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Abstract

An analysis of the Kelantan River flow for the period 2000 to 2014 and its predictive validity have been undertaken by 
utilizing recurrence plot (RP), recurrence quantification analysis (RQA), and auto regressive integrated moving average 
(ARIMA). The study presents the analysis results for flood detection and prediction of future values on a holdout sample 
of the 2014 data. The ARIMA model provides a better forecast when compared with the RQA predictive model. The 
analysis of the daily river flow dynamics reveals an abrupt change in the system and the detection of an attractor with 
outliers indicating higher series values; an indication of an early warning  Models’ performance was based on the RMSE 
criterion and ARIMA model predicted a better result. The chaotic nature of the time series has also been investigated. 
This study could be used in understanding disastrous consequences of a river flooding. 

Keywords: ARIMA; flood forecasting; Kelantan River-flow data; recurrence plots; recurrence quantification 
analysis (RQA).

Introduction1. 

Every year floods cause massive human and non-human 
losses in several parts of the world.  There is a strong belief 
that their rate of occurrence is consistently increasing 
many-fold. An assessment and forecasting of flooding 
risk requires the use of some ensembles of sophisticated 
and advanced techniques in an attempt to have a thorough 
understanding of extreme meteorological and hydrological 
events. According to Amiri & Mesgari (2018), studying 
the variability and changes in climate extremes is of great 
importance.  The information and awareness about this 
natural calamity is more prominent now than ever, due 
to the revolution in advanced computing power. The 
multiple factors contributing to flooding are the changes 
in climatic conditions of certain hotter regions resulting 
in increased incessant and unrelenting rainfall.  Thus, an 
early detection of causes and trends, which could lead to 
flooding, is crucial, and this could be possible with a long 
time series, (Kundzewicz, 2004). 

The study presents the result of the application of 
nonlinear time series analysis methods on river streamflow 

data based on the theory of dynamical systems for flood 
detection and prediction of future values. Extreme values 
represent high flows such as peak discharges and sudden 
changes in the dynamics of the river.  

Motivation for the research1.1 

The studies on the mechanism through which floods 
occur are critical in developing flood protection and 
management systems. Some reasonable prediction in 
developing flood early warning systems is important for 
expeditious preparations and readiness, thus reducing 
the disastrous consequences prior to their onset using 
nonlinear predictive methods. 

Several methods have been used in the literature 
such as ARIMA (Ahlert & Mehta (1981), and Kurunç et 
al. (2005)), SARIMA (Otok & Shabri A. et al. (2012)), 
Internet of Things network (Purkovic et al. (2019)), and 
support vector regression (Yu et al. (2006)), application 
of stochastic flood forecasting model for Kelantan River 
(Sazali et al. (2018)), and artificial neural network (Huang 
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et al. (2004)). Mosavi et al. (2018) conducted a survey 
report on the use of machine learning models for the river 
flow forecasting. Adamowski et al. (2008) developed 
a short-term river flood forecasting method based on 
wavelet and cross-wavelet analysis. Zhi-Qiang et al. 
(2016) have used recurrence concept for forecasting 
extreme volatility in financial risk management. Adenan 
& Noorani (2013) have used a nonlinear prediction 
method for a monthly river flow. One of the criteria of 
evaluating the accuracy of the model simulation of the 
Kelantan River rainfall-runoff inundation by TAM et 
al. (2019) was RMSE. The study showed that Global 
Satellite Mapping of Precipitation-Near Real Time 
(GSMaP-NRT) can be reliable. 

In this paper, approaches based on a nonlinear 
method combined with ARIMA modeling have been 
used for Kelantan River flow analysis and its forecasting. 
Specifically, the analysis and a model for daily river 
flow forecasting based on the RP, RQA, and ARIMA 
are presented. Poincaré (1890) described recurrence as a 
fundamental characteristic of many dynamical systems. 
The notion of recurrence is one fundamental notion in 
the theory of dynamical systems. Marwan et al. (2007) 
stated that many dynamical systems in weather and basic 
sciences are modeled by RQA.

To the best of the authors’ knowledge, the methods 
based on RQA and ARIMA have not been used in the 
literature for analysis and prediction of the river dynamics 
in general, and the Kelantan River flow in particular. Our 
choice of using both lies in the fact that RQA can be used 
to identify subtle patterns of recurrence in a data series 
(Webber & Zibult, 1994; Zibult & Webber 1992), and it 
provides a more objective depiction of the dynamics of 
a system. It is independent of limiting constraints like 
the data set size, does not require stationarity, linearity, 
and any other usual assumptions on the probability 
distribution of data in a time series. ARIMA models, 
on the other hand, provide an acceptable approach to 
time series forecasting, and the aim is to describe the 
data autocorrelation structure. A comparison between 
these approaches is expected to enrich the time series 
analysis. 

Data and study area2. 

Aminah et al. (2016) reported on flood events for 
Malaysian Kelantan River Watershed for the last Decade 
(2001–2010). The report concludes that a forecast for 

more severe floods may occur in the future. The flood 
occurred in Kelantan in 2014, caused major losses and 
according to Baharuddin et al. (2015), it was the most 
significant and the largest recorded flood in the history of 
Kelantan. Kelantan, located on the north-eastern region 
of Peninsular Malaysia, (Figure 1) covers an area of 
15,099 km2 in Malaysia (Figure 2). It comprises of ten 
administrative districts. 

Fig. 1. Map of Malaysia and location of Kelantan River.

https://www.expatgo.com/my/2015/09/02/8-maps-for-
malaysia/

Fig. 2. Map of Malaysia.

https://www.expatgo.com/my/2015/09/02/8-maps-for-
malaysia/
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Fig. 3. The map of rivers in Malaysia.

https://www.mapsofworld.com/malaysia/river-map.html

Fig. 4. Kelantan River daily streamflow (in m3/s).

We analyzed the daily average values of streamflow 
collected at different points along the river, based on 
the location of meteorological stations. The time series 
data for this study consist of daily Kelantan River flow 
(in m3/s) from January 1, 2000, to December 31, 2014, 
as shown in Figure 4. From the Figure 4, it appears that 
the series is pretty much hovering around the same mean 
river flow level except at certain times such as the end 
of 2014. Elshorbagy et al. (2002) believe that the data 

collected from observation stations must be used without 
any imputations. Therefore, no data imputation techniques 
were used in this study.

For the purpose of validation analysis, holdout data 
for the whole of 2014 year (365 daily data values) was 
used. That is, models to be built in this paper are blinded 
from the 2014 data, and their respective model building 
algorithm has been based on data from January 1, 2000, 
to one day prior to 2014. The holdout 2014 daily data will 
then be used to test the selected model in terms of their 
predictive capabilities. The advantage of doing so is to 
see how well the models fair in predicting or forecasting 
future values. This is crucial in helping us define an early 
warning mechanism to detect aberrant river flow patterns 
that may cause flooding. Some important descriptive 
statistics of the daily Kelantan River flow data from 2000 
to 2014 are given in Table 1. 

Table 1. Descriptive statistics of daily river flow data.

Data points 5478.00

Median 267.95

Mode 196.90

Mean 454.03

Standard deviation 795.08

Maximum value 18339.40

Minimum value 49.90

Variance 632146.83

Coefficient of variation 1.75

Methods3. 

Phase space reconstruction:3.1 

The nonlinear analysis of the dynamical systems, using 
recurrence concept, can be studied based on phase 
space trajectories (Marwan et al., 2007). The study of 
a dynamical system such as river flow presents several 
challenges primarily due to a lack of knowledge of many 
variables involved in the system; however, the solution 
lies in the reconstruction of the system in phase space 
using the time series (Sivakumar, 2002).  The phase 
space reconstruction of a one-dimensional time series is 
performed using Takens embedding theorem (1981) of 
estimating time delay given by the equation (1) using an 
m-dimensional embedding phase space with a carefully 
chosen time delay τ.
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         (1)

A suitable embedding dimension will yield global 
properties of a dynamical system and will preserve its 
topological geometry in phase space reconstruction. It has 
a direct relation with the trajectory of an attractor in phase 
space and neighborhood of points. Too small or too big 
embedding of data will lead to false recurrences and an 
incorrect geometric representation (Marwan et al., 2007).

Recurrence plot3.2 

Introduced by Eckmann et al. (1987), recurrence plots 
use an advanced technique of nonlinear data analysis to 
visualize the recurrence of states in a square matrix in 
which the matrix elements correspond to those times at 
which a state of a dynamical system recurs (columns and 
rows correspond then to a certain pair of times). They 
contain information about the dynamics of the system and 
dynamic characteristics defined as

                     (2)

where N is the number of measured points ,  is the 
threshold distance, and  is the Heaviside function in 
which   if x<0 and 

According to Adenan & Noorani (2013), two 
parameters have to be determined, a value of τ, as 
the most optimal time delay, which can provide a 
separation of neighboring projections in any dimension 
embedded in the phase space, and the other parameter 
is embedding dimension m which is varied. The optimal 
embedding dimension for phase space reconstruction 
can be determined by choosing the increasing values of 
embedding dimension and selecting the value that yields a 
reasonably acceptable prediction (Sivakumar, 2002).

The visual inspection of the structures in recurrence 
plots (RP) is usually not considered the only objective tool 
for making conclusions about the nature of the system. 
The more objective approach is the application of RQA 
and their indices calculated for quantitative confirmation. 

3.3 RQA (quantitative measures of complexity)

RQA can be used to identify subtle patterns of recurrence 
in a data series (Webber & Zbilut, 1994), and it provides 
a more objective depiction of the dynamics of a system 
than the visuals represented through recurrence plots. 
These measures are based on the recurrence point density 
and the diagonal and vertical line structures of the RP 

(Marwan et al., 2007). 

RQA can project the input signal into higher-
dimensional space (e.g., embedding capabilities), and 
it functions like a microscope (snooping out higher-
dimensional subtleties in the dynamics that are not 
obvious in its first-dimensional representation).  For a 
detailed description of RQA measures, readers can refer 
to Marwan et al. (2007).

RQA incorporates two essential modelling features. 
The first is that quantification does not depend upon 
mathematical transformations like the Fourier transform 
that is linear, wavelets, and so on. The second is that 
quantification can be carried out in multiple dimensions 
through the method of time delays that is important when 
treating chaotic-like systems that are multidimensional 
and nonlinear (Webber & Zbilut, 2002). 

3.4 Dynamical invariants from RP: Entropy

The Shannon information entropy-ENT (Shannon, 1948) 
is the length of the diagonal lines (equation 3), is a measure 
of complexity of the system and can be related to Shannon 
entropy (Marwan et al., 2007). 

                                         (3)

In RQA, an estimate of the correlation entropy K2 
can be calculated, and its measure is primarily used as 
an estimate of predictability of a time series (Thiel et al. 
(2003). Theoretically, for a perfect deterministic system, 
K2=0 can be interpreted as only one possibility for the 
trajectory to evolve. K2à∞ for a pure stochastic system 
means that the number of possible future trajectories 
increases to infinity, so quickly. If the value of K2 is finite, 
then the system is considered chaotic. For chaotic systems 
dynamics, the inverse of K2 has a unit of time and can 
be interpreted as the mean prediction horizon/time of the 
system (Bloh et al. (2005); Li et al. (2008)).  

The embedding dimension ‘m’ of the daily data and 
the time delay are calculated using Visual Recurrence 
Analysis (VRA) software (Eugene, 2002). The VRA 
software has been used for nonparametric time series 
prediction. The software uses a number of predictor 
models and kernel functions. The model that provides 
the smallest RMSE and the NMSE that provides a value 
less than 1 were chosen, and it was found that the Kernel 
Regression as a predictor model and the Tricube as the 
Kernel function are the best combination as they provided 
better forecasting accuracy.  
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Phases of the study4. 

There are three phases in this study: (1) model 
building phase, (2) predictive phase, and (3) recurrence 
quantification analysis phase. The model building phase 
will use Kelantan daily river flow data prior to 2014, while 
the predictive phase will feature the performance of the 
chosen models on the holdout 2014 daily river flow data. 
The models considered in this paper can be categorized 
as (1) ARIMA models and (2) RQA-based nonlinear 
nonparametric time series models. In the model-building 
phase, each considered model will be subjected to certain 
criteria to select the best performing models.

4.1 Model building phase

4.1.1. ARIMA models

First, we check the most prominent characteristics of 
the time series data. We check the correlation between 
the original data and the kth lagged data by the use of 
the autocorrelation function. This tells us how much the 
current data relies on its own past values and usually 
helps us in identifying the order of the moving average 
component of the time series.

In addition to this, we also examined the correlation 
between the original data and the kth lagged data while 
correcting for intervening lag correlation. This is done 
through the partial autocorrelation function. This 
partial autocorrelation function is useful to detect the 
autoregressive nature of the data, if any. 

The criteria for choosing the best ARIMA model are 
(1) root mean square error (RMSE) and (2) correlation 
between the fitted values and the original data. The RMSE 
criterion measures the overall discrepancy between the 
original data and the predicted data. The model with the 
best fidelity to the data has the smallest RMSE value. The 
correlation, which typically ranges from -1 to 1, between 
the fitted and original data values shows how strong is the 
relationship between the model and the actual data. 

4.2 Predictive phase  

In this phase, the models chosen in each category are 
tested on the 2014 holdout daily river flow data. That is, 
the target of this analysis is to compare the capabilities 
of the selected models in predicting the 2014 daily data 
values. To provide a common evaluation yardstick between 
models, the prediction root mean square error (RMSE) 
is used. The criterion measures the overall discrepancy 
between original data and the predicted data. The model 

with the best prediction is expected to have the smallest 
prediction RMSE value.

Results and discussion5. 

The dynamic complexity of the river flow of the time 
series consists of 5478 data points computed and analyzed 
through constructing the RP and extracting the RQA 
measures. The RQA measures that were calculated in this 
study are %RR, %DET, LMAX, VMAX, LMEAN, LAM, and 
RATIO (Table 2) including the dynamical invariant ENTR.  
The analysis was carried out using the CRP toolbox for 
MATLAB developed by Marwan: Cross Recurrence Plot 
Toolbox for MATLAB®, Ver. 5.22 (R32.4), http://tocsy.
pik-potsdam.de/CRPtoolbox/, and accessed 25-05-2020.

Optimal parameters calculation5.1 

The choice of parameters will affect the overall 
performance of the framework. Therefore, we are using the 
optimal time delay and embedding dimension proposed by 
the methods such as average mutual information and false 
nearest neighbors respectively.  The time delay, where the 
average mutual information reaches its first minimum, 
can be considered as optimal time delay. The embedding 
dimension m = 9 (Figure 5) and time delay τ = 27 (Figure 
6) were obtained using methods of false nearest neighbor 
analysis and average mutual information respectively. The 
first minimum of the mutual information function (Fraser 
& Swinney, 1986) found is considered as the “optimal” 
value of the time delay for the state space reconstruction.

Fig. 5. Optimum global embedding dimension m=9 
calculated using the method of false nearest 
neighbors.
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The method of false nearest neighbor was used for 
choosing the minimum embedding dimension (Kennel 
et al., 1992) to find the nearest neighbor of every point 
in d-dimension and to see the vicinity of neighborhood 
points in a higher dimension.

Fig. 6. The first average mutual information minimum 
was found at time lag 27.

5.2. Recurrence plot

From the visual inspection analysis of the line structures 
in the recurrence plots (Figures 7a, 7b, and 7c), the 
existence of the horizontal, vertical, and diagonal line 
structures is revealed. There are no apparent single 
isolated points that indicate uncorrelated randomness in 
the system. There are more visible diagonal lines parallel 
to the line of incidence (the main diagonal line), which is 
an indication of the similar evolution of states at different 
times, which imply that the process is more deterministic 
in nature, suggesting higher predictability. The vertical 
and horizontal lines in the recurrence plot exhibit that 
some states do not change or may change slowly for some 
time, which is an indication for laminar states. 

Fig. 7a. Dimension = 9, delay =27

Fig. 7b. Dimension = 38, delay = 10

Fig. 7c. Dimension = 23, delay = 10

Fig. 7 (a–c): Recurrence plots of the Kelantan River flow 
time series (using CRP and VRA software).
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Several thick vertical lines in the recurrence plots 
observed in figure 7 (a–c) can be considered peak 
streamflow of the river, sudden changes in river dynamics 
(Fragkou, 2018). This was further confirmed by the 
recurrence rate values.

RQA (quantitative measures of complexity)5.2 

The recurrent points are measured using %RR= 0.27, 
indicating the variation in the flow of the river, and this 
measure describes the complexity of the system. The %DET 
is 0.89 as mentioned in Table 2, which is considered high.  
It means that the time series data is deterministic in nature, 
a measure of the predictability of the time series data. This 
measure is not a sufficient proof of the determinism, and 
it must be cross-validated by other measures (Marwan et 
al., 2007). LAM is related with DET as their measures are 
similar. The laminarity (%LAM=0.94), the measurement 
of recurrent points related to the vertical line structures, 
and trapping time (TT=7.14), the average length of the 
vertical line structures, are presented by Marwan et al. 
(2002). Furthermore, both laminarity and trapping time 
are related with %DET. 

The Length of the longest diagonal line Lmax =170 is 
larger and is interpreted as a not very chaotic system; a 
possibility of prediction is high. The shorter size of this 
line implies that the dynamical system would be more 
chaotic.  According to Eckmann et al. (1987) and Trulla et 
al. (1996), the length of the longest diagonal line inversely 
scales with the most positive Lyapunov exponent, an 
important variable related to prediction. 

Table 2. The RQA measures of the river flow 
time series data.

RQA Measures RQA value
%RR 0.27

%DET 0.89
Lmean 4.94
Lmax 170.00

%LAM 0.94
TT 7.14

Vmax 162.00
ENTR (diagonal length) 2.19

Dynamical invariants (K5.3 2-entropy): 

The value of the dynamical invariant K2 derived from the 
recurrence plots for the time series data is 0.203, which is 
calculated using https://tocsy.pik-potsdam.de/k2.php. K2 

calculation is based on Grassberger & Procaccia method 
(1983a), and some related entropy measure is discussed by 
Hamza et al. (2003). It is an indication that the dynamical 
system is classified as chaotic.  The chaotic nature of the 
series was further tested by the z1 test by Gottwald et al. 
(2009), and the calculated value is 0.9983. According 
to this test, any value for nonchaotic data approaches to 
0, and it is near 1 for chaotic data; see http://arxiv.org/
pdf/0906.1418v1.   

5.5. Phase space reconstruction

Figure 8 shows 3D phase space plot reconstruction 
in higher dimension with time delay τ=27 and m=9, 
respectively. The plots show the dynamics of the daily 
river flow and the detection of an attractor with outliers 
indicating higher values of the series, an onset of a sudden 
change in the state of the system. SivaKumar (2002) 
considered the presence of the attractor in the phase 
space as an evidence of the low-dimensional chaotic 
behavior of the dynamical system. Adenan & Noorani 
(2013) concluded that, for a chaotic system, the attractor 
trajectories can be reasonably well defined, and therefore 
it can be predicted with confidence using the nonlinear 
prediction method and the chaotic theory approach.  The 
chaotic nature of the time series data with the calculation 
of correlation Entropy coupled with a test of chaos has 
further been proved.

Fig. 8. 3D phase space plot of daily river flow data with 
time delay = 27, m=9 of Kelantan River Marwan 
CRP MATLAB Toolbox.
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5.6. ARIMA modeling

The data is divided as a training set for a model fitting, and 
the other part of the data as forecasting model validation.  
The time series river flow data of the Kelantan River 
comprised of the years 2000 to 2013 is used as training 
data to predict the values of the year 2014 using two 
methods, namely, RQA and ARIMA. Figure 9 shows the 
autocorrelation values for the Kelantan River flow data.

 

Fig. 9. Autocorrelation values for the Kelantan River 
flow data.

The plot shows large, but generally decaying 
autocorrelation values. That is, the current data relies 
heavily on its past values. Partial autocorrelation values 
for Kelantan River flow data are presented in Figure 10. 
The plot shows mainly large partial autocorrelations at the 
first to around the fifth observation lags. 

Fig. 10. Partial autocorrelation values for the Kelantan 
River flow data.

Based on both Figures 9 and 10, we may surmise 
from the data that a mixed autoregressive and moving 
average model is probably appropriate for the data. Thus, 
we use the extended autocorrelation function (EACF) to 
find the ARIMA model that has the best autoregressive 
(AR) and moving average (MA) orders. Based on the 
Figure 11 below, we do not see a clear-cut triangle of zero 
with vertex pointing to the best or recommended model. 
However, based on the Figure 11 (as highlighted), we find 
the two contending models to be ARIMA (1, 0, 4) and 
ARIMA (5, 0, 3).

Fig. 11. Extended autocorrelation values for the Kelantan 
River flow data.

To check the comparative quality of these contending 
ARIMA models, we checked their estimated error 
variance, log-likelihood, and Akaike information criterion 
(AIC) as described in Table 3.

Table 3. Comparison of several quality values of 
competing ARIMA models.

Competing 
models

Log 
likelihood AIC

ARIMA(5,0,3) 80727 -36115.61 72251.22

ARIMA(1,0,3) 112893 -39640.37 79290.73

ARIMA(1,0,4) 112546 -39632.02 79276.04

ARIMA(5,0,0) 112453 -39629.68 79271.36

We also added the ARIMA (5, 0, 0) and ARIMA (1, 0, 
3) to aid in our comparison. It is clear from Table 3 that 
ARIMA (5, 0, 3) has the lowest estimated error variance, 
the highest log-likelihood, and the lowest AIC among the 
considered models, and thus it is the most desirable model 
considered. The Auto-Arima command in R also found 
that the best model chosen for the data is the ARIMA 
model with order (5, 0, 3). 

To check the quality in the fit of the model to the data, 
we examined the correlation value between the values 
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fitted by the model and actual Kelantan River flow from 
January 1, 2000, to December 2013. The correlation 
value between the predicted values and actual values was 
found to be 0.877 for the ARIMA model, and this value 
is considered highly acceptable. The RMSE calculated 
value of 283.874 happened to be much smaller than that of 
the RQA based model. The model accuracy with optimal 
parameters is observed for the value m = 38; hence, time 
delay=10. 

5.7. Forecasting of 2014 daily river flow

Figure 12a shows the full Kelantan River flow data (red 
values are 2014 daily data) with confidence bands (80% 
and 95%) and predicted values (in blue). It is clear that 
most of the actual 2014 data values are within both the 
shorter 80% and wider 95% confidence bands except for 
some values at the beginning of 2014, at the latter half 
of 2014, and at the end of 2014. Malaysian historical 
records (Aminah J. et al., 2016) show that, towards 
the end of 2014, there was record flooding around the 
Kelantan state. So, our ARIMA model was able to pick up 
this flooding information exhibiting it as aberrantly fast 
river flows outside of the 95% confidence bands. These 
aberrant levels were also very atypical of the usual river 
flow levels, which had a maximum less than 8000 m3/s 
prior to 2014 as can be seen to be outside of the chart 
of Figure 12b. Aberrant values outside of the 95% bands 
in the latter half of 2014 may be thought of as an early 
warning for the 2014 flooding event.

Fig. 12a): Kelantan River flow data (black), holdout 
(in red) 2014 data, and predicted values (in 
blue).

b) Kelantan River flow data for all years including the 
2014 holdout data.

ARIMA model has reported lower values of RMSE 
compared to the RQA method. Hence, the prediction 
accuracy of the former was better than the latter.  Table 
4 provides the prediction accuracy of the chosen model. 
The RMSE calculated by the ARIMA model (1530.13) 
is far less than the values generated by the RQA method 
(1988.96) with optimal embedding dimensions and time 
delays.  

Table 4. Comparison of RMSE values of ARIMA 
and RQA.

METHOD RMSE 
value

NMSE 
value

Correlation 
between fitted 

value and 
original series

ARIMA 1530.136 N/A 0.877626
RQA 1988.96 0.86 N/A

Table 5 provides the RMSE and normalized error 
values for embedding dimensions 23 and 38 with a 
time delay of 10 each. Table 6 provides the RMSE and 
normalized error values for embedding dimensions m=5, 
10, 15 with a time delay of 1.  For embedding dimension 
23 and above with a time delay of 10, the NMSE values 
are less than 1. However, the RMSE for m=23 and τ=10 is 
smaller than that of the value of m=38 and τ=10. With the 
time delay =1 and the embedding dimension being varied 
between 5 and 15, lower NMSE values are observed. It 
can be concluded that choosing the optimal embedding 
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dimension (m= 23) with time delay τ=10 provides the 
best prediction as the NMSE value is less than 1, and the 
RMSE value is 1988.96.

Table 5. Comparison of RMSE and NMSE result 
with embedding dimensions 23 and 38 with a 

time delay of 10 (Predictor: Kernel Regression, 
Kernel Function: Tricube).

Embedding 
Dimension 

(m)

Time 
Delay (τ)

RMSE NMSE

m=23 τ=10 1988.96 0.86

m=38 τ=10 2129.04 0.99

Table 6. Comparison of RMSE and NMSE values with 
embedding dimensions 5, 10, & 15 and the time delay 1.

Embedding 
Dimension 

(m)

Time 
Delay (τ)

RMSE NMSE

m=5, 10, 15 τ=1 2129.82 0.99

Conclusion 6. 

The analysis of the daily river flow dynamics reveals 
an abrupt change and the detection of an attractor with 
outliers indicating higher series values are indicative of 
an early warning . The aberrant behavior of the river flow 
was observed, in the year 2014 that is, a holdout data. 
The detection of this unusual event or abrupt change is 
an early warning sign of the oncoming potential flooding 
event, and the value of the peak is observed towards the 
end of the year, and the critical values lie outside the 
confidence bands. The dynamics of the river flow time 
series is analyzed by using RQA method that can be 
summarized as follows:

Recurrence plots of the series (Figure 7) have clearly • 
horizontal, vertical, and diagonal lines. Its visual 
inspection reveals that the system is not purely 
stochastic due to the existence of visible lines. There 
are some noticeable line segments parallel to the main 
diagonal line, which is an indication of a nonrandom 
nature of the time series.

The prediction results using the nonlinear prediction • 
method are compared with ARIMA. The results show 
that the ARIMA model provides better prediction 
results than nonlinear nonparametric prediction 
method based on RQA. 

Adenan and Noorani (2013) reported that the nonlinear 
prediction method gave better prediction than ARIMA and 
SVM. In our study, however, the ARIMA method gave 
better prediction result than the nonlinear RQA method. 
TAM et al. (2019) and Yu (2006) have used RMSE as one 
criterion for evaluating the performance of the predictive 
model. Our study does not compare either RQA or ARIMA 
to these methods but uses the same comparative quality 
criteria of RMSE. 

Other methods have also been discussed in the 
literature such as machine learning models (Mosavi et 
al., 2018) and wavelet and cross-wavelet analysis by 
Adamowski (2008). 

Future studies could be done comparing these 
methods, but for the purpose of space conservation and 
focus, we have not done this in this study. In future 
studies, the data from other neighboring stations can 
also be used in addition to the investigation of other 
predictive factors such as rainfall precipitation, the type 
of soil, and other contributing factors of rapid rise in the 
river flow. 

In summary, RQA can be used to quantify the 
presence of repeating patterns and behavioral transitions 
through statistical values. In order to distinguish normal 
regimes from critical regimes, the technique can be used 
to study the change in a dynamical system. 
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