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Abstract

Suppose G is a simple graph on n vertices. The D-eigenvalues μ1, μ2, ··· ,μn of G are the eigenvalues of its distance 
matrix. The distance Estrada index of G is defined as . In this paper, we establish new lower and upper 
bounds for DEE(G) in terms of the Wiener index W(G). We also compute the distance Estrada index for some concrete 
graphs including the buckminsterfullerene C60.
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1. Introduction

Let G be a simple n-vertex graph with vertex set V(G). 
Denote by D(G) = (di j) ∈ Rn×n the distance matrix of G, 
where di j signifies the length of shortest path between 
vertices vi ∈ V(G) and vj ∈ V(G). Then the adjacency 
matrix A(G) = (ai j) of the graph can be defined by ai j = 
1 if di j = 1, and ai j = 0 otherwise. Since D(G) is a real 
symmetric matrix, its eigenvalues are real numbers. We 
order the eigenvalues in a nonincreasing manner as μ1 ≥ 
μ2 ≥ ··· ≥ μn (they are customarily called D-eigenvalues of 
G (Cvetkovi´c et al., 1995)). The distance Estrada index 
of G is defined as

                           (1)

This graph-spectrum-based structural invariant is 
recently proposed in Güngör & Bozkurt (2009), and some 
results on its bounds can be found in Shang (2015a), 
Bozkurt et al. (2013), Bozkurt & Bozkurt (2012). If we 
replace in (1) the D-eigenvalues  by the eigenvalues 

 of the adjacency matrix A(G), we recover the well-
researched graph descriptor Estrada index (Estrada, 2000). 
The Estrada index can be used as an efficient measuring 
tool in a number of areas in chemistry and physics, and 
its mathematical properties have been intensively studied 
(Das & Lee (2009), de la Peña et al. (2007), Estrada (2002, 
2004), Estrada & Rodríguez-Velázquez (2005), Zhou 
(2008), Gutman et al. (2011), Ilić & Stevanović (2010), 
Shang (2011, 2013), to mention only a few).

Apart from its formal analogy to the Estrada index, 
we believe the distance Estrada index (1) is potentially of 
vast importance in physical chemistry. After all, the most 

natural description of a molecular graph is in terms of the 
distance, be them geometric or topological, between pairs 
of vertices. The oldest distance-based invariant, perhaps, 
is the Wiener index (Wiener, 1947), which has found 
useful applications in structure—property correlations; 
see e.g. Nikolić et al. (1995), Randić (1993), Dobrynin 
et al. (2001), Walikar et al. (2004). In this paper, we aim 
to establish lower and upper bounds for DEE(G) by using 
the Wiener index, which allows us to gain insight into the 
relationship between the distance Estrada index and the 
Wiener index, and, in particular, gain better understanding 
of the dependence of the distance Estrada index on the 
concept of distance degree, whereby the Wiener index is 
constructed. We mention that various properties of graph 
distance and D(G) for some interesting graphs can be 
found in e.g. Bapat & Sivasubramanian (2013), Indulal 
& Gutman (2008), Jin & Zhang (2014), Alaeiyan et al. 
(2014).

The rest of the paper is organized as follows. In 
Section 2, we give some notations and lemmas. The 
bounds for DEE(G) are provided in Section 3. In Section 
4, we compute the distance Estrada index of some 
concrete graphs, including the buckminsterfullerene C60, 
to demonstrate the availability of our obtained results.

2. Preliminaries

Let G be a simple connected n-vertex graph with vertex 
set V(G) = {v1,v2, ··· ,vn}. Denote by D(G) the distance 
matrix of the graph G. The distance degree of a vertex 
vi is given by . This concept first appears 
in Hilano & Nomura (1984) and is reinvented recently 
in Indulal (2009) under the name of distance degree. 
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TheWiener index (Wiener, 1947) of G, denoted byW(G), 
is the sum of the distances between all (unordered) pairs 
of vertices of G, that is

 
                     

(2)

Let M(G) =  be the geometric mean of 
the distance degrees. Then 2W(G)/n ≥ M(G) holds, and 
equality is attained if and only if D1 = D2 = ··· = Dn (i.e., 
the graph G is distance degree regular (Hilano & Nomura, 
1984)).

Several properties of the spectrum of the distance matrix 
D(G) follows easily from its definition. For k ∈  N, let 

 be the kth spectral moment. Since all elements 
of D(G) are integers, all moments Nk are also integral. In 
particular, N1 = 0, i.e., D(G) is traceless; and   
The following two lemmas will be needed later.

Lemma 1. (Indulal, 2009) A connected graph G has two 
distinct D-eigenvalues if and only if G is a complete 
graph.

Lemma 2. (Zhou et al., 2008) Let a1,a2,··· ,an be 
nonnegative numbers. Then

3. Bounds for the distance Estrada index

Our main result reads as follows.

Theorem 1. Let G be a connected graph on n vertices. 
Denote by Δ(G) the diameter of G. Then

     (3)

The equality on the left-hand side of (3) holds if and only 
if G is the complete graph Kn. The equality on the right-
hand side of (3) holds if and only if G = K1, i.e., a single 
vertex.

Remark 1. When n = 1, we will have 4W 2(G) = M 2(G)n 
and view the leftmost term of (3) as 1.

Proof. Lower bound. Using the arithmetic geometric mean 
inequality, we obtain

       (4)

where we have used the fact that 

In Indulal (2009) it was shown that

 
                       

(5)

Setting  in Lemma 2, we get

Combining this with (5) yields

  
        

 (6)

Clearly, 4W 2(G) = M2(G)n (namely, the second equality 
in (6) holds) if and only if n = 1.

It is elementary to show that for n ≥ 1 the function

                         (7)

monotonically increases in the interval [0,+∞) (here we 
take the limit function f (x) = ex when n = 1). Therefore, by 
means of (4) and (6) we arrive at the first half of Theorem 
1.

Note that when G = Kn, we have μ1 = n −1, μ2 = ··· = μn 
= −1, W(G) = n(n − 1)/2 and M(G) = n −1. Hence, DEE(G) 
= en−1 + (n − 1)e−1 and the equality on the left-hand side 
of (3) holds. Conversely, suppose that the equality holds, 
then from (4) we have μ2 = ··· = μn. We assume that n ≥ 
2. It follows from (6) that μ1 > 0. Then G has exactly two 
distinct D-eigenvalues, and Lemma 1 indicates that G is 
the complete graph Kn.

Upper bound. Let n+ be the number of positive 
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D-eigenvalues of G, we obtain

which directly leads to the right-hand side inequality in 
(3).

From the above derivation it is apparent that equality 
holds if and only if the graph G has all zero D-eigenvalues. 
Since G is a connected graph, this only happens when G = 
K1 (and thus DEE(G) = 1).

The proof of Theorem 1 is completed. 

Remark 2. In Bozkurt & Bozkurt (2012), it was proved 
that

         (8)

If we utilize the property 2W(G)/n≥M(G), then we 
obtain

Since the function f (x) defined in (7) is strictly increasing, 
we see that our lower bound in (3) is better than the bound 
in (8).

Remark 3. It was shown in Güngör & Bozkurt (2009) 
that

           (9)

Since di j ≤ Δ(G) for all i and j, n(n − 1)Δ(G) ≥ 2W(G). 
Obviously, our upper bound in (3) is better than the bound 
in (9).

If the graph G is r-distance regular for some r ∈ N, we 
have D1 = D2 = ··· = Dn = r (Indulal, 2009). Consequently, 
W(G) = nr/2 and M(G) = r. The following result is 
immediate.

Corollary 1. Let G be a connected r-distance regular 
graph on n vertices. Denote by Δ(G) the diameter of G. 
Then

    (10)

The equality on the left-hand side of (10) holds if and only 
if G is the complete graph Kn with n = r +1. The equality 
on the righthand side of (10) holds if and only if G=K1, 
i.e., a single vertex.

4. Some examples

In this section, we provide some concrete examples to 
demonstrate the calculations of distance Estrada index as 
well as the feasibility of the above obtained results.

Example 1. In this example, the graph G is the cycle over n 
= 6 vertices, namely, a hexagonal cell. Its distance matrix 
is shown below

Fig. 1. A chemical tree G on vertex set V(G) = {v1,v2, ··· ,v5}. Recall that 
a chemical tree is a tree having no vertex with degree greater than 4.

Since D(G) is a circulant matrix, the D-eigenvalues consist 
of , where ωj = cos(2π 
j/n) + isin(2πj/n), , and j = 0,1, ··· ,5. Via some 
simplifications, we have μ1 = 9, μ2 = μ3 = 0, μ4 = −1 and 
μ5 = μ6 = −4. Thus, we calculate that DEE(G) =  
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= 8105.5.

It is evident that G is a connected r-distance regular 
graph with r = 9. The diameter is given by Δ(G) = 3. 
Therefore, from Corollary 1 we have the following 
bounds

8103.9 ≤ DEE(G) ≤ 337033.2.

It turns out that the lower bound is very sharp while the 
upper bound is conservative in this specific example.

Example 2. In Figure 1 we display a chemical tree of n = 
5 vertices. The distance matrix is

The D-eigenvalues of the graph are as follows: μ1 = 7.46, 
μ2 = −0.51, μ3 = −1.08, μ4 = −2 and μ5 = −3.86. We obtain 
DEE(G) = 1738.2.

Fig. 2. A projection depiction of the buckminsterfullerene C60.

On the other hand, we can easily obtain W(G) = 18, 
M(G) = 7.04 and Δ(G) = 3. Hence, from Theorem 1 we 
have the following bounds

1393.4 ≤ DEE(G) ≤ 32611.7.

Example 3. In this example, we consider the 
buckminsterfullerene C60, which is a well-known member 
of the fullerene family (Kroto et al., 1985). As a graph, 
C60 is a truncated icosahedron with n = 60 vertices and 
32 faces (including 20 hexagons and 12 pentagons); 
see Figure 2 for an illustration. The D-eigenvalues 
of C60 were computed in Balasubramanian (1995) by 
using the Givens-Householder method (see Table 1 in 
Balasubramanian (1995)). For example, there are exactly 
18 positive D-eigenvalues and no zero D-eigenvalue. 

Based on these D-eigenvalues we calculate by definition 
(1) that DEE(C60) = 152.11+e278.

Since C60 contains 60 vertices, a wise approach to 
capture its distance matrix is to understand the associated 
distance level diagram, as is done in Figure 1 of 
Balasubramanian (1995). From that, we conclude that C60 
is a connected r-distance regular graph with r = 278 and 
the diameter is Δ(C60) = 9. Hence, W(C60) = nr/2 = 8340 
and M(C60) = r = 278. Corollary 1 leads to the following 
bounds

0.53+e278 ≤ DEE(C60) ≤ 59+e387.

Clearly, the upper bound obtained is way above the true 
value for DEE(C60). For future work, it would be desirable 
to study better behaved estimations. In addition to this 
obvious direction, we mention that another interesting 
problem is to investigate the distance Estrada index for 
evolving networks (Shang, 2015b).
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