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Abstract

We provide some existence results about integral curves of a linear vector field on 3-dimensional Lorentzian space 
E . Moreover we have a classification of integral curves (flow lines) of a linear vector field and the normal forms of the 
matrix corresponding to a mapping A in Lorentzian spaces E  and E . 
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1. Introduction

A vector field is an assignment of a vector to each 
point in a subset of Euclidean space. As vector fields 
exist at all points of space, they can be specified along 
curves and surfaces as well. This is especially important 
because all laws of electricity and magnetism can be 
formulated through the behavior of vector fields along 
curves and surfaces. Vector fields are often used to model; 
for example, the speed and direction of a moving fluid 
throughout space, or the strength and direction of some 
force, such as the magnetic or gravitational force, as it 
changes from point to point, (Galbis & Maestre, 2012).

We have a particular interest to vector fields on the 
Lorentzian space E  that are linear with respect to a 
chosen linear map  (see Preliminaries 
section for details). Note that when 3n =  and the index 
is zero, such vector fields can be specified by integral 
curves. We recall that an integral curve is a parametric 
curve that represents a specific solution to an ordinary 
differential equation or system of equations. If the 
differential equation is represented as a vector field, then 
the corresponding integral curves are tangent to the field 
at each point. Such curves could represent the histories of 
small text particles, in which case they would be geodesics, 
or they might represent the flow lines of a fluid (Hawking 
& Ellis, 1973). Integral curves are called by various other 
names, depending on the nature and interpretation of the 
differential equation or the vector field. In physics, such 
curves for an electric field or magnetic field are known as 

field lines, and for the velocity field of a fluid are known as 
streamlines. In dynamical systems, the integral curves for 
a differential equation that governs a system are referred 
to as trajectories or orbits (Lang, 1972).

A linear vector field X on the Euclidean space E3 can 
be written as follows:

 

For every , where A and C are matrices.

Karger & Novak (1978) classified integral curves of 
a linear vector field according to the rank of matrix [AC]. 
They showed that the integral curves of a linear vector 
field X on E3 are helixes, circles or parallel straight lines. 
Also, they expressed that the integral curves of a linear 
vector field on a sphere in E3 are circles lying in parallel 
planes.

Later on, Acratalishian (1989) extended the results of 
Karger and Novak to the general case E .

In this paper, we provide a sufficient and necessary 
condition on a linear vector field that determines a vector 
field of tangent vectors on the pseudo-sphere S  in E . 
Furthermore, we obtain the normal forms of the matrix 
corresponding to any linear map by considering the 
causal structure of the 3-dimensional Lorentzian space. 
As a result of that we analyze the non-zero solutions 
of the equation , in the Lorentzian 
space E  where A is the anti-symmetric matrix corres-
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ponding to the linear map A, and then we construct 
normal forms of the matrix A depending on the causal 
characters of the vector x.

2. Preliminaries

The Lorentzian space  is the (2n+1)-
dimensional vector space E  endowed with the pseudo 
scalar product

where 1 2 2n 1 1 2 2n 1v (v , v ,..., v ), w (w , w ,..., w )+ += =  
in E . We say that the vector  is spacelike, 
lightlike or timelike if , 0〈 〉 >v v  or 0, , 0= 〈 〉 =v v v  and 

0,≠v  and , 0,〈 〉 <v v  respectively, (O’Neill, 1983). We 
define the signature of a vector v  as

The norm of a vector  is defined by 

A frame field  on E  is called 
a pseudo orthonormal frame field, (Duggal & Bejancu, 
1996), if

Definition 1. Let , s  being the arclength parameter, 
be a non-null regular curve in semi-Euclidean space 
The   changing   of  a  pseudo  orthonormal   frame  field 

 of  along  is given by

where .  These equations are called the Frenet-
Serret type formulae for , where  is 
the curvature function of  
and  is the signature of the vector  
(Yücesan et al., 2004).

The  signature  matrix S in the  Lorentzian space E

is the diagonal matrix whose diagonal entries are  
and  We call that A is skew-
symmetric matrix in (2n+1)-dimensional Lorentzian 
space if its transpose satisfies the equation ,= −tA SAS  
(O’Neill, 1983).

Let X  be a vector field on E . By an integral curve of 
the vector field X we understand a curve  
such that its every tangent vector belongs to the vector 
field X. If  is satisfied, then the 
curve  is called an integral curve of the vector field X. A 
vector field X on E  is called linear if  for 
all  where the A is the representation matrix of a 
linear mapping A from E  into E .

3. Integral curves of a linear vector field on pseudo-
sphere S  

The following theorem gives a way to construct a vector 
field on S .

Theorem 1. Let E  be a 3-dimensional Lorentzian space 
with the pseudo-sphere S . Let an orthonormal basis 

 be given in E . A linear vector field  
determines a vector field of tangent vectors on the 
pseudo-sphere S  if and only if the representation of the 
mapping A in the base 

 
is given by a skew-

symmetric matrix. Here, S  is a signature matrix in E  and 

We need some preparation for proving Theorem 1.

Let  be a linear mapping and  Then, 
taking into consideration , ,〈 〉 = tu v u Sv  we can write

, , ( ) .< >=< >tA u v u SA v S

Then the function

is a tangent vector field on the pseudo-sphere S  if and 
only if the scalar product  for all  
This, in turn, is equivalent to the requirement that A be 
skew-symmetric, that is 

0,+ =tSAS A

where tA  is the transpose of the matrix A . Actually, 
suppose first that  for all  Then
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for all  and hence, 0.+ =tSAS A  So, we have 
.= −tA SAS

Conversely, if 0,+ =tSAS A  then 

Therefore, we will say that the vector field X obtained in 
this way is a linear vector field. Now, we can give proof 
of the theorem.

Proof. Let 
 
be an ortho-normal basis in E . First, 

we show that the representation of the mapping A in the 
basis  is given by a skew-symmetric matrix. So, 
we take into consideration a mapping A as

Thus, the representation of the mapping A in the basis 

 is given by

12 13

12 23

13 23

0
0 .

0

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

a a
A a a

a a

This matrix is a skew-symmetric matrix in 3-dimensional 
Lorentzian space  E . Indeed, the matrix A satisfies the 
equation .− = tSAS A  

Now, the representation of the mapping A in the basis 

 be given by a skew-symmetric matrix. Then, in 
order to say that the function

defined by ( )=vX SA v S  is a tangent vector field on S  for 
all  we have to show that , ( ) 0.< >=v SA v S  Thus, the 
representation of the mapping A in the basis  is 
given as 0.+ =tSAS A  So, from equation (1) we get  

, ( ) 0.< >=v SA v S

Now we state the following theorem which gives the 
normal forms of the mapping A in 3-dimensional 
Lorentzian space E .

Theorem 2. Let A be a linear mapping in E  given by a 
skew-symmetric matrix in an ortho-normal basis. Then it 
is possible to find an orthonormal basis in E  such that the 
matrix of the mapping A assumes the forms

where 

Proof. Let the representation matrix  of the mapping A be 
denoted by  A. Then, since A is a skew-symmetric matrix 
we have det 0.=A  So, the equation ( ) 0=A x  should 
have non-zero solutions. Assume that x  is spacelike 
vector and 3 (0, 0, 1)= =x u  so we can write

hence we get 13 0=a  and 23 0.=a  Also, if we choose 
 the representation matrix of the mapping A can 

be written as 

where , (Yaylacı, 2006).

Now let us assume that x is timelike vector and 
1 (1, 0, 0).= =x u  So we have

hence we get 12 0=a  and 13 0.=a  Also, if we choose 
23 ,= λa  the repre-sentation matrix of the mapping A can 

be written as 

where 



Tunahan Turhan, Nihat Ayyıldız 44

And finally, we assume that x is lightlike vector and 
(1, 1, 0).=x  Then, we have

hence we get 12 0=a  and 13 23.= −a a  Also, if we choose 
 the representation matrix of the mapping A can 

be written as 

where 

So, the results of this theorem can be extended to the 
general case E  as in the following:

Corollary 1. Let E  be a (2n+1)-dimensional 
Lorentzian vector space over R and A be a linear mapping 
in E  given by a skew-symmetric matrix A with respect 
to a pseudo-orthonormal basis  So, if there exists a non-
zero solutions of the equation ( ) 0,=A x  then the normal 
forms of the matrix A can be written as:

Case 1: If the vector x is spacelike,

1

1

2

2

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

,

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0

n

n

A

λ
λ

λ
λ

λ
λ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

Case 2: If the vector x is timelike,

1

1

2

2

0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

n

n

A

λ
λ

λ
λ

λ
λ

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

Case 3: If the vector x is lightlike,

1 2 3 2 2 2 1

1 2 3 2 2 2 1

1 1 2 2 1 4 4 4 3

2 2 2 4 2 6 7 6 6

3 3 2 1 4 2 8 11 8 10

2 2 2 2 4 4 6 7 8 11 (2 1)

2 1 2 1 4 3 6 6 8 1

0 0
0 0

0
0

0

0

n n

n n

n n n n

n n n n

n n n n

n n n n n n n

n n n n n

A

λ λ λ λ λ
λ λ λ λ λ

λ λ λ λ λ λ
λ λ λ λ λ λ
λ λ λ λ λ λ

λ λ λ λ λ λ
λ λ λ λ λ

− −

− −

+ − −

− − −

+ − − −

− − − − − −

− − − − −

− − − − −
− − − −

=
− − −

− −
− 0 (2 1)

,

0n nλ −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

where  

Theorem 3. The integral curves of a linear vector field 
on pseudo-sphere S  (or on hyperbolic space H ) are 
Lorentzian  circles lying in parallel planes.

Proof. From Theorems 1 and 2, the value of the linear 
vector field X for all points  can be written 
as below

or

( ) ( , ,0).= + +λ λX P y a x b

On the other hand, if a curve  is an 
integral curve of X, then we get the system of differential 
equations

For the sake of simplicity, we take  If this system is 
solved, the integral curves of X are obtained as

where B and D are any constants. The curve  is 
Lorentzian circle on S .

4. Classification of integral curves of a linear vector 
field in E  

Let E  be a (2n+1)-dimensional Lorentzian vector 
space over R and X be a linear vector field on E . Let A 
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be a linear mapping in E  given by a skew-symmetric 
matrix A with respect to a pseudo-orthonormal base  So, 
we have the following theorem.

Theorem 4. Let X be a linear vector field in E  
determined by the matrix

with respect to a pseudo-orthonormal frame 

 whose A is a normal formed skew-
symmetric matrix and C is a (2n+1)x1 column matrix 
such that

1

2

2 1

2

2 1

.
−

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

n

n

n

a
a

C
a
a

a

Then the integral curves of X have the following 
properties:

i) If the rank of the matrix [AC] is equal to 2k+1, nk ≤≤1 , 
then the integral curves are the generalized helixes,

ii) If the rank of the matrix [AC] is equal to 2k, nk ≤≤1 , then 
the integral curves are Lorentzian circles in parallel planes 
whose centers lie on a same straight line perpendicular to 
those planes,

iii) If the rank of the matrix [AC] is equal to 1, then the 
integral curves are the parallel straight lines.

Proof. i) If [ ] 2 1,rank AC k= +  for .k n=  Then, suppose 
that the skew-symmetric matrix A be as in Case 1. Let X 
be a linear vector field in E .  Then the value of the linear 
vector field X for all points 2 1

1 2 2 1 1( , ,..., ) +
+= ∈ n

nP x x x E  
can be written as 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
1101

)( PCAPX

or

Here, for the sake of simplicity, we choose  
If  is an integral curve of the linear vector field X, then 
by the definition of the integral curve we can write

So, the integral curve with the initial condition 

 is a solution of the differential 
equation

Hence, we get the system of differential equations

and

The general solutions of these equations are

So, the integral curve of the linear vector field X is 
obtained as

Now, we can examine the character of the integral curve.  
If we take  into consideration the derivations  of  we 
get linearly independent vectors  and 
The other  higher  order  derivations  are  linear  dependent. 
So, only Frenet quintette can be constructed on the curve 

 Therefore, there exists four curvatures 321 ,, kkk  and 
4.k  In order to show that  is a generalized helix in E , 

we must show that

1

2

=k const
k

 and 3

4

.=k const
k

For this aim, firstly, let us calculate the velocity of  
The velocity of the curve is obtained as

Assume that  is a timelike curve, that is 

 Thus, we have a pseudo-orthogonal 
system by the Gramm-Schmidt method:
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and

where

and

If we use 

for the curvature functions ik (s), 1 i 4,≤ ≤  we get

and
 

So, we obtain 

1

2

=k const
k

 and 3

4

.=k const
k

This means that the curve  is a generalized helix.

Assume that  is a spacelike curve, that is 

 Thus, we have a pseudo-
orthogonal system by the Gramm-Schmidt method:

where 

and
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Therefore, the curvature functions 
 
are 

found as

 

and 

So, we obtain

 1

2

=k const
k

 and 3

4

.=k const
k

This means that the curve  is a generalized helix.

Now, let us assume that the skew-symmetric matrix A be 
as in Case 2. Then the value of the linear vector field X for 
all points 2 1

1 2 2 1 1( , ,..., ) +
+= ∈ n

nP x x x E  can be written as

Here, for the sake of simplicity, we choose 

 If  is an integral curve of the linear 
vector field X , then by the definition of the integral 
curve, we get the system of differential equations

If we solve this system of differential equations, the 
integral curve of the linear vector field X is obtained as

The curve  is a generalized helix. We can prove this 
idea with the same method which was used above.

If  then the 
linear first order system of differential equation for  

 becomes

and

This system of differential equations has the solution

It is easy to show that the curve  is a generalized 
helix.

ii) Let [ ] 2 , 1 .rank AC k k n= ≤ ≤  Then:

a) If [ ] 2 , ,rank AC n k n= =  then the linear first order system 
of differential equation for  1 2 1,i n≤ ≤ +  becomes

and

Hence, the solutions of this system is

It is easy to show that the curve  is a Lorentzian 
circle.

b) If [ ] , 2,4,...,2 2.rank AC r r n= = −  Then, the linear 
first order system of differential equation for  
1 2 1,i n≤ ≤ +  becomes

and
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If we solve this system, we get

So, the curve  is a Lorentzian circle.

iii) If [ ] 1,rank AC =  then  which gives us a linear 
first order system of the differential equations. This system 
has the solutions  which are the parallel straight lines 
in E .

If the vector x satisfying the equation ( ) 0A x =  is lightlike, 
then taking into consideration the skew-symmetric matrix 
A as in Case 3, the value of the linear vector field X for all 
points 2 1

1 2 2 1 1( , ,..., ) n
nP x x x E +

+= ∈  can be written as

Here, we can choose  If  is an 
integral curve of the linear vector field X, then by the 
definition of the integral curve, we get the system of 
differential equations

We can not find the solutions of this system for the 
general case. On the other hand, the integral curves of 
the linear vector field X for special case 1n =  are as in the 
following

where 1, 1 5,ic i= ≤ ≤  and 1,jk =  1 3,j≤ ≤  are 
constants.

Example 1. Consider the vector field  defined 
by ( , , )X x y z = ( , ,0).y x   Then the value of the vector field 
X for all points  can be written as

If  is an integral curve of the vector field 
X, then by the definition of the integral curve, we get the 
system of differential equations as

So, the solution of this system is 

where B and D are any constants. The curve  is a helix 
in E .  
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