
In Section 5, results are compared and discussed followed 
by Section 6 that concludes the paper and discusses the 
future work.

2. Related work

DSE attracted many multicore architecture designers 
to devise a system which achieve better performance 
with low energy consumption. Different methodologies 
have been explored to attain optimum solution. In 
this section, initially  traditional techniques have been 
discussed, followed by Qadri et al. (2014) the proposed 
technique,which has been implemented in this paperis 
eloborated.

Baghdadi et al. (2000) shows the performance 
estimation and design space exploration problems in 
context of both hardware and software. A system’s 
architecture is explored before the start of any process.  
Neither architecture configuration can be selected, nor 
additional decision can be made to change workload 
during processing. In performance estimation, timing 
accuracy is achieved using another block model; back-
annotation and time-annotation is used to determine the 
pre performance of all the architectures.  Because of its 
exhaustive search nature, the cycle-based simulation 
takes more than 30 hours and at system-level it takes only 
10 seconds.  Monchiero et al.(2006) also used exhaustive 
search technique to explore the design space exploration 
between number of cores, processor issue width and L2 
cache size on the basis of throughput, power consumption 
and thermal effects. In this work, more evaluations are 
made to select the minimum size of chip floor plans and 
conclude the temperature effects on these chips.

Palermo et al. (2003) select design space exploration 

configuration parameters on Pareto-optimal curves 
by using method of random search algorithm. A 
Pareto-optimal point in design space is an objective or 
configuration for which, there is no other inferior or equal 
objective. But this simulation takes 3 days in order to find 
a solution. Orsilia (2006) represented the modified form 
of simulated annealing, which can reduce the exploration 
time. Optimization is achieved by adopting selective 
schedule in annealing and fixed transition probabilities 
(Phillips, 2008). Another paper by Kreutz et al. (2005) 
used a Tabu search model to explore the design space of 
Network-on-Chip (NoC) architectures. The architecture 
of routers’ are selected using the Pareto-curves related to 
energy and latency models.  Trade off among homogeneous 
and heterogeneous NoC architectures is elaborated using 
latency and energy consumption.

If the design exploration techniques based on 
Monte Carlo,  Simulated annealing and Tabu search are 
efficient, then full search methods are robust. But these 
methodologies require statistical data in off-line mode, 
and then predicted design model is launched. These 
strategies propagate the latency problems and performance 
hindrances. So, design exploration researchers proposed 
heuristic search schemes and models in contrast to 
exhaustive and random search techniques.

Beltrame et al.  (2010) have presented a model for 
design space exploration, which needs a minimum number 
of simulations required to point-out a Pareto-curve having 
a matrix of energy and delay. For non-optimal solutions, 
an estimation model (moment vectors) is used to further 
consistently reduce the number of simulations. However, 
this technique needs the availability of an estimation 
methodology, which is mostly not present in arbitrary Chip 
multiprocessor (CMP) architectures (Ishebabi, 2010).

Kang & Kumar (2008) proposed a framework 
called Magellan which isused to accelerate the design 
space exploration and optimization. Featured search 
algorithms (like exhaustive, random, heuristic, genetic, 
evolutionary etc.) are compared against the machine 
learning based search algorithms. Simulations are 
executed on single-objective design perspective and by 
fixing many parameters, searched space is reduced. This 
methodology lacks in criteria formulti-objective design 
space exploration (Calborean, 2011). Erbas et al.(2006) 
investigates the trade off strategies between the mappings 
of matrices such as architecture cost, processing time and 
power consumption using multi-objective evolutionary 
algorithm (MOEAs) schemes. This technique generates set 
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of solutions accurately and in minimum amount of time, 
however for design space exploration we need a unique 
solution. There are two major limitations in MOEAs, 
one they are not good if the solution space for search is 
small and second after reaching its objective solution it 
generates the already known solutions (Lukasiewycz, 
2008). Mishra et al. (2014) have presented Adaptive 
multi-objective particle swarm optimization based design 
space exploration in architectural synthesis for application 
specific processor design.The Qadri et al.  (2014) paper 
presents that the design space can be reconfigured in 
requirements of workload for optimum balance by using 
matrices of throughput and energy. Fuzzy logic and domain 
knowledge technique is employed in order to remove the 
discrepancies of above mentioned approaches in the field 
of design space exploration (i.e. minimize the number of 
simulations, target can be configured online, etc).

3. Fuzzy logic based design space exploration 
engine

Fuzzy logic is a technique to overcome the unknown non-
linear real-time constraints of the system. The solution 

for problem space is devised in more pervasive analytical 
domain, rather than solving it in abstract domain. Fuzzy 
based knowledge and defuzzification keeps the output of 
problem space (DSE) on track for unknown occurring 
phenomena of a solution space (throughput, energy 
consumption, etc.), which helps to improve the overall 
efficiency of nonlinear problem.The presented model of 
MPSoC architecture is a closed loop system which can 
be reconfigured using Fuzzy logic technique as shown in 
Figure 1.

As we know that the ONLINE reconfiguration of 
the system architecture is not tweakable for every trace 
of solution space, a approach has been employed to 
systematically change the parameters of problem space.
For this, the block snoops the number of iterations and 
mentioned output parameters of Figure 1 for the designs 
of architecture and predicts the threshold for the designed 
space. It regulates the criteria for designed configuration, 
under which it should continue to retain the architecture 
of a compiled configuration.

Fig. 1. Block diagram of fuzzy logic based design space exploration engine

4. Implementation steps

The overall implementation of a technique and design 
configuration of system involved the following steps:

4.1. Design space input variables

In MPSoC architecture, a number of configurable points 
(parameters) are identified and are controlled by fuzzy 
logic based design space exploration engine (FLDSEE) 
i.e. Number of cores and CPU Frequency. Certain 
other parameters such as CPU throughput and energy 
consumption are also identified, which have great impact 

on the input parameters. For these parameters the design 
space architecture has been explored, evaluated and 
configured. Mandal et al. presents suitable comparison 
among fuzzy membership functions (Mandal et al., 2012), 
and a gaussian membership function (Hameed, 2011; Et, 
2007) is selected.

4.2. Mapping variables onto fuzzy membership 
functions

Input and Output variables are fuzzified and defuzzified 
by using membership functions.  Each variable is further 
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subcategorized into subsets of fuzzy input or output set, 
and assigned a symbol L, M and H which represents low, 
high and medium respectively. For example in Figure 2, 
throughput can be between 0 −100%. So the membership 
function μL is set from 0 −27%, membership function μM  

is set from 20 − 85% and membership function μH  is set 
from 68 − 100%.  The  same methodology is adopted for 
other input and output variables as shown in Figure  2 and 
Figure  3.

                     
                             Fig. 2. Input Fuzzy membership function                                               Fig. 3. Output fuzzy membership function

4.3. Knowledge based fuzzy rules

Input and output parameters of MPSoC are related to using 
the knowledge based fuzzy rules and are shown in Table 
1.  These rules are considered to balance the optimum 
relationship between CPU throughput and Energy 
consumption. Under these rules efficient selection of 
clock frequency and number of processors are regulated.

4.4. Fuzzy inference engine and defuzzification

Both Mamdani and Takagi-Sugeno-Kang (TSK) or 
Sugeno inference engines are implemented in design space 
exploration of MPSoC and their results are comapred in 
section 7.  Mamdani inference engine takes fuzzy inputs, 
interrelate it with fuzzy rules, depicts the fuzzy outputs, 
then these fuzzy outputs are aggregated and finally fuzzy 
value is defuzzified (in this paper center of gravity is 
used). In Sugeno inference engine, first two parts are same 
as Mamdani’s inference engine. However, the difference 
is that the Sugeno output membership functions are either 
constant or linear, but weused constantsand the final output 
value is calculated using weighted average method.

5. Simulation environment, benchmarks and 
performance metric

Simulators are installed on Linux Ubuntu 12.04.3 LTS, 
which inherently supports multicore architecture. Linux 
advanced configuration and power interface (ACPI) 

provides a system level control of CPU cores through 
hot-plugging (online turning on/off) and by using this key 
feature we can reconfigure an MPSoC.

Table 1. Knowledge based fuzzy rules for MPSoC

Energy 
Consumption

CPU 
Throughput

Clock 
Frequency

Number of 
cores

L L H L

L M M M

L H M H

M L H L

M M M M

M H M M

H L M L

H M L M

H H L L

The cache miss/hit data and instruction execution cycle 
information is gathered from MARSSx86 (Patel, 2011). On 
the other hand, Interconnects network energy consumption 
is collected from ORION (Kahng, 2012), cache memory 
access timings and energy consumption generated from 
CATCTI (Shivakumar & Jouppi, 2001) and also from 
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mathematical models (Qadri & McDonald-Maier, 2010) 
for cache energy and throughput is accumulated; Intel 
486 GX embedded processor energy is accounted from 
its datasheet. All the applications were sampled for the 
whole execution cycle of the application and MPSoC is 
reconfigured under the guided process of FLDSEE. The 
application is re-executed again for different iterations, 
in order to investigate the effects of reconfiguration of 
number of cores, cache size and operating frequency on 
the energy consumption and throughput of the MPSoC.

Different types of simulators are being used to; model 
different configurations of MPSoC, acquire the desired 
data and testify research objectives. These tools are 
QEMU, MARSSx86 (primarily used for simulation) and 
CACTI.

Stanford parallel applications for shared memory 
2 (SPLASH2) is used as a benchmark. It contains 8 
applications and 4 kernels benchmarks suite. We have used 
4 applications (BARNES, FMM, OCEAN and WATER-
SPATIAL) and 1 kernel (LU) benchmarks (Woo, 1995).

Commonly used metric for energy in processing is 
Joules/instruction or its reciprocal SPEC/W (Gonzalez 
& Horowitz, 1996). The metric for energy-delay product 
used is Joules/SPEC or its reciprocal SPEC2/W. In order 
to compare the given processors, power is not a good 
metric, because it varies directly with the clock frequency. 
By decreasing the clock frequency, power dissipation also 
decreases and cores performance also suffers. Energy is 
another candidate for metric, measured in Joules/Ins or its 
reciprocal SPEC/W (Gonzalez & Horowitz, 1996). The 
energy per instruction can be decreased by decreasing the 
capacitance or voltage, or by using smaller transistors. 
With these changes, delay of the path also increases, 
so one would expect low performance from the lowest 
energy processor. As both priorities are needed (power 
and performance) to be correlated relatively, Energy-
Delay2Product (ED2P) is a better option in comparison of 
inference engines performance.

6. Results and comparison

As discussed above, the main objective of this paper is 
to devise a strategy, which can incorporate an optimum 
balance between energy and throughput of MPSoC. Two 
different approaches of fuzzy inference engines have 
been applied on FLDSEE (engine). Gaussian membership 
function is used in both procedures. First results of both 
approaches have been shown and then there comparison 
has been analyzed.

6.1. Results using Sugeno inference model

Figure 4(a) shows L1 Miss Ratio at Iteration-0 all 
benchmarks have less miss ratio except OCEAN which 
reflects high miss ratio. They show 0.6-2.5% miss ratio, 
while in OCEAN, it is 14% respectively. Overall miss ratio 
is increased in iteration-1. At iteration-3 and so on, it is 
observed that miss ratio constant. Figure4(b) exhibits the 
organizational level miss ratio of L2 cache. At iteration-1, 
L2 cache miss ratio is increased but ceased at iteration-2. 
Figure 4(c) shows the energy-delay product of simulated 
workloads (benchmarks). Figure 4(d) shows the ED2P, it 
is observable that ED2P become constant at iteration-3. 
Normalized throughput is shown in Figure 4(e), which 
fluctuates in first three iterations and stabled at iteration-4. 
Also in Figure 4(f), which is a normalized energy, is 
varying in first three iterations and becomes smoothed 
at iteration-4. Cores are selected by taking average of all 
the iteration for number of cores, and for this scenario 
its 8 cores. Figure4(h) shows the CPU clock frequency, 
for which the system can be effectively configured to 
25MHz.

6.2. Results using Mamdani inference model

In case of Mamdani inference engine, Figure 5(a) and 
Figure 5(b) shows the L1 and L2 miss ratio. L1 and L2 
misss ratio is low at iteration-0. It increased at iteration-1 
and again decreased at iteration-2. L1 cache miss ratio 
reduced  from 2.4% to 0.8% in all benchmarks except 
BARNES, where it is 18.2% to 14.8%. In L2 case OCEAN 
and LU miss ratio is increased to 13-15%, but reduced 
by 2-6% in BARNES, FMM and WATER.Figure 5(c) 
reveals the energy-delay product of various simulated 
workloads and it settles at iteration-2. Figure 5(d) shows 
the ED2P, it observable that ED2P become constant at 
iteration-2. Normalized throughput is shown in Figure 
5(e), there is a fluctuating effect observed in only first two 
iterations and become stable at iteration-2. Normalized 
energy consumption is displayed in Figure 5(f); energy 
consumption is highest in first iteration, reduced in second 
iteration and balanced after iteration-3.  Number of cores 
are displayed in Figure 5(g). Cores are selected by taking 
average of all the iterations for number of cores, and for 
this scenario its 9 cores. And Figure 5(h) shows the CPU 
clock frequency, for which the system can effectively be 
configured to 20MHz.
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Fig. 4. Block results using Sugeno inference model
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Fig. 5. Block results using Mamdani inference model  
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6.3. Comparative Analysis

Comparison is made for various problem space and 
solution space parameters. So for convenience, different 
names are assigned to these comparisoned design space 
models (DSM) as; Sugeno inference based model — 
DSM1 and Mamdani inference based model — DSM2 
and their analysis is as follows:

6.4. L1 Cache miss ratio

The L1 cache memory size and associativity is fixed in 
DSM1 and DSM2. By comparing DSM1 and DSM2, 
Mamdani model has less miss ratio then Sugeno model, 
which is 0.07% in FMM and 0.3% in OCEAN. There are 
no big variations in other benchmarks. L1 cache miss ratio 
is balanced in iteration-2 for DSM1 and DSM2, except for 
DSM1 OCEAN which settles in iteration-3.

6.5. L2 Cache miss ratio

In these DSMs, L2 cache has shared architecture among 
cores.  DSM1 and DSM2 memory size and associativity 
are fixed throughout the design reconfiguration process.  
There is a variation among miss ratios in these DSMs.  
All benchmarks show there spatial and temporal effect on 
L2 cache as shown in Figure. 4(b), and Figure 5(b). By 
comparing DSM1 and DSM2, Sugeno model has less miss 
ratio then Mamdani model, which is 1.7% in BARNES, 
0.1% in FMM, 0.8% in OCEAN and 0.4% in WATER, 
except 4.6% in LU. L2 cache miss ratio is balanced in 
iteration-2 for both DSM1 and DSM2, excluding DSM1 
BARNES, which settles at iteration-3. However, reducing 
miss ratio is not the perspective of this paper, and ED2P is 
the overall design challenge for reconfiguration of MPSoC 
architecture. This miss ratio effect can be improved by 
using a decision block within this frame reference. That 
decides which configuration has less miss ratio, and then 
that design strategy would be adopted by reconfiguring 
the cache size and associativity.

6.6. Energy-delay2 product of MPSoP architecture

In Figure 4(d) and Figure 5(d), energy-delay2 product 
is an aggregated energy of MPSoC times the square of 
execution time. DSM1 and DSM2, ED2P can be improved 
by reconfiguring the caches. However it is beyond focus 
of this paper as discussed above. But, if configuration is 
made on its maximum strength means 16 cores & 33MHz 
frequency and then at lower strength 2 cores & 16MHz 
frequency as shown in Figure 4 (g,h) and Figure 5 (g,h) at 
iteration-2 and 3, ED2P reduction phenomena is observed.  
DSM2 (Mamdani’s model) ED2P is decreased as 21% in 

BARNES, 25% in FMM, 18.7% in OCEAN, 14.6% in 
WATER and 18.1% in LU with respect to DSM1(Sugeno’s 
model).

It can be noticed that the number of cores has a huge 
impact on throughput, while clock frequency has on 
MPSoC energy. In DSM1 the number of cores are finally 
decided as 7 for OCEAN and 8 for other benchmarks for 
optimum balance and same is the case for clock frequency, 
which is 20MHz, while in DSM2 the number of cores are 
varying with respect to the benchmarks requirements, but 
still can be adjusted at 8 cores for OCEAN and 9 cores for 
other benchmarks. However, clock frequency is same for 
all these benchmarks and selected as 25MHz at iteration-2. 
Due to these design selections;normalized throughput of 
DSM1 case is improved from 0.25 to 0.37 in OCEAN and 
0.32 to 0.60 in others. Infact in DSM2 case, it is enhanced 
from 0.32 to 0.46 in OCEAN and 0.53 to 0.77 in other 
benchmarks. However, normalized energy consumption 
of DSM1 is increased from 0.13 to 0.38 in BARNES, 0.16 
to 0.39 in FMM, 0.19 to 0.58 in OCEAN, 0.14 to 0.39 in 
WATER and 0.11-0.36 in LU, while in DSM2 it is 0.12-
0.46 in BARNES, 0.19 to 0.51 in FMM, 0.22 to 0.52 in 
OCEAN, 0.19 to 0.52 in WATER and 0.16 to 0.47 in LU.

7. Conclusions and future work

In this paper, fuzzy logic is used to implement design 
space exploration of reconfigurable architectures for 
multiprocessors system on chip. Fuzzy logic is robust 
and adoptive in highly unpredictable nonlinear systems, 
although its solution is not precise, it works well in 
systems whose input is unpredictable with the workloads 
(applications). So by comparative analysis, it can be 
concluded that the DSM2 (Mamdani’s model) is the 
optimum option for balancing a throughput and energy 
consumption in design space reconfiguration of MPSoC.

The proposed models (DSM1 and DSM2) are so 
established that, they are well suited in scenario of massive 
parallel architectures (cores) as well as in 2-4 cores based 
architecture schemes. It shows that by using fuzzy logic in 
DSE of MPSoC architecture, the performance of system 
can be raised, even if there is no optimal solution in-hand. 
Fuzzy logic is robust in the design space exploration 
process. Architecture reconfiguration can be built in 
ONLINE mode, and strategy needs no pre-evaluation 
simulations. This paper may help researchers, industry and 
market of multi-architectures systems, in implementing 
the balancing methodology for energy and throughput of 
highly parallel, battery and resource dependent problem 
space in an effective way.
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As for future work, this work can be implemented with 
more design spaces. Analysis of all membership functions 
on design space to explore new balance points devise 
the fuzzy logic based design space exploration engine 
(FLDSEE) on heterogeneous architectures and NoC.
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