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Abstract

In this paper, a fast implicit iteration scheme called the alternating cell directions implicit (ACDI)
method is combined with the approximate factorization scheme. The use of fast implicit iteration
methods with unstructured grids is hardly. The proposed method allows fast implicit formulations
to be used in unstructured meshes, revealing the advantages of fast implicit schemes in unstructured
meshes. Fast implicit schemes used in structured meshes have evolved considerably and are much
more accurate and robust, and are faster than explicit schemes. It is a crucial novel development that
such developed schemes can be applied to unstructured schemes. In steady incompressible potential
flow, the convergence character of the scheme is compared with the Runge-Kutta order 4 (RK4),
Laasonen, point Gauss–Seidel iteration, old version ACDI, and line Gauss–Seidel iteration methods.
The scheme behaves like an approximation of the fully implicit method (Laasonen) up to an optimum
pseudo-time-step size. This is a highly anticipated result because the approximate factorization method
is an approach to a fully implicit formulation. The results of the numerical study are compared with
other fast implicit methods (e.g., the point and line Gauss–Seidel methods), the RK4 method, which is
an explicit scheme, and the Laasonen method, which is a fully implicit scheme. The study increased the
accuracy of the ACDI method. Thus, the new ACDI method is faster in unstructured grids than other
methods and can be used for any mesh construction.

Keywords: Alternating cell direction implicit (ACDI) method; approximate factorization method;
fast implicit schemes; implicit formulation

1. Introduction

The numerical solution of partial differential
equations (PDEs) is the basis of scientific
computation applications. Solutions are
determined using the discrete forms of the
equations with finite cells instead of infinitesimal
extents. The discretization approach of equations
specifies the classification of solution methods.

One of the classifications is having an implicit
or explicit formulation. A competition still exists
between the two methods (explicit: (İnan 2017);
implicit: (Al-Azemi 2015)). The explicit schemes
are more common in unstructured grids ((Caughey
et al. 1994, Dimitri 2007)). Implicit formulations
are more difficult to program than explicit schemes
and have a better convergence characteristic.

Being more convergent can be used as advantage
if fast implicit methods, such as alternating
directions implicit (ADI) method, also known
as the Douglas method, are applied (Al-Azemi
2015). These kinds of fast implicit formulations
are usually appropriate for structured grids (Dimitri
2007, Çete et al. 2006, Çete et al. 2007), which
comprise ordered finite cells on the solution
domain. Their formulations typically use tri-
diagonal or penta-diagonal matrix solutions, and
these kinds of matrices are relatively easier to
solve. Fully implicit schemes require more
computational time because they end up with
mass matrices for the solution, and the efforts to
obtain quicker results with these applications are
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generally focused on faster solution methods of
mass matrices (Venkatakrishnan 1995).

The alternating cell directions implicit (ACDI)
method is a fast implicit scheme that can be
used for structured and unstructured grids (Çete
et al. 2017, Çete et al. 2006, Çete et al. 2007).
This ability is not common for fast implicit
schemes. (Dimitri 2007) stated that it is possible to
generate grid directions with the edges of triangular
elements and that these directions can be used for
line implicitness. However, these sweep directions
are not unique for an unstructured grid, and they are
defined by a method selected by the programmer.

One of the most important studies on the line
implicitness of unstructured grids is the study
by (Venkatakrishnan 1995). None of the line
implicit methods on unstructured meshes defined a
unique, natural line. Thus, none of them became
widespread in unstructured meshes. (Çete et al.
2006, Çete et al. 2007, Çete et al. 2017) studied the
line implicit ACDI method. This study, however,
uses the approximate factorization (AF) approach,
which is a mathematical approach and is not line
implicit.

The ACDI method is offered to combine
the advantages of successful convergence
characteristics of fast implicit methods with
the easier meshing advantage of unstructured
grids. The method is inspired from ADI methods
by (Meyer 1977, Kellog 1969, Vries 1984, Al-
Azemi 2015), but these fast implicit methods can
only be used in structured grids. Because one
of the objectives of this study is to increase the
implicitness level of the ACDI method to the order
of AF (Çete et al. 2006), the classical AF approach
is briefly explained. The main aim of this study
is to combine an AF scheme with the ACDI time
iteration scheme to increase the implicitness level
and accuracy of the previous ACDI studies by
(Çete et al. 2006, Çete et al. 2007, Baş 2007, Çete
et al. 2017).

Although the main study is conducted using
cell-centered finite volume discretization, the AF
approach used for this study is also explained
for node-based finite difference discretization on
structured grids for clearness, and it is aimed to
serve a mathematically well-defined approach. The
Laplace equation is selected as the model equation
for the validation of the method in this study.

2. Numerical Methods

2.1 Approximate Factorization Using ACDI
The method using the cell-centered finite volume

approach is explained. In this problem, using
the finite volume approach is suitable because
the success of the approach is compared with
the previous ACDI method, which also uses
cell-centered finite volumes. The unsteady heat
equation, Equation (1), is used for comparison
purposes. This equation can be applied to steady
potential flow and heat transfer problems for a
steady (converged) solution. Thus, in this study,
the steady potential flow around the circle and the
heat transfer problems in the wall of infinite length
were studied:

∂T
∂t
− ∇2T = 0. (1)

Integrating the above equation over the control
volume cell shown in Fig. 1 results in the
following: ∫

A

∂T
∂t

dA −
∫

A
∇2TdA = 0. (2)

Applying Green’s theorem for the second term of
the left-hand side (LHS) and writing the first term
in discrete form, results in the following:

A
∆T
∆t
−

∮
C

∂T
∂n

ds = 0, (3)

where T is the mean value of the dependent
variable placed at the cell center such that

T =
1
A

∫
A

TdA.

If it is assumed that the fluxes at each cell edge
are constant through the edge, where the cell has N
edges as depicted in Figure 1, the expression can
be written in the following form:

A
∆T
∆t
−

N∑
i=1

(
∂T
∂n

)
i
∆si = 0, (4)

If Equation (4) is written in the following form:

A
∆T
∆t
−

[(
∂T
∂n

)
1
∆s1 + . . . +

(
∂T
∂n

)
N

∆sN

]
= 0,

(5)
the flux terms are grouped such that the opposite
edge fluxes take place in the same group, where
T n+1 is the next time-step value of the dependent
variable at each cell center to be calculated:
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Fig. 1. Control volume with N edges.

A T n+1−T n

∆t −

[(
∂T
∂n

)
1
∆s1 +

(
∂T
∂n

)
1+ N

2
∆s1+ N

2

]
+[(

∂T
∂n

)
2
∆s2 +

(
∂T
∂n

)
2+ N

2
∆s2+ N

2

]
+

. . . . . .

+

[(
∂T
∂n

)
N
2
∆s N

2
+

(
∂T
∂n

)
N

∆sN

]


= 0 (6)

It is possible to rearrange Equation (6) such that
T n takes place at the right-hand side (RHS) of the
equation because it is a known value at the nth time
step:

T n+1−

∆t
A



[(
∂T
∂n

)
1
∆s1 +

(
∂T
∂n

)
1+ N

2
∆s1+ N

2

]
+[(

∂T
∂n

)
2
∆s2 +

(
∂T
∂n

)
2+ N

2
∆s2+ N

2

]
+

. . . . . .

+

[(
∂T
∂n

)
N
2
∆s N

2
+

(
∂T
∂n

)
N

∆sN

]


= T n (7)

The fluxes are calculated implicitly; thus, the
LHS can be written in the operator form. For the
sake of simplicity T n+1 is represented as T , and T n

is represented as the RHS from this point forward:
1 −

∆t
A



[(
∂
∂n

)
1
∆s1 +

(
∂
∂n

)
1+ N

2
∆s1+ N

2

]
+[(

∂
∂n

)
2
∆s2 +

(
∂
∂n

)
2+ N

2
∆s2+ N

2

]
+

. . . . . .

+

[(
∂
∂n

)
N
2
∆s N

2
+

(
∂
∂n

)
N

∆sN

]




T (8)

= RHS .

The form given with Equation (8) is for the
application of AF. The equation given above offers
a form that is suitable for AF for any polygonal
cells that have an even number of edges. It is
also possible to use the same factorization for cells
that have an odd number of edges by developing
simple strategies to convert these cell edges to
even-numbered edges. Possible strategies for odd

Fig. 2. Cell directions drawn, traveling opposing
edges of cells.

numbered edges are discussed in the latter part of
the study. Applying AF to the form is given below:

(
1 − ∆t

A

(
∂
∂n

)
1

∆s1 + ∆t
A

(
∂
∂n

)
1+ N

2
∆s1+ N

2

)
(
1 − ∆t

A

(
∂
∂n

)
2

∆s2 + ∆t
A

(
∂
∂n

)
2+ N

2
∆s2+ N

2

)
. . . . . .(

1 − ∆t
A

(
∂
∂n

)
N
2

∆s N
2

+ ∆t
A

(
∂
∂n

)
N

∆sN

)
T = RHS .

(9)
Grouping fluxes written for the opposite edges

in the factorized equation allows the scheme to
be applied using alternating cell directions that
are shown on the even-numbered edged polygonal
cells in Figure 2.

It is possible to write expression (9) as given
in equation (10) for each factorized term via
assigning semi-solutions that are declared as
T1 ,T2 , . . . . , TN/2 , such that

(
1 − ∆t

A

(
∂
∂n

)
1

∆s1 + ∆t
A

(
∂
∂n

)
1+ N

2
∆s1+ N

2

)
T1 = RHS(

1 − ∆t
A

(
∂
∂n

)
2

∆s2 + ∆t
A

(
∂
∂n

)
2+ N

2
∆s2+ N

2

)
T2 = RHS

. . . . . .(
1 − ∆t

A

(
∂
∂n

)
N
2

∆s N
2

+ ∆t
A

(
∂
∂n

)
N

∆sN

)
T N

2
= RHS .

(10)
Writing the operators as shown above and using

semi-solutions is performed to obtain tri-diagonal
matrices for equation sets that are written for the
solution bands shown in Figure 2.

The value of T must be calculated after the semi-
solutions are obtained. The operators of (10) can be
named as follows:
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Xi, i = 1, 2, 3 . . . , N/2,
X2, X3, . . . , XN/2T = T1,

X1, X3, . . . , XN/2T = T2,

. . .

X1 . . . X j . . . XN/2T = Ti i , j,
. . .

X1 . . . X j . . . XN/2−1T = TN/2,

(11)

and the expression X1. .X j..X N
2

T=Ti, i, j is equal
to the following form before the factorization:

X1 . . . X j . . . XN/2T �

1 −
[

∆t
A ∆s1

(
∂
∂n

)
1

+ ∆t
A ∆s1+ N

2

(
∂
∂n

)
1+ N

2

]
+

. . .[
∆t
A ∆si

(
∂
∂n

)
i
+ ∆t

A ∆si+ N
2

(
∂
∂n

)
i+ N

2

]
+

. . .[
∆t
A ∆s N

2

(
∂
∂n

)
N
2

+ ∆t
A ∆sN

(
∂
∂n

)
N

]


T.

(12)
If the expressions in (11) are summed using the

assumption given in (12), the summation results in
the following:

N
2

T −
(N

2
− 1

) N∑
i=1

∆t
A

∆si

(
∂T
∂n

)
i
=

N∑
i=1

Ti. (13)

Rearranging Equation (13) yields the following:

T +
(

N
2 − 1

) T − N∑
i=1

∆t
A

∆si

(
∂T
∂n

)
i

︸                        ︷︷                        ︸ =
∑N

i=1 Ti

RHS (14)

Then, the value of T can be calculated using the
simple expression below:

T=

N∑
i=1

Ti−

(N
2
−1

)
RHS . (15)

2.2 Von Neumann Stability Analysis
The Von Neumann stability analysis is performed
assuming Cartesian cells. A sample Cartesian cell
and its neighbors are depicted in Figure 3. with
the notation used for the analysis. The analysis
is conducted using inverse distance weighting flux
calculation with AF. Rewriting Equation (10) for
the quadrilateral cells results in the following:

T1 −
∆t
A ∆s1

(
∂T1
∂n

)
1
− ∆t

A ∆s3
(
∂T1
∂n

)
3

= RHS ,

T2 −
∆t
A ∆s2

(
∂T2
∂n

)
2
− ∆t

A ∆s4
(
∂T2
∂n

)
4

= RHS .
(16)

The low order flux terms can be inserted in the
following form:(

∂T1

∂n

)
1

= w1N1
T1N1

w1C T1C , (17)

 

C N1 

N4 

N3 

N2 

Fig. 3. Example a Cartesian cell and its neighbors.

where w1N1
and w1C are the weights used to calculate

the flux term from the cell with the cell center N1
illustrated in Figure 3.The weights for the
Cartesian cells are all equal to 1/∆s. Then, the
flux terms can be inserted into Equation (17) in the
following form:(

∂T1
∂n

)
1

= 1
∆s (T1N1

− T1C ),(
∂T1
∂n

)
3

= 1
∆s (T1N3

− T1C ),(
∂T2
∂n

)
2

= 1
∆s (T2N2

− T2C ),(
∂T2
∂n

)
4

= 1
∆s (T2N4

− T2C ).

(18)

Inserting the flux terms into the equations given
in (16) and using the spatial and temporal indices
results in the following:

(
1 + 2∆t

A

)
T n+1

1 i, j −
∆t
A T n+1

1 i−1, j −
∆t
A T n+1

1 i+1, j = T n
i, j ,(

1 + 2∆t
A

)
T n+1

2 i, j −
∆t
A T n+1

2 i, j−1 −
∆t
A T n+1

2 i, j+1 = T n
i, j .

(19)
To determine the growth rate of error at each

time iteration, T n
i, j = ξneikxeiky is inserted into the

first expression given in (19):(
1 + 2∆t

A

)
ξn+1eikxeiky − ∆t

A ξn+1eik(x−∆x)eiky −

∆t
A ξn+1eik(x+∆x)eiky = ξneikxeiky

(20)
Dividing both the RHS and LHS of (20) by

ξneikxeiky yields the following:(
1 + 2

∆t
A

)
ξ −

∆t
A
ξe−ik∆x −

∆t
A
ξeik∆x = 1. (21)

Rearranging (21) gives the following:

ξ

[(
1 + 2

∆t
A

)
−

∆t
A

(e−ik∆x + eik∆x)
]

= 1. (22)

Thus, the growth factor is as follows:
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Fig. 4. Iteration numbers required for the
convergence versus time-step size (s) using
different methods for the 500-element structured
grid (potential flow around cylinder).

ξ =
1(

1 + 2∆t
A

)
− 2∆t

A (cosk∆x )
. (23)

Similarly, the growth factor for the second
expression of (19) is the following:

ζ =
1(

1 + 2∆t
A

)
− 2∆t

A (cosk∆y )
. (24)

The stability criterion is |ξ| ≤1, |ζ | ≤1 because
1≤ cosk∆x ≤ 1 , −1≤ cosk∆y ≤ 1. (25)

Both growth factors satisfy the stability criterion.
This scheme is unconditionally stable. In addition,
unconditional stability is at the full limit and can
be conditionally stable in curved structured and
unstructured grids in the Cartesian grid (i.e., in the
most ideal case). The scheme can be converted to
Crank-Nicolson AF with a small change, and the
literature has indicated that Crank-Nicholson AF
is much more stable than normal AF (Ballhaus et
al. 1977).

3. Results and Discussion

3.1 Comparison of Convergence Characteristics
Using Steady Laplace Equations

In this section, the method is applied to a steady
problem. Incompressible potential flow around
a cylinder is solved to observe the convergence
behavior of the method for elliptical equations. The
potential flow equation is solved using ACDI with
AF, ACDI, line Gauss–Seidel (LGS), Runge-Kutta
order 4 (RK4), Laasonen, and point Gauss–Seidel
(PGS) iteration methods. The steady Laplace
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Fig. 5. CPU time required for convergence versus
time-step size (s) using different methods for the
500-element structured grid (potential flow around
cylinder).

equation used for the solution of the potential
equation is given below:

∂2ψ

∂x2 +
∂2ψ

∂y2 = 0, (26)

where ψ represents the stream function in the
equation given above. The velocity component in
the x- and y-directions are the following:

u =
∂ψ

∂y
and v = −

∂ψ

∂x
. (27)

The equation is solved using the pseudo-time step.
The equation can be rewritten as an unsteady
equation:

∂ψ

∂t
−
∂2ψ

∂x2 −
∂2ψ

∂y2 = 0. (28)

The solution converges to a steady state if
the pseudo-time step is used, and the solutions
before the convergence are meaningless in terms
of unsteadiness. Potential flow around a two-
dimensional (2D) cylinder with a diameter of 1 m
is solved for the comparisons. The free stream
velocity is taken as 1 m/s, and the analytic solution
for the stream function is given below:

ψ (x, y) = y −
0.25y

x2 + y2 . (29)

3.2 Comparison of Convergence Characteristics
Using a Structured Grid

The iteration numbers and central processing unit
(CPU) times of the methods to reach a previously
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defined root mean square residual are obtained
using different time-step sizes for the ACDI-
AF, AF, ACDI, LGS, PGS, Laasonen, and RK4
methods. The residual value to be reached for the
convergence is selected as 10−7, and the root mean
square residual is defined as follows:

RMS Residual =

√√√
1
N

N∑
i=1

(ψn+1
i − ψn

i )2
, (30)

where N represents the number of elements for
cell-centered calculations and the number of nodes
for node-based calculations, n is the time indices,
and i is the element or node indices.

The Dirichlet boundary condition is used at the
far field of the domain. Because the problem
is symmetrical, half of the domain is used for
the solution, and again, the Dirichlet boundary
condition is used for the symmetry and wall faces,
where ψ = 0. In Figure 4, the required iteration
number using different time-step sizes is plotted for
the simple ACDI-AF, AF, ACDI, PGS, Laasonen,
and RK4 methods using a 500-element structured
grid.

When compared with the other methods, the
RK4 method has poor stability. The AF method
results exactly match the ACDI-AF results, and the
LGS method results match the ACDI method. This
is a feature of the ACDI method. In structured
grids, the ACDI method formulation is the same
as the LGS formulation. It is the same for ACDI-
AF and AF methods. The required time-step
size for the convergence is larger than the other
methods because small step sizes are required for

Fig. 7. A 500-element structured grid for
comparing convergency.

stability. The required iteration number converges 
to a certain number with increased time-step sizes 
for both the PGS and Laasonen methods, and 
both of the methods remain stable with the use 
of relatively larger time-step sizes. The ACDI-
AF method has an optimum value of time-step 
size that is different than the Laasonen and PGS 
methods. The PGS method leaves the trend before 
the ACDI AF and converges to a certain iteration 
number value, whereas the number of time steps 
required increases for the ACDI-AF method after 
the optimum time-step size value. Therefore, the 
ACDI AF is a better approximation of the fully 
implicit scheme than the PGS method until the 
optimum time-step size. The Laasonen and ACDI-
AF methods have the same convergence behavior 
as expected.

In Figure 5, the CPU time versus the time-
step size plots are given for the methods. The 
Laasonen method loses its advantage of fewer 
required iteration numbers. The method inverts 
a mass matrix for each iteration step, and this 
operation increases the requirement of the CPU 
time for convergence.

The convergence histories of the PGS and ACDI-
AF methods with the minimum iteration numbers 
required are plotted in Figure 6. In Figure 7 and 8, 
a 20x25 structured grid and the stream function 
contours obtained using ACDI AF are given. The 
L0, L1, L2, and L∞ norm errors are calculated 
using the following formulation:
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Fig. 8. Stream function contours using ACDI AF
with 500-element structured grid (potential flow
around cylinder).
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∣∣∣∣∣∣ψ Node
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− ψ Node
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L1 Error =

∑N

∣∣∣∣∣∣∣∣∣
ψ Node

Analytical

− ψ Node
Numerical

∣∣∣∣∣∣∣∣∣
N

L2 Error =

√√√√√√√√√√∑N

ψ Node
Analytical

−ψ Node
Numerical


2

N

L3 Error = Max

∣∣∣∣∣∣ψ Node
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− ψ Node
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∣∣∣∣∣∣

(31)
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Fig. 11. 500-element unstructured and hybrid
locally structured grid views.

3.3 Comparison of Convergence Characteristics
Using Unstructured and Hybrid Grids

The unstructured and hybrid (locally structured)
grids with 500 elements used for calculations are
presented in Figure11. The iteration number
required versus the time-step size for the ACDI-
AF, ACDI, Laasonen, PGS, and RK4 methods are
given for the solution of the Laplace equation with
the unstructured grid in Figure 9. The curves
obtained for the methods have behavior similar to
the structured grid case results. In (∆t = 1), the
ACDI-AF method appears to provide much faster
results than the PGS method.
The hybrid grid is an unstructured grid using a
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Fig. 12. In structured, unstructured and hybrid
meshes, the variation of L2 norm errors of the
ACDI-AF method according to the average cell
area for ∆t = 0.001 (potential flow around
cylinder).

Table 1. L0 and L∞ errors of ACDI-AF methods
for ∆ t = 0.001.

GRID Str 20x25 Str 30x35 Str 35x43
L∞ 0.0060 0.0044 0.0040
L0 (0,0.6) 0.0022 0.0010 0.0007
GRID Uns 500 Uns 1000 Uns 1500
L∞ 0.0140 0.0120 0.0130
L0 (0,0.6) 0.0030 0.0015 0.0009
GRID Hyb 500 Hyb 1000 Hyb 1500
L∞ 0.0600 0.0099 0.0090
L0 (0,0.6) 0.0026 0.0012 0.0008

structured grid in its partial regions. In Figure 10,
the Laasonen method uses a greater CPU time per
iteration, and the RK4 method requires relatively
smaller time-step sizes; thus, both methods seem
disadvantageous for obtaining convergent results
faster.
The convergence of the ACDI method and CPU
time characteristics are similar to those of ACDI
AF. Another comparison approach addresses how
the method changes its sensitivity in different grid
types. To examine the accuracy of methods and the
effect of solution mesh types on accuracy, solutions
were obtained for structured, unstructured, and
hybrid solution meshes with 500, 1000, and 1500
elements in the same solution area. Thus, solution
meshes with an average cell area of approximately
0.1, 0.15, and 0.3 m2 were in question. In
Figure 12, 13, and 14, the variations of L0,
L1, and L2 norm errors according to the average
cell areas for structured, unstructured, and hybrid

Table 2. CPU time and iteration number required
for the methods; 20x25 structured and 500
unstructured cells in potential flow around cylinder.

ACDI
AP-FAC

PGS RK4 LAASONEN ACDI
&
LGS

∆t Structured 20x25 CPU Time (s)
0.0001 20.32 14.50 32.00 39,438.42 21.38
0.001 5.59 4.00 8.92 10,388.59 5.63
0.01 0.92 0.73 - 1732.34 0.94
0.1 0.16 0.17 - 244.10 0.13
1 0.03 0.09 - 35.35 0.02
∆t Structured 20x25 Iteration Number
0.0001 101787 95929 95854 101780 106876
0.001 26812 27100 26962 26809 28153
0.01 4471 4696 - 4465 4695
0.1 623 955 - 621 662
1 83 539 - 82 90
∆t Unstructured 500 Point CPU Time (s)
0.0001 20.82 15.90 32.70 41,640.06 21.19
0.001 5.51 3.85 9.42 11,117.19 5.66
0.01 1.01 0.76 - 1822.81 0.93
0.1 0.13 0.17 - 259.11 0.13
1 0.02 0.11 - 35.07 0.02
∆t Unstructured 500 Point Iteration Number
0.0001 100924 99710 99638 100920 105970
0.001 26945 27120 26974 26939 28292
0.01 4418 4662 - 4420 4639
0.1 612 961 - 609 659
1 85 543 - 85 89

solution meshes are presented, respectively. Linear
behavior in the mean cell area plot of the error
is evidence of a second-order precision because,
in equally spaced cells, the area is proportional
to ∆x2, and the error that is proportional to
∆x2 represents the second-order precision. In
Figure12, 13, and 14, L0, L1, and L2 norm errors
are proportional to the average cell area. This
indicates that ACDI AF presented in these charts
has second-order precision. As expected, these
graphics reveal that errors in the structured solution
meshes are lower than errors in unstructured
solution meshes. As expected, errors of hybrid
mesh results are among the errors of structured and
unstructured mesh results. One of the key features
of ACDI methods is that it practically supports
hybrid solution meshes. The different norm errors
of ACDI-AF methods are listed in Table 1

3.4 Comparison of Convergence Characteristics
of Methods Using Structured and Unstructured
Grids

Table 2 presents the iteration numbers and CPU
times of these studies for different step times.
In Figure 15 and 16, the L2 norm error results
of different methods are given for structured and
unstructured meshes. These graphs demonstrate
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Fig. 13. In structured, unstructured, and hybrid
meshes, the variation of L1 norm errors of the
ACDI-AF method according to the average cell
area for ∆t = 0.001 (potential flow around
cylinder).

that all methods are second-order accurate. The
most accurate results in both structured and
unstructured meshes appear to be the ACDI-AF
and Laasonen methods. In the results, the Laasonen
method is slightly more accurate. Naturally,
the accuracy is slightly reduced in unstructured
meshes, but the most reasonable method in
unstructured mesh is ACDI AF. Laasonen exhibits
the same performance but takes much more CPU
time, and as the number of elements increases, it
increases logarithmically.

At this stage, it is necessary to indicate where
structured and unstructured solution meshes are
used. The results reveal that structured solution
meshes are a great advantage in many aspects.
However, the structured mesh generation is often
exceedingly difficult in complex geometries and is
sometimes impossible. In this case, unstructured
solution meshes that can be applied quite easily are
used.

The Delaunay mesh production method (Rebay
1991) used in this study is a quite common and
easy-to-use method. As a result, in cases where
structured meshes are not used or are not available,
unstructured meshes are used. In another case, this
method improves performance in hybrid methods
using structured meshes in sensitive areas. The
ACDI methods are crucial in supporting a hybrid
mesh structure automatically.
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Fig. 14. In structured, unstructured, and hybrid
meshes, the variation of L0 norm errors (on x = 0,
y = 0.6) of the ACDI-AF method according to the
average cell area for ∆ t = 0.001 (potential flow
around cylinder).

3.5 Investigation of Unsteady Performance of
Methods Using the Heat Transfer Problem in
the Infinite Wall

The ACDI-AF method is to increase the
implicitness in the partial differential solution.
Implicitness is most important in unsteady
problems. Therefore, a problem that has simple
and analytical results should be defined. The
unsteady heat conduction problem on a rectangular
plate is solved for the comparison. The infinite
wall boundary condition is used at horizontal
boundaries, and the constant temperature boundary
condition is applied at the vertical walls. The
representation of this 1D problem and the
boundary conditions and sizes are given in Figure
17. The unsteady heat conduction equation is
given below:

∂T
∂τ
− a∇2T= 0, (32)

where a is the heat conduction coefficient. The
analytical solution for a = 1 of this problem is
provided below:

T (x, y, τ) =

∝∑
n=1

Ane−λnτcos (λnx)

An =
4sinλn

2λn + sin2λn
(33)

λntanλn = 1

Since there is a Neuman boundary condition
in Y = 0 and Y = 1, the 1-dimensional problem

9

Ali Ruhs¸en C¸ ETE



 

1,0E-05

1,5E-05

2,0E-05

2,5E-05

3,0E-05

3,5E-05

4,0E-05

4,5E-05

5,0E-05

5,5E-05

0,1 0,15 0,2 0,25 0,3 0,35

L2
 N

or
m

 E
rr

or

Average Cell Area (m2)

L2 Norm Error - Average Cell Area
(With Structured Mesh)

ACDI AP-FAC
PGS
RK4
LAASONEN
ACDI&LGS
Linear (ACDI AP-FAC)
Linear (PGS)
Linear (RK4)
Linear (LAASONEN)
Linear (ACDI & LGS)

Fig. 15. In structured meshes, the variation of L2
norm errors of different methods according to the
average cell area for ∆t = 0.001 (potential flow
around cylinder).

is actually solved in 2 dimensions. Naturally,
temperature values do not change much during
Y. It is also obvious that the problem converges
to a situation where the temperature is the same
everywhere. Consequently, only solutions at τ =
0.2 were compared to make the comparison clearer.

In Figure 18, in the solution on the center line
of the 17x17 structured element mesh, the errors of
the methods are shown comparatively at τ = 0.2.
Similarly, in Figure 19, in the solution on the
center line of the 297-element unstructured mesh,
the errors of the methods are shown comparatively
at τ = 0.2. In the structured mesh, ACDI AF
provides the same results as the Laasonen method.
In this case, the only difference between the two
formulations is the factorization error, which is
minute. The RK4 method is best in terms of
precision, but it is an explicit formulation and is
conditionally stable, operating at a very small step
time (∆t). Even under these conditions (low ∆t)
ACDI AF is more effective than RK4 and results in
the same accuracy but more quickly.

This also applies to unstructured mesh.
Although the Laasonen and RK4 methods are
applied easily on unstructured meshes, CPU time
of these methods are greater than others. The
Laasonen CPU time problem is impossible in
many problems because the number of meshes
increases logarithmically. The same situation
becomes impossible in RK4 with the condition
of stability, using a very small step time. The
ACDI AF seems to be a more effective method,
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Fig. 17. Schematic representation of the problem
of heat transfer in the infinite wall.

especially in unsteady problems.
In Table 3, the CPU times of the methods

for 10,000 iterations are given. Since Lasonen
method involves solving full matrix equations, its
CPU time is considerably higher than the others.
Therefore, Laasonen CPU time is proportional
to the square of the number of mesh elements,
although it is known in other methods that the CPU
time is proportional to the number of meshes.

4. Conclusion

This study aims to improve the ACDI method
by increasing the overall performance with the
implicitness characteristic. The scheme was tested
on steady and unsteady problems.

The ACDI methods have a basic fast implicit
scheme and behave exactly like these schemes in
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Fig. 18. Error distribution through y = 0.5 constant
line at τ = 0.2, 17x17 elements structured grid, ∆τ

= 0.0001 (heat transfer in infinite wall).
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Fig. 19. Error distribution through y = 0.5 constant
line at τ = 0.2; 297-element unstructured grid, ∆τ

= 0.0001 (heat transfer in the infinite wall).

structured meshes. The basic fast implicit scheme
of the old ACDI method is the LGS method. The
basic fast implicit scheme of the ACDI-AF method
developed in this study is the AF method. In both
schemes, it acts like the basic fast implicit schemes
in structured meshes.

The ACDI-AF method is observed to behave
like an approximation of the fully implicit method
(Laasonen method), like a basic AF method.
Moreover, the ACDI-AF method exhibits this
feature in unstructured meshes.

The ACDI-AF method provides a serious
improvement in hybrid meshes (locally structured),
automatically detecting structured regions in the
unstructured meshes. Thus, hybrid meshes
exhibit higher performance. Fast implicit methods

Table 3. CPU times of 10,000 iterations for the
methods; 17x17 structured and 297 unstructured
elements of heat transfer in the infinite wall.

METHOD CPU time (s) for CPU time (s) for
10,000 iterations 10,000 iterations for

USED for 17x17 str. mesh 297 pt. uns. mesh

RK4 3.520 3.832
LAASONEN 61.588 62.459
PGS 2.698 2.780
ACDI 3.069 3.052
ACDI AF 2.801 2.828
LGS 3.010 -

are more advantageous than explicit schemes in
structured meshes. Unstructured meshes should be
used because structured meshes cannot be applied
in difficult geometries. This method provides a
solution to the problem of not applying fast implicit
schemes in unstructured meshes.

The ACDI AF always results in a lower
CPU time than the PGS method. Thus, it
is more advantageous than the PGS method.
The accuracy of an advanced high-order explicit
scheme, such as RK4, is slightly more accurate
than ACDI AF but is slower and conditionally
stable. Stability conditions are very weak;
therefore, it is impractical. The theoretical stability
analysis of the ACDI-AF method indicates that
it is unconditionally stable in the Cartesian mesh
structure. However, the stability criterion is at the
full limit, which leads to the conclusion that it is
conditionally stable when it moves away from the
ideal Cartesian structure. This study could not
be extended to these limit values. In numerical
tests, the stability in structured meshes is preserved.
In unstructured meshes, instability has occurred
at very high step times. This issue has not been
emphasized much because this problem can be
solved with a formulation improvement (Ballhaus
et al. 1977). In this study, only the elliptical
(steady potential flow) and parabolic (unsteady
heat conduction) PDE solution performance of
ACDI AF was examined. Other related research
has also investigated the performance of hyperbolic
PDEs. As a result, the ACDI method can be applied
as a high-order fast implicit scheme for all types
of grids. Thus, complex PDEs, such as Navier-
Stokes can be solved using ACDI schemes. The
use of fast and robust implicit solvers in hybrid
meshes is also one of the important research topics
in computational fluid mechanics.
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