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Arithmetic properties of Ramanujan’s general partition function for modulo 11
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Abstract

In the present work, for the general partition function pr(n), we establish five new infinite families of congruences 
modulo 11. Our emphasis throughout this paper is to exhibit the use of q-identities to generate congruences of pr(n).
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1. Introduction

For  Ramanujan’s general theta function  
is given by

The function  enjoys the well-known Jacobi triple 
product identity (Berndt 1991, p.35),

where, here and throughout the paper, we will utilize the 
following q-shifted factorial and always assume .

One of the special cases of  as defined by S. 
Ramanujan (Berndt 1991) is as follows:

For convenience, we write . Due to Euler, 
we have

where  is the number of partitions of . S. Ramanujan 

initiated the general partition function  as

                                                        (1)

for non-zero integer . For partition function 
Ramanujan’s so called “most beautiful identity” is given 
by

which readily implies

The generalization of the congruences modulo powers of 
 and  for all  was proved by Ramanathan (1950). 

Later Atkin (1968) found that Ramanathan’s proof is not 
correct. Further Newmann (1955, 1957a, 1957b) studied 
the function  and obtained several interesting 
congruences and identities involving . The functions 

 have been studied by many mathematicians. For the 
wonderful work one can see Atkin (1968), Baruah and 
Ojah (2011), Baruah and Sarmah (2013), Boylon (2004), 
Farkas and Kra (1999), Gandhi (1963), Gordon (1983), 
Kimming and Olsson (1992), and Saikia and Chetry 
(2018). Recently, Hammond and Lewis (2004) proved 
that
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where   . Also Chen et al. (2014) proved

by using modular forms. More recently, Tang (2018) 
proved some congruences modulo powers of  for 
with . For example,

Motivated by the above work, we deduce new infinite 
families of congruences modulo 11 for  by using 
q-identities for any positive integer . The results in this 
paper are given below:

Theorem 1.1 If  = 3, 6, 8, 9, 10, then

Theorem 1.2 If  = 2, 4, 5, 7, 8, 9, then

Theorem 1.3 We have

Theorem 1.4 If 1  10, then

Theorem 1.5 If 1  10, then

2. Proofs of Theorems 1.1  1.5

Proof of Theorem 1.1: Setting  in (1), we 
have

                      
 (2)

From the binomial theorem, it follows that

                                                (3)

Substituting (3) into (2), we see that

                      (4)

From Bernd (1991, p. 363, Entry 6(iii)), we have

                                   (5)

where

and

Invoking (5) in (4), it is observed that

                              (6)

Selecting the terms containing  for   = 3, 6, 8, 9, 10 
on both sides of (6), we obtain the required congruence.

Proof of Theorem 1.2: Setting  in (1) and 
then using (3), we obtain

                                                   (7)

From Berndt (1991, p. 39, Entry 24(ii)), we have

                             (8)

and it follows that
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                     (9)

where     and  are the series with integral 
powers of : Invoking (9) in (7), we have

                                (10)

Selecting the terms containing  for  2, 4, 
5, 7, 8, 9 on both sides of (10), we obtain the required 
congruence.

Proof of Theorem 1.3: Setting  in (1) and 
then using (3), we obtain

                    (11)

On squaring (9) and then grouping, we deduce

          

          

          

          

          

          

                                                                    (12)

Invoking (12) in (11), we have

         

           

          

                              (13)

Selecting the terms containing  on both sides of 
(13), we obtain the required congruence.

Proof of Theorem 1.4: Setting  in (1) and 
then using (3), we obtain

                 (14)

Invoking (5) in (14), we have

                           (15)

Selecting the terms containing  on both sides of 
(15), dividing by  and then letting  to , we obtain

       
 (16)

Selecting the terms containing  for    on 
both sides of (16), we obtain the required congruence.

Proof of Theorem 1.5: Setting  in (1) and 
then employing (3), we have

                (17)

Squaring (5), we find that

      

      

     

             (18)

Invoking (18) in (17), it is observed that

        

        

        

        

                            (19)

Selecting the terms containing  on both sides, 
dividing throughout by  and letting  by , we 
deduce that
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 (20)

Selecting the terms containing  for      on 
both sides of (20), we obtain the required congruence.
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