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ABSTRACT

An important scheduling problem in manufacturing and service organizations is the on-
time deliveries of products and services. This paper addresses a single machine
scheduling problem wherein processing times and/or due-dates are random variables and
fixed weights (penalties) are imposed on late jobs. The objective is to find the schedule
that minimizes the expected weighted number of tardy jobs. The problem is NP-hard;
however, we study the three resulting scenarios: the scenario with stochastic processing
times and stochastic due-dates, the scenario with deterministic processing times and
stochastic due-dates, and the scenario with stochastic processing times and deterministic
due-dates. We prove that special cases of these scenarios are solvable optimally in
polynomial time, and introduce heuristic methods for their general cases. Our
computational results show that the proposed heuristics perform well in producing the
optimal or near optimal solutions. The illustrative examples and computational results
also demonstrate that the stochasticity of processing times and/or due-dates can affect
scheduling decisions.
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INTRODUCTION

Minimizing the weighted number of tardy jobs is an important real-world
scheduling problem. It arises in most production and service environments
where it is desirable to complete jobs with different weights (penalties) on or
before their due-dates. In these environments, schedulers should frequently
decide whether to schedule a job based on its processing time, due-date, and the
penalty for tardy delivery to improve the system performance. For example, it is
common to measure the weighted number of tardy jobs or the percentage of on-
time shipments to evaluate the performance of a semiconductor manufacturing
facility or an automobile assembly line.

A majority of the literature on scheduling to minimize the (weighted) number
of tardy jobs deals with the deterministic single machine problem wherein job
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attributes such as processing times, due-dates, and tardy weights are fixed
known quantities (Moore, 1968; Baptiste, 1999; Erel & Ghosh, 2007; Lee et al.,
2011; Steiner & Zhang, 2011; Lee & Kim, 2012; and Jafari & Moslehi, 2012).
There are also many studies on deterministic single machine scheduling
involving multiple criteria with one of the criteria being the (weighted) number
of tardy jobs (Jolai et al., 2007; Wan & Yen, 2009; Erenay et al., 2010; Molaee et
al., 2011; Reisi & Moslehi, 2011; Hoogeveen & T’kindt, 2012; and Rasti-Barzoki
etal., 2013).

The problem of minimizing the (weighted) number of tardy jobs has been also
investigated in other deterministic scheduling environments. For example,
Chiang & Fu (2009) examine a job shop scheduling problem with sequence-
dependent setup times. Desprez er al. (2009) consider a hybrid flowshop.
Mosheiov & Sarig (2010) and Aldowaisan & Allahverdi (2012) study m-machine
flowshop problems. Mosheiov & Oron (2012) address a proportionate flowshop,
and Panwalkar & Koulamas (2012) investigate a two-machine flowshop.
Varmazyar & Salmasi (2012) and Dhouib er al. (2013) examine, respectively, a
flowshop and a permutation flowshop with sequence-dependent setup times.

In contrast to the deterministic scheduling problems with the objective of
minimizing the (weighted) number of tardy jobs, there is a limited amount of
literature on their stochastic counterparts. It is important to incorporate
variations of job attributes into scheduling decisions because schedulers
encounter such deviations in real-world settings. The significance of research in
stochastic scheduling is also emphasized by the interest in synchronous
manufacturing, which recognizes that variations in job attributes disrupt
schedules (e.g., Umble & Srikanth, 1995).

Most of the existing research on minimizing the (weighted) number of tardy
jobs deals with some special cases of the stochastic single machine scheduling
problem. For example, Balut (1973) presents a chance-constrained formulation
for a case where jobs have a common tardiness weight, a common due-date, and
normally distributed processing times. Boxma & Forst (1986) study cases where
processing times or due-dates have independent and identical exponential
distributions. De et al. (1991) examine a case with random processing times and
an exponentially distributed common due-date. Assuming jobs have a common
due-date and a common tardiness penalty, Pinedo (1983) analyzes a case with
exponential processing times, while Seo et al. (2005) examine a case with normal
processing times. Jang & Klein (2002) study a case with normally distributed
processing times and a common due-date. Cai & Zhou (2005) consider a case
with exponential processing times and random due-dates. Li & Alfa (2005)
address a case with random processing times where the machine is subject to
stochastic breakdown and the repair time is a random variable. Trietsch &
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Baker (2008) solve cases with stochastically ordered processing times. Under
some agreeable conditions, Tang ez al. (2010) investigate a case with preemptive-
resume scheduling with disruption where the starting time and the disruption
duration are random variables. Elyasi & Salmasi (2013a) use chance-constrained
programming to solve cases with normal and gamma processing times. Soroush
(2007) extensively studies the related problem of minimizing the expected
weighted number of early and tardy jobs on a single machine when jobs have
deterministic due-dates and random processing times whose cumulative
probability distributions for every pair of jobs cross in at most one point. He
optimally solves special cases of this problem and presents a heuristic method
for the general case. Soroush (2006) examines the same problem when
processing times and due-dates are independently and identically distributed
random variables. Elyasi & Salmasi (2013b) minimize the expected number of
late jobs in a stochastic flowshop problem with normally distributed due-dates.

In this paper, we study a stochastic single machine scheduling problem in
which processing times and/or due-dates are random variables and fixed weights
(penalties) are imposed on the late jobs. The objective is to find the optimal
sequence that minimizes the expected weighted number of tardy jobs. The
problem is NP-hard to solve since its deterministic counterpart is NP-hard
(Karp, 1972). However, we explore the three resulting scenarios: the scenario
with stochastic processing times and stochastic due-dates, the scenario with
deterministic processing times and stochastic due-dates, and the scenario with
stochastic processing times and deterministic due-dates. (The last scenario is a
special case of Soroush’s (2007) problem of minimizing the expected weighted
number of early and tardy jobs on a single machine with random processing
times and deterministic due-dates.) We show that various special cases of these
scenarios can be solved optimally in polynomial time, and introduce efficient
heuristic methods for their general cases. Some computational results on the
performance of these heuristics are also provided.

The organization of the rest of the paper is as follows. The problem
formulation is given in the next section. This is followed by the investigation of
three scenarios of the problem and the development of exact solution methods
for various special cases. The heuristic methods and some computational results
for the general cases are provided. Finally, we give a summary and some
concluding remarks.

PROBLEM FORMULATION

A set N of n jobs is available at time zero to be processed sequentially, without
preemption and idle time insertions, on a continuously available single machine.
Let pi, &, and wi denote, respectively, the processing time, due-date, and tardy
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weight (penalty) for each job k, k€N, where p; and &, are independent random
variables with arbitrary probability distributions while wy are known constants.
The probability density function (pdf) and the cumulative distribution function
(cdf) of py are respectively denoted by fi;(.) and Fi(.), and those of & are
represented by gx(.) and G¢(.).Let us denote the expected value and variance of
pr by my and vy, respectively, and those of & by u; and 012(. In addition, let ¢ =
([1],...[k],...[n])eP be a job sequence where [k], [k]=1,...,n, represents the
job in the k" position, k = 1,...,n, of 1) with ¥ being the set of all sequences.
The completion time 7y, of job [k] in 1 is given by

k
I = me . (1)
(=1

Let Uy, be the tardiness indicator variable for job [k] defined as Uy = 1 if the
job is tardy with probability Pr(z >&y)), and 0 otherwise. Then, the expected
weighted number of tardy jobs in v, denoted by WNT (1)), is defined as

WNT() = E[Y_wig Upgl = > _wp E[Uw] =Y wigPr(tyg > &u). (2)
k=1 k=1 k=1

The goal is to find the optimal sequence 1« = arg mingcy {WNT(1))} where
WNT(%) is given by (2). Using the three-field notation of Graham et al. (1979),
our stochastic scheduling problem, represented by 1//3}_; wyE[Uy], is NP-
hard since its deterministic counterpart is NP-hard (Karp, 1972).

Note that if Pr(ty>¢&y) = 1, k=1,...n (i.e., all jobs are tardy with
certainty), using (2), any ¥€W is an optimal sequence. Observe also that the
problem 1//37) | wyE[Uyg] is general since its special cases reduce to some
classical single machine scheduling problems. For example, it reduces to the
problem of Boxma & Forst (1986) if py; and £y are independently and
identically distributed (iid) exponential random variables; De et al. (1991) if £
are iid and exponential; Cai & Zhou (2005) if py, are exponential; Pinedo (1983)
if € and wyy have common deterministic values and py) are exponential; Seo et
al. (2005) if &) and wy) have common deterministic values and py; are normally
distributed; Jang & Klein (2002) if £y have a common deterministic value and
pr are normal; Elyasi & Salmasi (2013a) if {; are deterministic given by djij, and
Pk have normal and gamma distributions; and Moore (1968) and Baptiste
(1999) if both pyy and &y are fixed known quantities given by 7y and dj,
respectively. The latter constitutes the deterministic problem 1//3 "}, wyq Uy in

which Uy = 1if #) > djq where 1) = Z;;l . and 0 otherwise.
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In what follows, we analyze the problem 1//>" | wyy E[Uyy] where py and/or
&, have arbitrary probability distributions or some other distributions than the
ones used in the literature.

ANALYSIS AND SOLUTION STRATEGIES

Consider a sequence v = (B,i,j,A) in which jobs i and j, i #j€N, are adjacent in
sequence appearing at the positions ¢ and g+ 1, g€{/,...,n-1}, of ¢, and B and A4
are partial sequences containing, respectively, disjoint subsets of (¢ — 1) and
(n—g-1) jobs (i.e., B = ([1],....[q-1]) and A = ([q+2],..., [n])). Also,
consider the sequence )" = (B,j,i,4) that is identical to 1) except that jobs i and
j are interchanged. The expected weighted number of tardy jobs in v and ),
using (1) and (2), are computed as

q-1 k
WNT(Y) =) wi PF(EZPM > &) +wi Pr(pe +pi > &)
=1 =

n k (3)
+w; Pr(pp+pi+pi > &)+ Y ww Prips+pi+pi+ > pig > &w)s
k=q+2 l=q+2
and
q-1 k
WNT(’W) = kz: Wik Pr(; Py > §[k]) +wj Pr(ps +p; > fj)

=1 =1

(4)

n k
+wi Pripp+pi+pi > &)+ Y wi Pripg+pi+pi+ 2 pg > &)
k=q+2 l=q+2

where pp = ZZ;II Pj -(i.€., the sum of processing times of jobs in B). Sequence ¢
is preferred to sequence 1)’ (denoted by ¢=v) if WNT () < WNT(v’) for any
pair of jobs i#jeN and any B and A4 in v and ¢’. That is, we have >1’, using
(3) and (4), if
WNT() = WNT(Y') = wilPr(ps +pi > &) — Pr(ps + pj +pi > &)]
—wj[Pr(ps +p; > &) — Pr(ps +pi+p; > §)] <0,
or
WNT() — WNT(Y') = wilPr(ps + pj+pi <& — Pr(ps +pi < &)
()
—wj[Pr(ps + pi+pj < §) — Pr(ps+p; < &) <0,

where Pr(pp+pi+pi<&) < Pripp+pi<&) and Pripp+pi+pi<§) <



128  H. M. Soroush

Pr(pp+ p;i< &) since p and &, k=1,..., n, are non-negative random variables.
From (5) we see that WNT(vy)-WNT(y’) depends on the jobs i and j and the
jobs (but not their ordering) in B.

Inequality (5) is too general to allow the development of useful statements.
However, in the following subsections, we prove that special cases of three
resulting scenarios of 1// Y7/, wy E[Uy| are solvable optimally in polynomial
time. Later, we introduce heuristic solutions for the general cases of these
scenarios.

Scenario with stochastic processing times and stochastic due-dates

Consider the problem scenario 1/pp~fi(.).&x~gi(.)/> f_; wiE[Up] in which
both p; and &, k=1,...,n, have arbitrary distributions fk() and gi(.) (i.e.,

Pi~fi(-) and §e~gi(.)). Then =4, using (5), if

wi [y [Fp * Fy  Fi(x) — Fp x Fi(x)]dGi(x)

. . (6)
—wj Jo [Fp* Fix Fj(x) = Fp = Fj(x)]dG;(x) < 0,

where Fp(x) = Fji) *... % Fig—1)(x), is the convolution of the cdfs of processing
times for the jobs in B (i.e., jobs [k], k=1,...,g-1, in 1) and ¢°), Fp* F;(x) is that
for the jobs in B and the job i, F * Fj(x) is that for the jobs in B and the job j,
and Fpx F; % Fj(x) is that for the jobs in B and the jobs i and j, where
Fp* F;* Fi(x) < min{Fp = Fi(x), Fp * Fy(x)}.

Due to difficulty in analyzing (6), we first study 1/pr~exp(oy),Ee~gi(.)/
> i1 Wi E[Upg] where py have exponential distributions (i.e., px~exp(oy)) with
cdfs Fr(x) = I-exp(-apx). (The use of exponential processing times in
scheduling is justified by, e.g., Boxma & Forst, 1986; Cai & Zhou, 2005; Pinedo,
1983; Soroush, 2006, 2007, 2010; Baker & Trietsch, 2009a).

The convolution F; * F;(x) of the cdfs of the exponential processing times for
jobs i and j is defined by

Fix Fi(x) = [y Fi(x = p)fi(y)dy
— g 1~ expl—au(x — )expl(—a)dy )
=1-exp(—ajx) — oy exp(=aix) = exp(=as) a; # o

O[l‘—Oéj
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where [exp(-a;x)-exp(-ajx)]/(aj-a;) < 0 for all x > 0. Utilizing (7) in (6), we
obtain

e L

o [P 2 PO £y ) <0, i
Thus, ¢ if

O e T

ooy > - {exp ai);)i _Zp( ,x>] SRy ata.  (8)

We investigate below the problem 1/pi~exp(ou ) &x~gi(.)/> i1 wi E[Up] by
assuming &, k=1,...,n, have exponential, uniform, normal as well as iid
distributions. (These distributions have been utilized in scheduling by, e.g.,
Aydilek & Allahverdi, 2010; Baker & Trietsch, 2009b; Cai & Zhou, 2005; Jang
& Klein, 2002; Ruiz & Allahverdi, 2009; Sarin et al., 1991; Soroush, 1999, 2007,
2010; Soroush & Allahverdi, 2005; and Zhang et al., 2012.)

The next lemma solves the problems 1/px ~ exp(ax), & ~ exp(w)/ > p—; wig E[Uk]
and 1/pe~exp(oy) E~Ulle,ul/ > i wik E[Ujg] where pr~exp(ay) with expected

values m; = 1/ay and variances v =1 /a,%, and & have, respectively, exponential
distributions (i.e., g~exp(yx)) with Gx(x) = I-exp(-ykx), expected values p, = 1/
and variances 7 = 1/7 (i.e., fix = %) and uniform distributions with lower and upper
bounds ¢ and w (i.e., &~U[l,ur]), Ge(x)= (x-b)/(w-by), b < x <ug, pp =
(b +uk)/2, and o7 = (uk-ék)2/12. Note that &~U[{ly,ux] provides a time window

during which the due-date for each job k can occur with equal probability.

Lemma 1. For any pair of jobs i#jEN, suppose that due-date standard deviations
and the weighted products of expected processing times and due-date standard
deviations are agreeable, i.e., o; > o; implies m;o;/w; < mjo;/w;. Then, the optimal
sequences for the problems 1/pi~exp(ou).Ex~exp(vi)/ > iy wiE[Up] and
1/ pe~exp(on) &x~Ul b, ui ] > j—y w E[U] can be obtained, in O(n log n)
time, by arranging jobs in non-decreasing order of myoy|wy, i.e., the shortest
weighted product of expected processing time and due-date standard deviation
(SWEPTDSD) rule: (myjopjwy) < ...< my, o, /wyy ) with tie broken by placing
first the job with larger oy,.
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Proof. For 1/pi~exp(ai ) &~exp(vi)/ Y opey wiy E[Upy] where Gi(x) = I-exp(-yx),
using (8), we have ¥’ if

exp(—aix) — exp(—an)] exp(—x) Fp(x)dx

|

v exp(—« )(j)l - j)jc (—ajx) it ()
WiYi ) — v -
J ]’YJ fO |: p ! P J ]exp(—q/,-x)FB(x)dx
o — Oéj

the left hand side (LHS) of (9) is greater than or equal to one, and its right hand side
(RHS) is less than or equal to one; thus, (9) holds. As these conditions are transitive,
it follows that jobs have to be sequenced in non-increasing order of wycyyx (or non-
decreasing order of myoy/wy, i.e., the SWEPTDSD rule) with tie broken by placing
first the job with smaller +; (or larger o;). This ordering requires a time of
polynomial order O(n log n) (Horowitz & Sahni, 1983). Similarly, for
l/pkwe xXp (Ckk) kaU[fk,uk]/Zk 1 Wik [U[k]] where Gk(X) = (X-ﬁk)/(uk-ﬁk) ,
U <x < uy, using (8), we have =1’ if

If Vi < v (i.e., g > Jj) 1mplles Wi > Wiy (i.e.,m,-a,-/w,- < I’}/le'j/u)j),i #jEN,

” [exp(a,-x) - exp(ajx)] Fa(x)dx

o) (u: — b 4 C— o
wicvi/ (Ui — ;) > / Qi — Qy .o F oy (10)
wioy(uj =)~ s [exp(—cix) — exp(—ayx)] &
h o B(X)dx
i

If E[ < Ej and u; > Uj (i.e., (o] > 0']) 1mply wiai/(u[-ﬂi) > wjozj/(uj-fj) (i.e., m,-a,-/
w; < mjojjw;),i #j€N, the LHS of (10) is greater than or equal to one while its
RHS is less than or equal to one; thus, (10) is satisfied. Since these conditions
are transitive, the optimal sequence can be obtained, in O(n log n) time, by
arranging jobs in non-increasing order of wyay /(ur-¢x) (or non-decreasing order
of myoywg, i.e., the SWEPTDSD rule) with tie broken by placing first the job

with larger oy.

Example 1. Consider the 5-job problem 1/pi~exp( oy ) &e~Ulli,uk ]/ 5 wi E[Upg] of
Table 1. Based on Lemma 1, 0; > o; implies mj;o;/w; < mjoj/wj, i /€N, where myoy/wy =
0.26, 0.28, 0.23, 0.24, and 0.3, k=1,...,5, respectively; thus * = (3,4,1,2,5). Note that if
we use the expected processing times my and expected due-dates py, k=1,...,5, as the
deterministic processing times 7, and deterministic due-dates dy, respectively, the optimal
sequence for the deterministic problem, obtained by the method of Sadykov (2008), is
(4,3,5,2,1) with the weighted number of tardy jobs 9.7. This shows that the optimal
sequence for the stochastic problem with random processing times and random due-dates
can differ from that for the deterministic problem.
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Table 1. A 5-job problem 1/pr~exp( oy ) &x~Ul b, u ]/ 35 Wi E[Up].

Job k Wk ay my Oy uy bk Ok
1 3.5 0.9 1.11 0.4 3.25 1.83 0.82
2 3.9 0.6 1.67 0.6 2.9 1.75 0.66
3 3.7 1.1 0.91 0.2 3.5 1.85 0.95
4 2.8 1.3 0.77 0.3 3.3 1.8 0.87
5 2.3 0.7 1.43 0.8 2.5 1.65 0.49

The next lemma solves the problem 1/px~exp(c ) &~N( ik, 07)/ S, wi E[Uj]
in which py~exp(ay) and & have normal distributions with expected values py and
variances 0,% (i.e., &e~N{ i, 0,%)) and

X — M )

G/C(X)Z/X Uk\l/z_ﬁexp[—%(y;kﬂk)z]dy:/ ‘Uk \/%exp(—%)dz. (11)

Since & are non-negative, we require o to be small enough relative to py so
that, using (11), Gx(0) = Pr(&§ < 0) = Pr(Z< —ui/ox) = 0 where Z is a
standard normal random variable. To ensure Pr(Z< —ui/oy) = 0, using the
standard normal table, we need to have cvi= oy/ur < 0.28 where cvi is the
coefficient of variation of .

Lemma 2. For any pair of jobs i#jEN, suppose that due-date standard deviations,
due-date coefficients of variation, and the weighted products of expected processing

times and due-date standard deviations are agreeable, i.e., o; > o; and cv;< cy;
imply mjoij/w; < mjoj/w;. Then, the optimal sequence for the problem
1/pr~exp(ay) &x~N( i, 02) ] > 5 wi E[Up] can be derived, in O (n log n) time,
by arranging jobs in non-decreasing order of myoy|wy (i.e., the SWEPTDSD rule)

with tie broken by placing first the job with smaller cvy or larger oy,.

Proof. Using (11) in (8), we have ¢’ if

IS {exp(—aix) — exp(—ajx)] exp| ! (x—u_,-)z Fude
Wittjoj > 0 o — 0{;’ 2 oj 7&
wjoyo fOO |:exp(_aix) - exp(_a./x)] exp 1 [ x—p; z i (x)dx, Qi 7= 0y
0 o exp| =3 (] »
(12)

If wiajjo; > wjojfo; (i.e., miojjw; < mjoj/w;), the LHS of (12) is greater than or
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equal to one. If (x-y1;)/o; < (x-p;)/oj for x > 0 or if 0; > o; and w;/o:> pj/o; (ie.,
cv;< ¢v;), the RHS of (12) is less than or equal to one. Thus, if 0; > o; and ¢y;<
cv; imply mjo;jw; < mjojjw;, i#€EN, then (12) holds. As these conditions are
transitive, the jobs must be scheduled in non-increasing order of wyay/oy (or
non-decreasing order of myoy/wy, i.e., the SWEPTDSD rule) with tie broken by

placing first the job with smaller cv; or larger oy.

Remark 1. For the problem 1/pi~exp(ax ) &x~N( p,0%)/ > j_; wig E[Up] where
o7 =0? (i.e., jobs have equal due-date variances), utilizing Lemma 2, if ; > p;
implies m;/w; < mjjw;, i#EN, the optimal sequence is found by the shortest

weighted expected processing time (SWEPT) rule: (myjjwy < ... .< mjy/wyy))
with tie broken by placing first the job with larger p.

The following lemma solves 1/pi~exp(ax).&c~g(.)/d ;i wiE[Up] where
pr~exp(ay) and &~g(.) (i.e., & , k=1,...,n, are iid).

Lemma 3. For the problem 1/pi~exp(ay).&k~g(.)/> r—i wigE[Up],the optimal
sequence can be obtained, in O(n log n) time, by arranging jobs in non-decreasing
order of my|wy, i.e., the SWEPT rule.

Proof. Using Gx(x) = G(x), k=1,...,n, in (8), we have Y=’ if w;o; > wjo; (i.e.,

mjjw; < mylw;), i #j€N. Since this condition is transitive, it follows that the jobs
have to be scheduled in non-increasing order of wyay (or non-decreasing order
of myJwy, 1.e., the SWEPT rule).

From the above analysis on 1/pc~fi(.).&c~gk(-)/> j_; Wi E[Ujg] wherein both
processing times and due dates are stochastic, the following interpretations can

be made. For the four problems 1/pi~exp(ay).&x~exp(vi)/ > p—i wi E[Uk]);
Vpe~e x p (aw)  &~U [ bu] [y wwElUwl; 1 /pr~e x p (ar)
&N (i, 03),cvie< 0.28 )31 wE[U); and 1/pe~exp (o), &~g(.)]
> i1 Wi E[Up], based on Lemmas 1-3, when o; > o; implies moi/w; < mjoj/
wj,i #j€EN, the optimal sequences can be derived by arranging jobs in non-
decreasing order of miy.oy/wy with tie broken by placing first the job with larger
or. (Note that in 1/pe~exp(ou)&~g(.)/d 1 wigE[Up] we have py=p and
or=o, k=1,...,n.) This indicates that a job k, k€N, with larger due-date
standard deviation oy (i.e., larger due-date variation), smaller expected
processing time ., and larger tardy weight wy should be scheduled earlier. This
makes sense because in order to minimize the expected weighted number of tardy
jobs, scheduling jobs with lower expected processing times earlier results in

reducing the expected completion times for those jobs. In addition, since these
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jobs have higher due-date variances and higher tardy weights, their early
completions diminish the chances of becoming tardy and thus paying heavy
tardy penalties. Scheduling jobs in this manner pushes the remaining jobs with
larger expected processing times (i.e., larger expected completion times), smaller
due-date variations, and smaller tardy penalties to later positions in the schedule.
This increases the chances of late completions of the jobs with low tardy

penalties; therefore, reducing the expected weighted number of tardy jobs.

Scenario with deterministic processing times and stochastic

We now study the problem scenario 1/px = mi,&c~gi(-)/> i wi E[Upg] in which
pi, k=1,..., n, are known constants given by m, while &~gi(.), k=1,....n,
have pdfs gi(.) and cdfs Gi(.). Then ¢>=1)’, using (5), if

wilGi(mp + i) — Gi(mp + ) + m)| — wilGi(mp + 7)) — Gi(mp + m + ;)] <0, (13)

q-1
where T = Z W[k],Gl'(TrB'i‘ﬂ',')S Gi(7r3+7ri+7r/),and G/‘(TI'B'FT(/‘) S G/(7T3‘|‘7T,-+ﬂf/‘).
k=1

The following three lemmas (Lemmas 4-6) solve the problem
l/pkzWk,fkwgk(.)/zzzlw[k]E[U[k]] in which kag(.) (i.e., ﬁk arc iid),
E~exp (i), and &~U[ by, u,], respectively, that is, the problems

Vpk=meeg () win E[UW ] 1/ o= meevexp (1) | Eiemy win E[UpJ; and
k= i, &e~ Ul i, uic ]| 35—y wipg E[U))-

Lemma 4. For any pair of jobs i£jEN, suppose that tardy weights and processing
times are agreeable, i.e., w; > w; implies m; < m;. Then, the optimal sequence for
the problem 1/py=my, &~g(.)]d j_ wi E[Up) can be derived, in O(n log n)
time, by the shortest processing time (SPT) rule: (my < ... < my) with tie
broken by placing first the job with larger wy.

Proof. Using Gi(.) = G(.), k=1,...n, in (13) if w; > w; implies G(mp+m;) <
G(mp+m) (ie., m <), i#€EN, then (13) holds. Since these conditions are
transitive, jobs are sequenced by the SPT rule with tie broken by placing first the
job with larger wy.

Lemma 5. For any pair of jobs i€ N, suppose that tardy weights, expected due-dates,
and the products of processing times and expected due-dates are agreeable, i.e., w; > w;
and p; > p; imply my; < mip. Then, the optimal sequence for the problem 1/
Pi =1 bk~exp(vk)/ Yopoy winE[Un)) can be obtained, in O(n log n) time, by the
shortest product of processing time and expected due-date rule: (mpp < ... < Tpy i)
with tie broken by placing first the job with larger wy or smaller .
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Proof. Using G, (x) = I- exp(-yxx) in (13), this inequality holds if w; > w; and
[1 — exp(—vimj) exp[—i(mp + m1)] = [1 — exp(—ymi)]exp[—;(ms + m)]. (14)

If yjm; < yimj (ie., mip: < migy;), then I- exp(-yim;) > 1- exp(-y;m;). Also, if v; <
(i.e., i Z [J,/) 1mplles i S Vi (i.é’., i bi S T(/LLj), then T S T, thus, YiTi S T
resulting in exp/-v;(wp+m;)] > exp[-y;(mp+m;)]. Therefore, if w; > w; and p; > 1,
imply m;p; < mjp;, then (14) holds. As these conditions are transitive, the optimal
sequence can be obtained, in O(n log n) time, by arranging job in non-decreasing
order of mpy with tie broken by placing first the job with larger wy or larger . (i.e.,
larger oy,).

Lemma 6. For the problem 1/py=m&~U[li,ui]] Y 5_; wiElU),the optimal
sequence can be derived, in O(n log n) time, by arranging jobs in non-decreasing
order of miop|wy, i.e., the shortest weighted product of processing time and due-
date standard deviation rule: (W[l]d[l]/w[l]g . < W[H]U[,z]/w[,,]).

Proof. Using Gi(x)= (x-lk)/(ue-lk), bk < x < uy, in (13), we obtain wm;/(u-¢;)
> wymi/ (up-t;)or mioi/w; < mioj/w;, i#jEN. Since this condition is transitive, the optimal

sequence can be obtained by arranging jobs in non-decreasing order of oy fwy.

Example 2. Consider the 5-job problem 1/py=m.&~U[li,ui]/ Y iy wi E[Ujg] of
Table 2. Based on Lemma 6, 7oy /w; =1.65, 1.95, 1.42, 2.51, and 3.89, k=1,...,5,
respectively; thus, ¥* = (3,1,2,4,5). Using the expected due-dates py; as deterministic
due-date dj,the optimal sequence for the deterministic problem is (1,5,3,2,4) with the
weighted number of tardy jobs 12.2. This shows that the stochasticity of only due-
dates can affect the optimal sequences.

Table 2. A 5-job problem 1/py =m, &~ U b, ui ]/ > wi E[Ujg).-

Job k Wk Tk Uy uy, bk Ok
1 3.5 4.0 5.0 10.0 7.5 1.44
2 4.0 6.0 2.0 6.5 4.25 1.3
3 3.2 4.5 4.0 7.5 5.75 1.01
4 2.3 5.0 3.0 7.0 5.0 1.15
5 2.7 5.2 1.0 8.0 4.5 2.02

The above results for the three problems 1/py=mi.&k~g(.)/> i, wigEU):
V/pi=m, &~exp()/ Yojoy wiyE[U): and 1/px=me &~ Ul b, e ]| 3y wig E[Up]
in which processing times are known constants but due dates are stochastic indicate
that when w; > w; implies m;p; < ;i #j€N, the optimal sequences can be found by

arranging jobs in non-decreasing order of 7oy /wy with tie broken by placing first the
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job with larger wy (see Lemmas 3-6). (Note that in 1/p =, &~g(.) /> p_; wig E[U], we
have yy = pand o= o0, k=1,...n, and in 1/p, = m Ex~vexp(vi) ) >y Wi E[UK], i =
ox, k=1,...,n.) Accordingly, a job k, k€N, with larger tardy weight wy, smaller
processing time m, and smaller due-date standard deviation oy should be scheduled
earlier. Scheduling jobs in this manner yields lower completion times resulting in
decreasing chances of these jobs becoming tardy and thus paying high tardy penalties.
Similarly, jobs with larger due-date variations, larger processing times, and smaller tardy
weights are scheduled later increasing the chances of late completions of the jobs with
low tardy penalties. This scheduling practice can reduce the expected weighted number of
tardy jobs.

Scenario with stochastic processing times and deterministic due-dates

We investigate here the problem scenario 1/pi~fi(.).& = di/ > j_; Wi E[Up]
where & are deterministic given bydy, and pi, k=1,...,n, have arbitrary pdfs
fx(.) and cdfs Fi(.).As discussed in the introduction section, Soroush (2007)
extensively studies the related problem of minimizing the expected weighted
number of early and tardy jobs on a single machine when jobs have
deterministic due-dates d; and random processing times p; with cdfs Fi(.),
k=1,...,n, where the Fi(.) and F;(.) for every pair of jobs i#j=1,...,n, cross in at
most one point with a finite value. He optimally solves special cases of this
problem and presents a heuristic method for the general case. Accordingly, by
setting the job earliness weights equal to zero in Soroush’s (2007) problem, we
can obtain the solutions to the respective cases of our problem of minimizing the
expected weighted number tardy jobs.

For the problem 1/pi~fi(.).&k = di/ Y i, wi E[Upg] where processing times
have arbitrary distributions and deterministic due-dates are different, using (5),
we have =1’ if

wilFp * Fy  Fi(dy) = Fp * Fi(d))] — w[Fp + Fyx Fi(d)) = Fp x Fi(dp)] <0, (15)

where FB * F/ * F,(d,) S FB * F,(dl) and FB * Fi * F/(d/) S FB * F/(d/)

We now present the next two lemmas (Lemmas 7 and 8) that can be proved
by using (15) and arguments similar to those of Soroush (2007).

Lemma 7. For 1/pi~exp(a).& = di/ > j_ wiE[Up], the optimal sequence can

be derived, in O(n log n) time, by

(i) the latest due-date (LDD) rule: (dyy > ... >dy)if di > d; implies
w; diexp(—a d;) < wjdiexp(—ad;),i #/€N, and
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(i) the earliest due-date (EDD) rule: (dm < ... < n) if di< d; implies
Wi d;-qil eXp(—O[dl‘) > u)jd]nilexp(—adj), i #]GN

Lemma 8. For any pair of jobs i£j€N, suppose that tardy weights and the cdfs of
processing times are agreeable, i.e., w;> w;j implies Fi(y) > F;(y), 0 <y <d, i#€N.
Then, the optimal sequence for the problem 1/pi~fi(.).& = d/ Y ;_ wy E[Up] can
be obtained, in O(n log n) time, by arranging jobs in non-increasing order of
Fi.(y),0 <y < d, with tie broken by placing first the job with larger wy.

The following corollaries (Corollaries 1-3), induced from Lemma 8, respectively
yield the optimal sequences for the problems 1/pe~U/ ax, b ] & = d/ 3 wy E[Upy]
where pe~Ufag, b ]; 1/ pi~W(aw,Bi) &k = d] > wi E[Upg] where py have weibull
distributions with shape and scale parameters oy and Sk (i.e., px~W(u,0k)) and
Cde Fk(x) =1- exp[—(ozkx)ﬁ’f]; l/pkwexp (Ozk) ,fk = d/ ZZ:I W[k]E[U[kﬂ where
pkwexp(ozk); and l/pkNN(mk,l/k),fk = d/ ZZ:] w[k]E[U[k]] where pkNN(mk,Vk)
and /v /my < 0.28.

Corollary 1. For any pair of jobs i#jEN, suppose that tardy weights and
probabilities that processing times are less than due-dates are agreeable, i.e., w;> w;
implies Fi(d) > Fj(d) where Fy(x) = (x-ai)/(bx —ax),ax < x < by. Then, the
optimal sequence for the problem 1|pi~Ulay,bi] & = d] Y wyElUp] can be
obtained, in O(n log n) time, by arranging jobs in non-increasing order of Fi.(d) with
tie broken by placing first the job with larger wy.

Proof. Forl/px~Ulay, bi] & = d/ Y 5, wig E[Ujy], using Lemma 8, w;> w; implies
Fi(y)>Fi(y) 0<y<d,i#jeN, where Fi(x) = ( —a)/(bx — ax), ar < x < by. That is, w;
> w; implies (y — a;)/ (bi — a;) > (y-aj)/(b; — a;), 0 < y < d, or

YI(bj = aj) = (bi — )] = ai(b; — @j) — aj(bj — 4;),0 < y < d. (16)

If b — a; < bj — aj and (b; — a;)/a; > (bj — a;) /a;, then (16) holds for any 0 < y <
d; thus, Fi(d) > Fid). If bj—a;>b;—a;, we can write (16) as y <
lai(bj — a;) — aj(b; — a,)]/[(b] aj) — (bi — a;)], 0 < y < d, which is satisfied as long
as d < [a(b;— @) — (b — a))/[(b; — a) — (b — a)) or Fi(d) > F(d). Thus, if w,
> wj implies Fi(d) > Fj(d), i#/€N, the optimal sequence can be found by arranging
jobs in non-increasing order of Fy(d) with tie broken by placing first the job with

larger wy.

Example 3. Consider the 5-job problem 1/p~Ulay, bi].&x = d/ Y _; wyg E[Upg)of
Table 3 where d= 3. Since w; > w; implies F;(d) > Fi(d), i#A€N, where Fi(3) =

(3-ar)/(by — ar) = 0.8, 043, 1,0.5, and 0.25, k=1,...,5, based on Corollary 1, ¢*
= (3,1,4,2,5). Utilizing the expected processing times my as deterministic 7y, the
optimal sequence for the deterministic problem is (3,5,2,4,1) with the weighted
number of tardy jobs 8.5. This indicates that, when jobs have a common
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deterministic due-date, the stochasticity of only processing times can also affect the
optimal sequence.

Table 3. A 5-job problem 1/p~Ul ay, by ] & = d/ 33— wy E[Up] with d= 3.

Job k Wi a b
1 3.0 1.0 3.5
2 2.0 1.5 5.0
3 3.5 1.0 2.5
4 2.5 2.0 4.0
5 1.0 2.5 4.5

Corollary 2. For any pair of jobs i#jEN, suppose that tardy weights, scale
parameters of weibull distributions, and probabilities that processing times are less
than due-dates are agreeable, i.e., if w; > w; and B; < 3; imply Fi(d) > Fj(d)
where Fi(x) = 1 — exp[—(ay x )**]. Then, the optimal sequence for the problem 1]
P~ Wilaw,Bi) &k = df Y i w E[Up] can be obtained, in O(n log n) time, by
arranging jobs in non-increasing order of Fy.(d) with tie broken by placing first the
job with larger wy. or smaller (3.

Proof. For 1 /pi~W(ay.Bi) & = df Y 5_; wi E[Up], using Lemma 8, w;> w; implies
Fi(y) > Fi(y),0 <y <d, i#€eN, where F(y) = 1 — exp[—(ay y)*]. That is, w;> w
implies exp[—(c,; )] < exp[—(a ;y)¥] or Y55 > o J o, 0 < y < d. However,
if Bi< B and (ud)” > (ajd) or Fi(d) > Fy(d), then Y% ~Fi > o o/ 0 < y < d.
Thus, if w;> w;jand B; < B;imply F;(d) > F;(d), i#Aj€N, jobs have to be scheduled in
non-increasing order of Fi(d) with tie broken by placing first the job with larger wy

or smaller 3y.
Corollary 3.

(i) For the problem 1|pg~exp(ou).& =d/ Y _ wiE[Uy), the optimal
sequence can be derived, in O(n log n)) time, by arranging jobs in a non-
decreasing order of myjwy, i.e., the SWEPT rule.

(i1) For any pair of jobs i#jEN, suppose that tardy weights and probabilities that
processing times are less than due-dates are agreeable, i.e., w;> wj implies
Fi(d) > Fy(d)(i.e., either v; < vj and cv;> cv; where cvi = \/vi/my, or v;> v;
and z; > zj where zj = (d — my)/\/vx)). Then, the optimal sequence for the
problem 1/pg~N(myvi).& = d/ Y _ wy E[Uy] can be found, in O(n log
n) time, by arranging jobs in non-increasing order of Fi.(d) with tie broken by
placing first the job with larger wy.
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Proof. It follows by using Lemma 8 and arguments similar to those of Soroush (2007).

Remark 2. Based on Corollary 3(ii), for 1/pe~N(my,vi) & = d/ i wi E[Up]
when c¢vp, = 7, 7 < 0.28, k=1,...,n, (i.e., processing time means and standard
deviations are proportional), the optimal sequence can be obtained by the
shortest processing time variance (SPTV) rule: (v < ...< yp) if w; > w;
implies v; < v}, iAjeN. When v, = v, k=1,...,n, (i.e., jobs have equal processing
time variances), the optimal sequence can be found by the shortest expected
processing time (SEPT) rule: (m;) <...< m[,,]) if w; > wj implies m; < m;, i#jEN.
When my= m, k=1,...,n, (i.e., jobs have equal mean processing times), the
optimal sequence is derived by (i) the SPTV rule if w; > w; implies v; < v,
i#jeN, and d > m, and (ii) the longest processing time variance (LPTV) rule:
(vp > ...> vpy) if w > w;implies v; > v;, iAEN, and d < m.

In problems 1/pi~Ulai,bi] & =d/ > ) wiElUw]; 1/pi~W (ag,Br).
& =d/ Y wigElU);  1/pkve xp (aw) , & = d/ 21w ElUl; and
1/pk~N(my,vi) & = d/ 35—, wi E[Uyg] with stochastic processing times and a
common deterministic due-date, based on Lemma 8 and Corollaries 1-3, if w;
> wj implies Fi(d) > Fi(d),i #jeN, the optimal sequences can be found by
sequencing jobs in non-increasing order of Fj(d) with tie broken by placing first
the job with larger wy. (Note that in 1/pr~exp(ax).&k = d/ Y wy E[Upy] w
have a;> o; (i.e., mi< m;) iff Fi(d) > F;(d),i #j€N). Therefore, a ]ob k, kGN
with larger tardy weight wy and larger probability Fy(d) that it’s processing time
is less than the due-date is scheduled earlier. Scheduling jobs in this way reduces
the chances that such jobs become tardy; thus, avoiding high tardy penalties.
This can reduce the expected number of such jobs being tardy. In addition, jobs
with smaller probabilities that their processing times are less than the due-date
have higher chances of becoming tardy but with smaller tardy weights. This can
also reduce the expected weighted number of tardy jobs.

HEURISTIC METHODS AND COMPUTATIONAL RESULTS

In this section, we first introduce heuristic methods for the three problem scenarios

Upkesfi(2), &g (D] i— Wi ELUw ] 1ok = i, &e~gi (D)2 5= wig E[UJ; and 1/
Pi~fiel ) &k = di[> i wig E[Upk).- Then, some computational results are presented
to evaluate the performance of the three heuristics.

The first heuristic, referred to as stoch-stoch, solves 1/pp~fi(.).Ex~gi(.)/
> i1 Wi E[Up)- This heuristic is developed based on Lemmas 1-3 and their
subsequent discussions. In general, since the conditions of these lemmas do not
hold simultaneously for all jobs izje N, the heuristic derives, in O(n log n) time,
a candidate v for the optimal sequence 1* by arranging jobs in non-decreasing
order of myoy/wr with tie broken by placing first the job with larger oj. The
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second heuristic, referred to as det-stoch, is for 1/pr=mk, &~gi(.)/
> i1 Wi E[Upg)- This heuristic uses the conditions of Lemmas 4-6 to find, in
O(nlog n) time, a candidate v for ¢* by arranging jobs in non-decreasing order
of mror/wr with tie broken by placing first the job with larger wy. The third
heuristic, referred to as stoch-det, solves 1/pp~fi(.).& = di/d j_ wi E[Up)-

Based on Corollaries 1-3 and Soroush (2007), since conditions w; > w; and F;(d)
> Fi(d) imply wiFi(d) > wiFj(d), ij€N, the heuristic stoch-det extends the latter
condition to find a candidate ¢ for ¢/* by arranging jobs in non-increasing order
of wy Fi(dy)with tie broken by placing first the job with larger wy.

Our computational experiments deal with the heuristics stoch-stoch, det-stoch,
and stoch- det to solve, respectively, the three problem scenarios 1/pi~fi(.),

&~g k()] i wwElUw] 1] pe= i, &e~g k()] Do wiElUwl; and 1/
pkwf;‘()ﬁk—dk/z,\ lwk]E[ i) of different sizes n = 7, 8,9, 10, 11, and 12.
Fifty instances for each problem scenario and size were randomly generated. We
applied the appropriate proposed heuristic to obtain ¢ and the enumeration
method (the only available exact method) to find ¢* for each of the 300
generated instances of every problem scenario. Due to the excessive time
requirement of the enumeration method, we did not consider problems with
more than twelve jobs. (Enumerating sequences in a 13-job problem took more
than 5 CPU hours.) The heuristics and the enumeration method were coded in
FORTRAN 77 and were run on a computer with Intel core 2 due, 2.24 GHz
processor and with 1.99 GB RAM.

For the problem 1/pi~fi(.).&x~gi(.)/> j— wiE[Upy), we used the four
processing time distributions: px~exp(ay), pr~N(my,vi), pi~U(ak,by), and
pr~W (ay,Bk), and the three due-date distributions: &~exp (i), Ek~N( pi, 07),
and &~U(¥l,ux). The distributions for the prand & of each job k were
randomly picked from the four distributions of p; and the three distributions of
&k, respectively. For py~exp(ay) and &g~exp(vyi), we sampled oy and ~; from
the intervals [0.05, 1] and [0.02, 0.2], respectively. For py~N(my,vy), ny and vy
were randomly sampled from [1, 20] such that /vy/my 0.28, and for
Ex~N(k, 07), ik and o7 were generated from [5, 50] such that oy /px < 0.28. For
pi~Ular, by) and &~U(l,uy), we respectively sampled a; and by, a < by,
from the intervals [0.1, 15] and [2, 25], and ¢, and wuy, ¢, < uy, from [5, 20] and
[40, 60]. For px~W(ay,Bk), the shape and scale parameters oy and (3 were
generated from [0.01, 1] and [0.02, 2]. The tardy weights wy for each job k was
sampled from the interval [1, 10].

For the problem 1/p; =mi.&k~gi(.)/> _, wi E[Uky], we randomly generated
T, k=1,..., n, from the interval [1, 20], while &~exp(7yi), Ex~N(k, op), and
E~U(Lr,ur) were sampled as above. For the problem 1/pi~fi(.).& = di/
Y oi wik E[Upg). we sampled d from [5, 50], while pr~exp(ax), pi~N(my,vy),
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pi~U(ag, by), and pp~W(ay,0B;) were generated as above.

Since p, k=1,...,n, have different probability distributions, we could not
derive the cdfs of the completion times 7 = lef:] pe,k=1,...n, in closed forms.
In addition, it is very difficult to exactly compute Pr(t> {y) in orderto find
the expected weighted number of tardy jobs in a sequence. We therefore
estimated Pr(#> &) utilizing random samples of sizes 10,000 from the pdfs of
P[] and f[k].

Table 4 displays our computational results on the heuristics stoch-stoch, det-
stoch, and stoch-det. As shown in the table, the heuristics performed well in
identifying the optimal sequences or near optimal solutions with low average
percentages of relative absolute errors. The percentage of relative absolute error
(Abs. Err(%)) is defined as 100[|WNT(v))-WNT(¢*)|/min {WNT(1)),
WNT(*)}1%. The heuristic stoch-stoch found at least 84% of the optimal
sequences for the 300 instances of the problem 1/pi~fi(.),&~gk(.)/
Zzzlw[k]E[U[k]]. For the remaining instances, this heuristic obtained near
optimal sequences with an average relative absolute error of at most 3.75%. The
percentages of the optimal sequence and average relative absolute error of the
heuristic det-stoch for the problem 1/py=my,&~gi(.)/ > — wi E[Up] were,
respectively, at least 82% and at most 3.43%, while of the heuristic stoch-det for
the problem 1/px~fi(.).&k = di/> ), wi E[Up] were at least 80% and at most
3.96%. (Note that the heuristics stoch-stoch, det-stoch, and stoch-det could find
the optimal sequences for the problems of Examples 1-3, respectively.)

In addition, we examined the effects of both stochastic processing times and
stochastic due-dates on the optimal sequence. This was done by comparing the
optimal sequences for the 300 generated instances of 1/pi~fi(.),&x~gi(.)/
> i1 wiE[Up] with their corresponding deterministic problems 1//
Sy Wik Upy- The results showed that 77% of the optimal sequences for the two
problems were different indicating that the stochasticity of both processing times
and due-dates can impact scheduling decisions. Investigating the effects of the
stochastic due-dates only, it turned out that 75% of the optimal sequences for 1/
Pk = Tk, kag/{(.)/Zzzlw[/{]E[U[k]] differed from those for 1//ZZ:lw[k] U[k]. In
addition, 80% of the optimal sequences for 1/pi~fi(.).&x = di/> i _) w E[Uk]
were different from those for 1//3}_; wyjUpy. Therefore, the stochasticity of
due-dates alone as well as the stochasticity of processing times alone can also
affect scheduling decisions.
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SUMMARY AND CONCLUSIONS

We have studied a stochastic single machine scheduling problem in which
processing times and/or due-dates are random variables with arbitrary
probability distributions, and fixed weights (penalties) are imposed on tardy
jobs. The objective is to find the schedule that minimizes the expected weighted
number of tardy jobs. The problem is NP-hard; however, based on the
stochasticity of processing times and due-dates, we have explored the three
resulting scenarios: the scenario with stochastic processing times and stochastic
due-dates, the scenario with deterministic processing times and stochastic due-
dates, and the scenario with stochastic processing times and deterministic due-
dates. (The last scenario is a special case of Soroush’s (2007) problem of
minimizing the expected weighted number of early and tardy jobs on a single
machine with random processing times and deterministic due-dates.) We have
optimally solved various special cases of these scenarios in O(n log n) time, and
have introduced polynomial time heuristic solutions for their general cases. Our
computational results on problems with seven up to twelve jobs have indicated
that the heuristics perform well in deriving either the optimal sequences (more
than 80% of the time) or near optimal sequences with low percentages of
relative absolute errors (less than 3.96%). (Due to the excessive CPU time of the
enumeration method, we did not evaluate the heuristics’ performance on larger
problems.) The illustrative examples and computational results show that the
stochasticity of processing times and/or due-dates can affect scheduling
decisions. The problem studied here is general in the sense that its special cases
reduce to some new and some classical stochastic single machine models. We are
currently extending this research to incorporate sequence-dependent setup times
as well as job learning/deterioration into scheduling decisions.
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