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Abstract 

The nullity of a graph G is the multiplicity of zero as an eigenvalue of its adjacency matrix. An 

assignment of weights to the vertices of a graph, that satisfies a zero sum condition over the neighbors of 

each vertex, and uses maximum number of independent variables is denoted by a high zero sum 

weighting of the graph.  This applicable tool is used to determine the nullity of the graph. Two types of 

graphs are defined, and the change of their nullities is studied, namely, the graph G+ab constructed from 

G by adding a new vertex ab which is joint to all neighbors of both vertices a and b  of G, and 

G•ab which is obtained from G+ab by removing both vertices a and b. 
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1.   Introduction

The adjacency matrix A(G) of a labeled simple 

graph G with vertex set V, V = {v1, v2,···, vn} is 

an n×n matrix in which aij = 1 if vi and vj are 

adjacent, and 0 if they are not. The neighborhood 

N(v) ( or NG(v)) of a vertex v in a graph G is the 

set of all vertices adjacent with v in G. A graph in 

which every two vertices are adjacent is a 

complete graph Kn. A bipartite graph is a graph 

whose vertices can be partitioned into two sets, 

such that each edge joins a vertex of the first set 

to a vertex of the second set. A complete bipartite 

graph Km,n is a bipartite graph where each vertex 

of the first set is adjacent to every vertex of the 

second. A graph of order n, which is a path, is 

called a path graph Pn. A cycle graph G is a path 

u0, u1, u2, ···, un with an edge joining vertices u0 

and un, n > 2, see (Ali et al., 2016a; Sciriha, 

2007). The complement Gc of a graph G is a graph 

whose vertex set is the same as that of G and two 

vertices are adjacent in Gc if and only if they are 

not adjacent in G. G-v and G-e are respectively 

the deletion of a vertex and an edge from G.  A 

vertex weighting of a graph G is a function         

f :V(G)→R where R is the set of real numbers, 

which assigns real numbers (weights) to each 

vertex. The weighting of G is said to be non-

trivial if there is at least one vertex v∈V(G) for 

which f(v)  0. A non-trivial vertex weighting of 

a graph G is called a zero sum weighting 

provided that for each v∈V (G), u∈N(v)f(u) = 0, 

that is the summation is taken over all u∈N(v), 

See (Brown et al., 1993). Out of all zero-sum 

weightings of a graph G, a high zero sum 

weighting (hzsw) of G, is one that uses a 

maximum number of non-zero independent 

variables, see (Sharaf & Ali, 2013). The nullity, 

η(G of a graph G) is the multiplicity of zero as 

an  eigenvalue of  its adjacency matrix, see 

(Cheng &  Liu, 2007)., So a graph is singular if 

its nullity is at least one. Also, a graph is 
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singular if it possesses a non-trivial zero sum 
weighting. A graph with nullity η contains η cores 
(vectors) determines a basis for the null space of A. 
Any non-zero vector X that satisfies AX=0, and 

uses only one variable in its components, is in the 

null space of the graph, also any linear combination 

of such vectors. A singular graph, on at least two 

vertices, with a kernel eigenvector X such that 

AX=0 having no zero entries, is said to be a core 

graph. Core graphs of nullity one are called nut 

graphs. see (Sciriha & Gutman, 1998). In (da 

Fonseca, 2019) the eigenvalues of some anti-

tridiagonal Hankel matrices are defined.

     The nullity of most known graphs can be easily 

determined using the hzsw tool, since number of 

independent variables used in a hzsw of the graph 

is exactly η(G). Thus, η(Kn)=0, for n≥2, η(Km,n)=m

+n-2, η(Pn)=1 if n is odd and zero where n is even, 

η(Cn)=2 if n=0 mod4 and it is non-singular 

otherwise, see (Cheng,  &  Liu, 2007) and  

(Sharaf  & Ali, 2013). Maximum nullity of graphs 

was studied in (Gutman & Sciriha, 1996). 

1.1. Theorem. (Interlacing Theorem).

Let G be a graph with eigenvalues λ1 ≥ λ2 ≥ ···≥ λn, 

and let the eigenvalues of G−v be µ1 ≥ µ2 ≥···≥ µ(n

−1). Then the eigenvalues of G−v interlace 

eigenvalues of G that is, λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ ··· ≥ µ(n

−1) ≥ λn, see (Omidi, 2009).  

The degree deg(v) of a vertex v in a graph is the 

number of edges incident to v. In (Valencia et 

al., 2019) the inverse degree index is studied.  

A pendant or an end vertex v is a vertex of a 

graph of degree one, it has a unique neighbor w 

and the edge vw is a pendant edge. 

1.2. Lemma. (End Vertex Lemma). 

If G is a graph with a pendant vertex, and if H is an 

induced subgraph of G obtained by deleting 

 For any two vertices a and b of a graph G, 

η(G)−1≤ η(G+ab) ≤ η(G)+1. 

Proof: This is a version of Interlacing 

Theorem, for the graph H=G+ab.  

     Equality holds in the left side where the 

graph G+ab=P3+ab is obtained from the path P3 

and a, 

this vertex together with the vertex adjacent to 
it, then η(G)=η(H), see (Brown et al., 1993; 
Sciriha, 2007).  

2. Change in nullity of a graph by adding 
a new vertex

Two vertices of a graph G, are said to be 

identified if they are combined to form one vertex 

whose neighbors are the union of their neighbors, 

ignoring loops and multiple edges. We define the 

vertex operation G + ab to be the graph obtained 

from G by adding a new vertex ab which is 

adjacent to all vertices in N(a)∪N(b). Also, the 

graph G•ab is defined to be G+ab−a−b. Two 

vertices a and b of a graph G are said to be 

duplicate (co-neighbor) vertices if they are non- 

adjacent and have the same set of neighbors. 

     Change in the nullity of a coalescence Fiedler 

and core vertices of graphs, in which a cut vertex 

is removed was studied in (Ali et al., 2016a). 

While, in the other paper of (Ali et al., 2016b) 

change in nullity of graphs and those derived 

from them under geometrical operations, 

including, deletion, contraction, and insertion of 

an edge are determined. In this paper, we study 

the change in the nullity of a graph due to each of 

the above operation.  

     A basic inequality about the bounds for 

the nullity of the graph G+ab, is given in the 

next result. 

2.1.  Proposition. 

2

Change of nullity of a graph under two operations



b are adjacent vertices, while in the right holds 
where G+ab= P3+ab and a,b are end vertices. 

2.2.  Theorem.

For any two non-adjacent vertices a and b of a 

graph G, if N(a)∩N(b)= ϕ then, 

 η(G+ab)=η(G)+1 

Proof: In the adjacency matrix of the graph G

+ab, the rows Ra, Rb and Rab corresponding

to the vertices a, b and ab of the adjacency

matrix of G+ab, satisfy the row equation

Ra + Rb = Rab 

This is only true if the neighbors of a and b are 

disjoint sets. So, the rank of the graph G + ab is 

the same as that of G (the order is the sum of the 

rank and the nullity). Then η(G+ab) = η(G)+1. 

In other words, any high zero sum weighting of 

G+ab will contains an extra distinct independent 

variable say x, which is given to the vertex ab. 

For more details replace the weights of a and b 

in the high zero sum weighting of G+ab by w(a)

−x and w(b)−x. Thus, in the new weighting, the 

summation over all neighbors of each vertex v is 

zero for all v in G+ab, especially those adjacent 

to a or to b, and more precisely over the 

neighborhood of the vertex ab, because 

N(a)∩N(b)=ϕ, this implies that η(G+ab)≥η(G)

+1. But by Interlacing Theorem η(G+ab)≤ η(G)

+1. Thus, η(G+ab)=η(G)+1.

Moreover, if the vertices a and b are 

adjacent then, the above row equation holds, as 

long as the open neighborhoods of a and b are 

disjoint. 

 We construct two graphs, to explain 

the statement of Th. 2.2, by definition of G+ab, 

the added vertex ab dominates (it is adjacent  

 

Fig. 1.  hzsws of the graphs G1, G1+ab, G2 and

G2+ab.

to) all the neighbors of the vertices a and b. We 

see that the nullity of the graph G1 in the above 

figure is increased by 1 when the vertex ab is 

added, while the nullity of the graph G2 remains 

unchanged where ab is added, because a and b 

are adjacent, and in both cases N(a)∩N(b) = ϕ. 

2.3.  Theorem. 

For any two duplicate vertices a and b of a graph 

G, η(G+ab)=η(G)+1.  

Proof: In this case, at least three duplicate 

vertices appear, namely a, b and ab, (that is 

N(a)=N(b)=N(ab) and all are pairwise non-

adjacent), So, any new high zero sum weighting 

for G+ab will be of the form, w(ab) = x, w(a) is 

replaced by w(a)−x or w(b) is replaced by w(b) 

− x but not both, which uses an extra variable x. 

Furthermore, in this new hzsw, the sum of the 

weights over neighbors of each vertex of a, b 

and ab is zero. Applying Interlacing Theorem 

again, proves that η(G+ab)=η(G)+1. 

Clearly, where N(a)N(b) in G, then a pair 

of duplicate vertices is created, namely b and ab, 

and the nullity of the graph is increased. 

G1

G2

a b 
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y 

y 
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2.4. Theorem. 

For any two non-adjacent vertices a and b of a 

graph G, where N(a)∩N(b)  ϕ and 

{N(a)∪N(b)}\{N(a)∩N(b)} ϕ, and ab does not 

possess a duplicate vertex, then  

 η(G+ab)≤ η(G). 

Proof: Let G be a graph that contain two non-

adjacent vertices a and b for which N(a)∩N(b) ϕ 

and {N(a)∪N(b)}\{N(a)∩N(b)}ϕ. Without loss 

of generality, chose, i∈N(a)\{N(a)∩N(b)},      

j∈(N(a)∩N(b))  and  k∈N(b)\{N(a)∩N(b)}.  Let 

h be a hzsw of G, that uses η(G) independent 

variables and embed h into [h,x] as a hzsw of 

G+ab where w(ab) = x. 

Applying zero sum conditions for the weights 

over the neighbors of the above 3 vertices i, j 

and k, the relation 0 =∑ 𝑤𝐺+𝑎𝑏(v)v∈𝑁𝐺+.𝑎𝑏(i)

=∑ 𝑤𝐺(v) v∈𝑁𝐺(i) –wG(a)+wG+ab(a)+x

implies wG+ab(a)= wG(a)-x,           (1) 

the relation 0 =∑ 𝑤𝐺+𝑎𝑏(v)v∈𝑁𝐺+𝑎𝑏(k)

=∑ 𝑤𝐺(v) v∈𝑁𝐺(k) –wG(b)+wG+ab(b)+x

implies wG+ab(b)= wG(b)-x, (2) 

the relation 0 =∑ 𝑤𝐺+𝑎𝑏(v)v∈𝑁𝐺+𝑎𝑏(j)

=∑ 𝑤𝐺(v) v∈𝑁𝐺(j) –wG(a)-wG(b) +wG+ab(a)

+wG+ab(b)+x

Implies 

 wG+ab(a)+ wG+ab(b)= wG(a)+ wG(b)+x.             (3) 

Solving equations (1), (2) and (3) for x, provided 

that, the vertex ab does not produce a duplicate 

vertex, gives, x = 0. This means that the number 

of independent variables in any hzsw of G+ab is 

at most as that of η(G). That is, η(G+ab) ≤ η(G). 

Note that, if the vertex ab produces a duplicate 

vertex, say s, then x0 and wG+ab(s)=wG(s)−x 

which rebuild a hzsw for G+ab that uses η(G)+1 

independent variables, and hence η(G+ab)= 

η(G)+1, and the summation of the weights over 

the neighbors of ab is zero. Note that, where x = 

0 and summation of the weights of the neighbors 

of ab is not equal to zero, an independent variable 

in the hzsw of G is removed and η(G+ab) = 

η(G)−1.  

2.5. Theorem. 

If a and b are two adjacent vertices of a graph  G, 

then η(G+ab)≤η(G), provided that, the vertex ab 

does not possess a duplicate vertex. 

Proof: It is clear that where a and b are adjacent 

in G, then N(a)N(b), so we prove the above 

result, only for two cases: 

 Case one: N(a)∩N(b)ϕ, and ab didn’t possess a 

duplicate vertex. Without loss of generality, 

assume that there exist vertices a∈N(b)\N(a), 

b∈N(a)\N(b) and j∈(N(a)∩N(b)). Applying zero 

sum conditions for the weights over the neighbors 

of the above three vertices, a, b and j, it follows 

that: 

The relation 0 =∑ 𝑤𝐺+𝑎𝑏(v)v∈𝑁𝐺+𝑎𝑏(a)

implies wG+ab(b) = wG(b)−x, 

the relation 0 =∑ 𝑤𝐺+𝑎𝑏(v)v∈𝑁𝐺+𝑎𝑏(b)

implies wG+ab(a) = wG(a)−x, 

the relation 0 =∑ 𝑤𝐺+𝑎𝑏(v)v∈𝑁𝐺+𝑎𝑏(j)

implies wG+ab(a)+wG+ab(b)+x = wG(a) +wG(b)+z, 

for some real number z. Now, substituting the 

value of wG+ab(a) and wG+ab(b) in the last equation, 

gives z = −x. This is a contradiction for a 

duplicate vertex is constructed. Hence, the 

number of independent variables in the hzsw of 

G is not increased, which implies that η(G+ ab)≤ 

η(G).  
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Case two: N(a)∩N(b)=ϕ. In this case, ab cannot 

possess a duplicate vertex, because any duplicate 

vertex must belong to the intersection of their 

neighbors, which is empty. If N(a)={b}and 

N(b)={a}, then G+ ab constructs a cycle 

subgraph of length 3 and η(G+ab)=η(G)=0. 

Otherwise, by similar arguments as for case one 

for the vertices a, b and j, j  b, j ∈ (N(a)), we 

prove that weight of ab must be zero, so η(G + 

ab) ≤ η(G).

two vertices are identified

Operations on graphs, is a most interesting 

subject in graph theory, for example Cartesian 

and Kronecker products and their related 

spectral. Vertex identification is an operation 

applied on any pair of vertices of a graph or of 

distinct graphs.  

For some well-known graphs, we evaluate the 

following relations between the nullities of a 

vertex identified graph and its original graph. 

3.1. Theorem.

For any two identified vertices of a well-known 

graph G of order n we have: 

η(G•ab) =

{

1                𝑖𝑓          𝐺 =  𝐾2 = 𝐾1,1 

𝜂(𝐺)            𝑖𝑓   𝐺 𝑖𝑠 𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑔𝑟𝑎𝑝ℎ

𝜂(𝐺) − 1    𝑖𝑓     𝐺 𝑖𝑠 𝑎𝑛 𝑒𝑚𝑝𝑡𝑦 𝑔𝑟𝑎𝑝ℎ 

𝜂(𝐺) − 1     𝑖𝑓             𝐺 = 𝐾𝑚,𝑛 𝑤ℎ𝑒𝑟𝑒,

      𝑎 𝑎𝑛𝑑 𝑏 𝑎𝑟𝑒 𝑛𝑜𝑛 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡

𝜂(𝐺) − 2    𝑖𝑓      𝐺 = 𝐾𝑚,𝑛 𝑤ℎ𝑒𝑟𝑒,

  𝑎 𝑎𝑛𝑑 𝑏 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 
𝑎𝑛𝑑 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑎𝑐ℎ

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑠𝑒𝑡 𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 1

 

Proof: Straightforward. 

For identifying two vertices of path, we prove the 

next propositions.

3.2.  Proposition. 

Let X = [x,0,−x,0,x,···] be a vector of a high zero 

sum weighting of a path Pn for odd n, whose 

vertices are labeled consecutively from one end 

vertex to the other, then,  

η(Pn•ab) = {
𝜂(𝑃𝑛) − 1    𝑖𝑓 𝑤(𝑎) 𝑤(𝑏)

𝜂(𝑃𝑛) + 1  𝑖𝑓𝑤(𝑎) = 𝑤(𝑏)

3. Nullity of a graph in which

Proof: In any hzsw of the path Pn, if w(a)  

w(b), then either w(a) = −w(b), or one of them is 

zero, not both. Now, for any vertex v, v ∈ 

N(a){f∈N(b)} the zero sum weighting condition 

of Pn•ab will vanish, because of v(f) will be in the 

neighborhood of ab and ∑ 𝑤𝐺•𝑎𝑏(u)u∈𝑁𝐺•𝑎𝑏(v)  = 

wG•ab(ab)−wG(a) = 0 and ∑ 𝑤𝐺•𝑎𝑏(u)u∈𝑁𝐺•𝑎𝑏(f) = 

wG•ab(ab)−wG(b) = 0, gives wG(a) = wG(b), which 

is a contradiction. Hence the variable which is 

non zero and weight of a (or b) will vanish. 

Therefore, η(Pn•ab) = η(Pn)−1.  

If wG(a)=wG(b)=0, then, either the distance 

dG(a,b)=4t (or dG(a,b)=4t+2), and a cycle C4t 

(C4t+2) is constructed in Pn+ab. Applying End 

Vertex Lemma 
n−1−4t

2
times ( 

n−3−4t

2
  times), 

leaves two odd paths or a cycle C4t. 

 If w(a) =w(b)0, then dG(a,b)=4t,  then a cycle 

C4t is constructed in Pn+ab. Applying End Vertex 

Lemma 
n−1−4t

2
times, leaves 2 odd paths or a 

cycle C4t, hence η(Pn•ab)=η(Pn)+1. 

3.3. Proposition. 

If the vertices of the even path Pn are labeled as, 

v1, v2, ···, vi,···,vi+k,···,vn and the vertices vi and 

vi+k are identified, then the nullity of Pn•vivi+k is  

η(Pn•vivi+k)={

 𝜂( 𝑃𝑛) 𝑖𝑓 𝑃𝑛• 𝑣𝑖𝑣𝑖+𝑘  𝑖𝑠 𝑢𝑛𝑖𝑜𝑛
𝑜𝑓 𝑎𝑛 𝑜𝑑𝑑 𝑐𝑦𝑐𝑙𝑒
  𝑎𝑛𝑑 2 𝑜𝑑𝑑 𝑝𝑎𝑡ℎ𝑠

𝜂(𝑃𝑛) +  1          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
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Proof: If k = 1 or k=2, then the graph Pn•vivi+k is 

isomorphic to Pn−1 which is an odd path with 

nullity one.  

If k≥3 then, the graph Pn•vivi+k is a vertex 

identification of three graphs, namely, the path v1 

− vivi+k of order i, (for i = 1 this path does not

exist), the cycle of order k and the path vivi+k −vn

of order n + 1 − (k + i).

If the cycle is odd, then both paths must be even 

or both odd. If both are odd, applying End Vertex 

Lemma 
n−1−k

2
 times, leaves the odd cycle. This 

proves part one. 

Where both paths are even, applying End Vertex 

Lemma 
n−1−k

2
 times, this leaves a single vertex 

and an even path. 

If the cycle is even, then one of the paths must be 

odd and the other must be even, applying End 

Vertex Lemma 
n−2−k

2
times for the even path, 

leaves an odd and even paths. So in all other cases 

η(Pn• vivi+k) = 1.  

3.4. Theorem. 

In a high zero sum weighting of a singular graph 

G, if w(a)=w(b) 0 and dG(a,b) > 3, then 

η(G•ab) = η(G), provided that the identification 

does not construct a cycle graph C4t. 

Proof: Label the vertices of the graph G by v1=a, 

v2=b, v3,···,vn. Assume that the components of 

the vector X=[w(v1), w(v2), ···, w(vn)]T are 

weights of a high zero sum weighting of G. 

Obtain G•ab by identifying a and b. Since dG(a,b) 

> 3, then no new pair of vertices in the graph

G•ab will be duplicated. And the components of 

the contract vector X∗ = [w(ab) = w(a), w(v3), ···, 

w(vn)]T forms a high zero sum weighting of G•ab, 

that uses the same number of distinct independent 

variables used in X. Moreover, the sum over the 

neighbors of ab remains zero, which is the sum 

over the neighbors of a and of b, therefore, 

η(G•ab) = η(G)).

The condition w(a) = w(b)  0 is necessary but 

not sufficient, for example in the above figure the 

nullity of P5 is 1. But η(P5•ab)=2. This is true 

whenever d(a,b) = 4t, t ≥ 1.  

3.5. Lemma. 

For non-adjacent vertices a and b of G, if w(a) = 

w(b)  0 and N(a)∩N(b) = {v} then, η(G•ab) = 

η(G)−1. 

Proof: In a hzsw of G•ab, which is obtained by 

contracting the vector X to X∗. For the vertex v, 

v∈N(a)∩N(b), ∑u∈𝑁𝐺•𝑎𝑏(v) 𝑤𝐺•𝑎𝑏(u)=w(ab)0. 
hence weight of ab will vanish, therefore, 

η(G•ab)=η(G)−1. 

3.6. Proposition. 

Let w(a)  w(b) in a high zero sum weighting for 

a singular graph G, then η(G•ab) ≤ η(G), strictly 

holds if a and b are co-neighbor vertices. 

Proof: If a and b are co-neighbor vertices, then 

η(G•ab) = η(G)−1, because the same high zero 

sum weighting is used with losing one variable 

say x. If a and b are non-co-neighbor vertices, 

then, there exists a vertex say v ∈ N(a)\N(b). So, 

in any high zero sum weighting of the graph 

G•ab, the condition ∑u∈𝑁𝐺•𝑎𝑏(v) 𝑤𝐺•𝑎𝑏(u)=0, 
gives w(a)=w(b). But we have assumed that w(a)

w(b), then we lose a variable say x (which is 

not zero, provided that a duplicate vertex is not 

created) in a high zero sum weighting of G•ab, 

therefore, η(G•ab) ≤ η(G). 

a 

x 

b 

0 -x 0 x 

x 

y -x

Fig. 2.  hzsws of the graphs P5 and P5•ab. 

-y

ab 
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Usually, if w(a)  w(b) = 0, then η(G•ab) ≤ η(G) 

and if 0w(a) w(b)  0 then η(G•ab) < η(G). 

Fig. 3. Graphs C4, C4•ab and C4•ab, where a and 
b are co-neighbors and non co-neighbors.

3.7. Proposition. 

For any two vertices of a singular graph G, if 

w(a) = w(b) in a high zero sum weighting and 

dG(a,b) ≥ 3, then η(G•ab) ≥ η(G), with strict 

inequality if dG(a,b) = 4t.  

Proof: For any hzsw of the graph G•ab the sum 

condition over the neighborhoods of v ∈ N(ab) 

satisfies ∑u∈𝑁𝐺•𝑎𝑏(f) 𝑤𝐺•𝑎𝑏(u)=0, hence no old 
variable will vanish, and there is a possibility to 

introduce new variable. Moreover, if dG(a,b)=4t 

then a cycle C4t is obtained and in a simple case 

where G is P4t+1 and a and b are vertices at 

distance 4t, then P4t+1•ab is isomorphic to C4t 

with nullity 2. 

3.8. Proposition. 

In a high zero sum weighting of a graph G, if 

w(a) = kw(b), k 1 then, 

 η(G•ab) ≤ η(G)−1

Proof: Let w(a) = kw(b), k  1 in a (hzsw) of G. 

If the vertex v ∈ N(a), then in G•ab we have 

∑ 𝑤𝐺•𝑎𝑏(u)u∈𝑁𝐺•𝑎𝑏(v) = (k−1) w(a) 

and we vanish the variable w(a), similarly if v ∈ 

N(b), then in G•ab we have  

∑ 𝑤𝐺•𝑎𝑏(u)u∈𝑁𝐺•𝑎𝑏(v) =(k−1) w(b) and we vanish

w(b), therefore η(G•ab) < η(G). But in figure 4 

we see that η(G•ab) = η(G) − 1, for any two 

vertices satisfying the properties of the statement, 

hence η(G•ab) ≤ η(G)−1.  

Fig. 4. A hzsw of the graph C6 with a pendant

vertex. 

A main result of this section is proved in the 

next theorem. 

3.9. Theorem. 

For any two vertices a and b of a graph G, if 

N(a)∩N(b) = ϕ, then 

 η(G)−2 ≤ η(G•ab) ≤ η(G) + 2, 

equality holds on the left when the graph G is C4 

and on the right when the graph G is C5. 

Proof: Let a and b be any two vertices in a G with 

a hzsw say h. In the graph G + ab, give the weight 

zero to the vertex ab, then the high zero sum 

weighting of the graph G union weight of ab is a 

zero sum weighting for G+ab which uses the 

same number of independent variables as η(G) 

because N(a) ∩ N(b) = ϕ. Hence η(G) ≤ η(G + 

ab). There are two cases: 

i) If the zero sum weighting of G+ab is a high zero

sum weighting, then

η(G) = η(G + ab)              (4) 

Hence, by Interlacing Theorem, 

η(G+ab)−2≤ η(G+ab−a−b)≤ η(G+ab)+2   (5) and 

by equation (4), gives 

 η(G)−2≤ η(G•ab) ≤ η(G)+2. 

ii) If the zero sum weighting of the graph G+ab

is not a high zero sum weighting then, an extra

independent variable can be introduced that is,

x 

-y

y 

-x x 

0 

-x

0 

0 0 C4 C4•ab C4•ab 
-x

0 

0 

x 

x 

0 
-2x
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η(G + ab) = η(G) + 1                  (6) 

Again, the left inequality of equation (5) gives 

η(G) − 1 ≤ η(G•ab). But on the right side of 

equation (5), we use the vector equation 

 Ra + Rb = Rab, hence 

η(G + ab−a−b) ≤ η(G + ab) + 1                     (7) 

Combining equations  (6) and (7) we get the 

result. 

Thus, disjoint neighbors of identified vertices 

play the main role to the change of the nullity of 

the vertex identified graphs. To illustrate this 

further, we construct two graphs. In the first the 

identification of two non-disjoint neighboring 

vertices increases the nullity by 3 while, in the 

second, decreases the nullity by 3. 

a) We construct a graph G, Figure 5 which

contains two vertices a and b, such that N(a) ∩

N(b)  ϕ. It is clear that η(G) = 0, η(G + ab) = 1,

η(G + ab−a) = 2 and η(G•ab)=η(G+ab− a−b)=3

and the graph G•ab contains three pairs of co-

neighbor vertices.

Fig. 5. Graphs G and G•ab, with η(G) = 0 and

η(G•ab) = 3.

b) We construct another graph H, Figure 6 which

contains two vertices u and v, for which

N(u)∩N(v)ϕ. And in the graph H, η(H)=3, η(H

+uv)=2, η(H+uv−u)=1 and η(H•uv) = η(H+uv−u

−v)=0.

Fig. 6.  Graphs H and H•uv with η(H) = 3 and 
η(H•uv) = 0.

Finally, we conclude that for any two vertices a 

and b of a graph G,  | η(G•ab)−η(G) |≤ 3. 

In other words, as an application of Interlacing 

Theorem this inequality holds for the dimension 

of the null space of any eigenvalue of the graph.  

4. Constructing new nut graphs from old ones

In this section we start with nut graphs defined 

by (Sciriha & Gutman, 1998), and by 

identification of proper vertices we obtain nut 

graphs with extra properties, namely increasing 

the maximum degree. An extension of the 

smallest order nut graph C5•C3 is the nut graph 

C4n+1•C4n−1, n ≥ 1 whose maximum degree is 4 

which is unrelated to its order. In order to 

investigate nut graphs with maximum degree, 

consider the nut graph 𝐶2
2
𝑛+1 of order 6n + 3 

obtained from an odd cycle C2n+1 where each 

vertex is identified with a vertex of a cycle C3. 

The smallest such graph is illustrated in figure 7 

where n=1. 

a 

b 

ab 

G G•ab 

uv 

-x-zy x+z 

-x-z -y

y x 

-y

-y -x y
x 

-y
u 

v 

H 

H•uv 

8

Change of nullity of a graph under two operations



4.1. Proposition. 

For each n, there exist a nut graph of order 4n + 3 

with a dominating vertex. 

Proof: For any n, in the nut graph C2n+1
2  whose

vertices are labeled as v1, u1,w1, v2, u2, w2, ···, 

v2n+1, u2n+1, w2n+1, where the vertices w1, w2, ···, 

w2n+1 are the vertices of the cycle C2n+1, identify 

the vertices v1,v2,···,v2n+1 to form a dominating 

vertex. Now, the resulting graph is a nut graph. 

To prove this, let the weight of the vertex with 

degree 4n+2 be -x, then all vertices of the cycle 

C2n+1 (each is of degree 3) must have weight x, 

while the remaining 2n+1 vertices will be 

weighted -x, Figure 7 and hence any hzsw of the 

resulting graph uses exactly one variable. Thus, 

all components of the core vector are non-zero 

and the graph has nullity one. Hence, the resulting 

graph is a nut graph. 

Fig. 7. A nut graph of order 7 and maximum 

degree 6 is obtained from the nut graph 𝐶3
2.

4.2. Proposition. 

Let G be a nut graph, with V(G) = {a = v1, b = v2, 

v3, ... , vn } and a hzsw that uses one variable, say 

w(a), then,  

1) η(G•ab) ≥ η(G) if N(a)∩N(b)=ϕ and

w(a)=w(b)

2) η(G•ab) = 0 if w(a)  w(b), provided that a

duplicate vertex is not constructed

3) η(G•ab) = 0 if N(a)∩N(b)  ϕ

Proof: 1) Obtain a weighting for G•ab from the 

hzsw of G by assuming w(ab) = w(a) and keep 

the remaining weights unchanged. Then, this 

weighting is a zsw of G•ab that uses at least one 

variable say w(a), because the sum over 

neighbors of all vertices of G•ab remains zero, so 

η(G•ab) ≥ η(G).  

Moreover, if some duplicate vertex is created 

then the strict inequality holds. See Figure 8. 

2) Assume that w(a)  w(b) and w(a) = x, then

w(b) must be −x. Now giving any non zero

weight to ab yields a contradiction to the

condition of the zero sum over the vertices in the

neighbors of a and of b. Hence (where a duplicate

vertex is not constructed), there exists no non

trivial zsw for G•ab, which means η(G•ab) = 0.

3) Assume that N(a) ∩ N(b)  ϕ. If w(a)  w(b),

then by part 2 the result holds. Let w(a) = w(b),

chose w(ab) = 2w(a). Then, the zero sum

condition will not be satisfied over any vertex not

in the intersection of neighbors of a and b, and

w(ab)=0, the unique variable in the zsw will

vanish. If no such vertex exists, then a and b are

co-neighbor vertices, which is a contradiction to

the definition of nut graph. So η(G•ab)=0.

 

Fig. 8. Graphs G and G•ab, η(G) = 1 

and η(G•ab) = η(G) + 1. 
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