Kuwait J. Sci. Vol. 40 (1) June 2013 pp. 109-121, 2013

Numerical solution of chaotic Genesio system with multi-step
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ABSTRACT

In this paper, a novel method for approximate analytic series solution called Multi-step
Laplace Adomian Decomposition Method (MLADM) has been proposed for solving
the chaotic Genesio system (CGS). The proposed method is a modification of the
classical Laplace Adomian Decomposition Method (LADM) with multi-step approach.
Fourth-order Runge-Kutta method (RK4) is used to evaluate the effectiveness of the
proposed algorithm. Comparison of the results with RK4 confirms that MLADM
performs very high accuracy. Results show that MLADM is a very promising method
for obtaining approximate solutions to CGS. Moreover, it can be readily employed to
solve other chaotic systems.
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INTRODUCTION

Generally mathematical models of the events in the universe are expressed by
non-linear equations. Obtaining an analytical solution of a nonlinear system is
not so easy. We generally have to use numerical integration, some particular
transformations, linearization or discretization to obtain approximate solutions
for nonlinear systems. Dynamical systems which demonstrate chaotic behavior
are sensitive to initial conditions. The behavior of chaotic systems appears to be
random because of its sensitivity to initial conditions even though they have
deterministic structure. Chaotic phenomena can be found in many scientific and
engineering fields such as biological systems, electronic circuits, power
converters, chemical systems, and many other systems (Chen,1999). The
Genesio-Tesi system, proposed by Genesio & Tesi (1992), is one of the chaos
paradigms since it captures many features of chaotic systems. It includes a
simple square part and three simple ordinary differential equations that depend
on three positive real parameters. The Genesio-Tesi system is given in (Genesio
& Tesi, 1992) as follows:
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“r2 _ 1
dr X3, (1)
d

% =a.x; +b.xy+ c.x3 +xf,

where a, b, ¢ are real parameters. The system given by (1) is chaotic when the
parameters take the values of a = —6, b = —2.92 and ¢ = —1.2,

Several methods have been utilized to study the CGS in literature. For
example, Ghorbani & Saberi-Nadjafi (2011) have studied a piecewise-spectral
parametric iteration method for solving the nonlinear chaotic Genesio system,
Goh et al. (2009) have studied classical variational iteration method (VIM) and
the multistage VIM (MVIM), Gokdogan et al. (2012) have considered the
modified algorithm for the differential transform method (MDTM) in their
valuable study. Bataineh ez al. (2008) have studied homotopy analysis method.
The convergence region is very small in the mentioned works.

As known, LADM was successfully applied to find the exact solutions or
approximations of high degree of accuracy of many different nonlinear
differential equations (Khuri, 2001; Babolian et al., 2004; Syam & Hamdan,
2006; Yusufoglu, 2006; Kiymaz, 2009; Wazwaz, 2010; Dogan, 2012 a; Dogan &
Akin, 2011; Dogan & Akin, 2012). The main advantage of LADM is its
capability of combining the two powerful methods for obtaining exact solutions
for nonlinear equations. Although LADM gives sufficient results for small
regions like VIM, MVIM and MDTM, it does not give a satisfactory
approximation to solution of some differential equation for larger t.

Multi-step methods have been proposed to increase the accuracy by
researchers so far. Conceptually, a numerical method starts from an initial point
and then takes a short step forward in time to find the next solution point. The
process continues with subsequent steps to map out the solution in multi-step
methods.

Our inspiration point was to use a combination of Laplace transform and
Adomian decomposition method (LADM) with multi-step approach for
solution to CGS to improve the accuracy of the solution in a larger time
interval. The proposed method called as the Multistep Laplace Adomian
Decomposition Method (MLADM) by Dogan (b) (2012). He has implemented
this method for the solution of HIV infection of CD4 + T cells (Dogan, 2012 b).
Here, the MLADM is used to obtain an approximate solution of the chaotic
Genesio-Tesi system.
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Generally the RK4 method is used to evaluate the effectiveness of the
proposed algorithms since it is widely accepted and used. Comparison with the
RK4 method is a technique for similar methods because we don’t know the
exact solution. Furthermore, this new method has considerably good results.
The convergence region is very small in the other methods (a piecewise-spectral
parametric iteration method, classical variational iteration method (VIM) and
the multistage VIM (MVIM), modified algorithm for the differential transform
method (MDTM), homotopy analysis method-please see the references) for the
same system. This new method increases convergence region for the series
solution.

This paper is organized as follows: Section 2 gives the LADM solution,
Section 3 deals with the MLADM and, lastly, Section 4 presents conclusions on
the MLADM method.

LAPLACE ADOMIAN DECOMPOSITION METHOD

Application of the LADM to CGS is introduced in this section. The CGS given
in (1) with initial conditions x(0) = 0.2, y(0) = —0.3, z(0) = 0.1 is considered.
In order to solve (1) by using the LADM, we apply the LADM to CGS. We
consider (1) with initial conditions x(0) =0.2, y(0) = —0.3, z(0) =0.1 . To
solve this model by using the LADM, the Laplace transform is used. As known,
the Laplace transform of x'is defined as:

L{x'} = s.L{x} — x(0).

Similarly, the Laplace transforms of both sides of (1) are:

s.L{x()} = x(0) + L{y(1)},
s L{y(0)} = y(0) + L{z(1)}, (2)
sL{z(0} = 2(0) — a.L{z(t)} — b.L{(D)} — e.L{x(1)} + L{x*(1)}.

Moreover, the equation (2) can be rearranged as

L{x(0} = 24 1L{r(0},
L}y = "+ L{z(0}, (3)

Lz} = D=2 L{z0} -2 L0} - S LI} + 1 L{R (0}

N s

To address the nonlinear term,F = x*(¢) in (3), the Adomian decomposition
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method and the Adomian polynomials can be used. Solutions in this method are
represented by infinite series such as:

x:ixk,y:iyk,ZZizk, (4)
k=0 k=0

k=0
where the components xi,yx and z; are recursively computed. However, the

nonlinear term F = x?(¢) at the right side of (3) will be represented by an infinite
series of Adomian polynomials

Ft, x)=> A (5)

where Ay, k > 0 are defined by

1 d

A= e

k
F(t,Z)Jx_,-)],k_O, 1,2, (6)
J=0

and so-called Adomian polynomials, A; can be evaluated for all forms of
nonlinearities. Substitution of (4) and (5) into (2) leads to:

L{Y 0%} :ﬂTO)+§L{Z}ioyk}v
L{Y o e} :@+§L{Eﬁozk}v (7)
LYoz} = Q - f'L{Ezio 2%} - é'L{Z;C:oJ’k} - fL{Eiio X} +§L{Ezio A

An iterative approximation algorithm by means of both sides of (7) could be
obtained as follows

Lixo} =", L{xea} =2L{n},
L{yo} = )(TO>’ L{yen} = %L{Zk}; (8)
L{zo} = %7 L{z1} = _é-L{Zk} - ?-L{yk} —c.L{xc} + EL{Ak}-

The inverse Laplace transforms of the first part of (8) give the first terms of
solutions Xy, yo and zyp which are used to calculate, 4y. Consequently, the first
term of Adomian polynomials A4y is used to evaluate xj, y; and z.
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Subsequently, the determination of x;, y; and z; leads to the determination of
Ay, which is used to determine x;, y, ,z» and so on. Finally, the components of
Xi, vk and zx, k > 0 are determined by the second part of (8) and the series
solutions of the equation (4) are obtained.

Five terms approximations for x(z), y(¢#) and z(z) by using LADM are
calculated as

x(1) = 0.2 —0.3t+0.05 — 0.06733337 + 0.0780333* — 0.012064¢°,
y(t) = —0.3+0.17—0.202¢% +0.312133£ — 0.06032¢* — 0.0137413°,  (9)

z(t) = 0.1 —0.4041 +0.9364¢* — 0.2412873 — 0.0687067¢* — 0.0271009¢°.

Moreover, ten terms approximations for x(¢), y(¢) and z(¢) by using LADM
are initially calculated, and then ten terms x(¢), y(¢) and z(z) solutions are used
to obtain the [5/5] Padé approximations. Mathematica 7 is utilized for the [5/5]
Padé approximations. Accordingly, rational fraction approximations for x(z),
y(¢) and z(t) are obtained as follows:

0.2 — 0348797 + 0.12012612 — 0.0764055¢° + 0.09426461* — 0.02827431°
P = 1072439871 —0.01335167 — 0007391347 — 0.00823521F — 0.0013205F"
0.3 — 0.107086¢ — 0.114823£ 4 0.1552626 + 0.1695917* — 0.080093£°
PP = 0 6902861 — 0.0604958 1 003794757 + 0.00521 7487 — 0.004375885
0.1 — 0.349711 + 074526812 + 0.1558597 + 0.0564943¢* — 0.118888°
P = 052897 + 02819892 1 002693275 + 0.03017548 1 0.00520833F

(10)

Subsequently, solutions range is extended by means of Padé approximations.
For comparison, the numerical solution of equation (1) is obtained with Runge-
Kutta fourth order method and the [5/5] Padé approximate using ten terms
LADM approximations given in (10). The absolute errors obtained with both
methods are illustrated in Table 1. As could be seen in Table 1, although Padé
approximation was employed to get a better result in a larger region, good
approximations only are achieved in a small region. It was observed from
experiments that even if the number of terms of LADM approximations was
increased, the approximation range was not extended as a desired manner. Figs.
1, 2 and 3 show comparisons between Padé-LADM and RK4. Obviously the
Padé -LADM solutions diverges for r > 2.5.
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Table 1. Absolute errors obtained by using Runge Kutta fourth
order method and Padé-LADM

t px(t)—REKM|  |py(t) —RKM|  |pa(t;) — RKM|
0 0 0 0
0.5 1.802455787E — 8 1.081288853E — 7 1.472234361E — 7
1 2.014281797E — 5 4.016637420F — 5 8.898250547FE — 7
1.5 1.979948894F — 3 2.218777167E — 3 4.222270838E — 3
2 9.115657271E — 2 3.299189443F — 2 5.123111961E — 2
2.5 5.744060938E — 1 2.382888610F — 1 2.849527474F — 1
3 8.049168838E — 1 1.112112790 9.506658412F — 1
3.5 1.378122707 4.070456537 2.214990045

4 2.124105521 14.68842487 3.952531329
4.5 2.870438941 166.2238315 5.697507633

5 3.454479029 46.82859652 6.856761121

MULTISTEP LAPLACE ADOMIAN DECOMPOSITION METHOD

In the previous section, a combination of Padé-LADM solutions was introduced
and related results were given. It was shown that Padé-LADM solutions
converge in a very small region and it had slow convergent rate or completely
divergent in the wider region. To overcome this shortcoming, we introduced the

MLADM in this section.

The multi-step approach for LADM proposed in this study is a novel idea for
constructing the approximate solution. Let [0, 7] be the interval over which we
want to find the solution of the initial value problem (1). The solution
interval,[0, 7] is divided into M subintervals [t,,,1, 1], m =1, 2,---, M of equal

step size, h = T/M by using the nodes, t,, = mh.
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Fig.1. Comparison between Padé-LADM and RK4 solutions of x(¢).
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Fig.3. Comparison between Padé-LADM and RK4 solutions of z(z).

The solution algorithm of the MLADM consists of the following steps. Initially, the
LADM is applied to obtain the approximate solutions of xi(7), yi(?), z;(z) on the
interval [0, 7;] by using the initial conditions, x(0) =0.2, y(0) = —0.3, z(0) = 0.1
respectively. For obtain the approximate solutions of Eq. (1) over the interval [z, #,],
the LADM for m > 2 is used with the initial conditions x(#,-1), 1 (tm-1), z1(fn-1). The
similar process is repeated to generate sequence of approximate solutions of
X (1), ym(t), zm(t), m=1,2,--- M. Consequently, final approximate MLADM
solutions are obtained as follows (Dogan, 2012):
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xl(l)7 [0’ tl] yl(t)’ [Ov [1] Zl(l)7 [07 ll}

x(t), [t b n(t), [t b (1), [n, b
x(t= , ()= and z(t) =

xm(l)s [tv-1, tul (1), [tu-1, tul u(t), [tm-1s tu

Table 2. Absolute errors obtained by uing Runge Kutta fourth order
method and MLADM for M =2000, T=100.n=5

ti |x(t:) — RKM| w(ti) — RKM| |2(t:) — RKM|
0 0 0 0

10 1.922752104E —7  7.696088211E —8  6.104923682E — 7
20 1.745417308E — 6 2.165391176E — 6 6.452932304E — 7
30 1.112129596E — 6 3.606388590E — 6 7.522158440F — 6
40 4.418757805E — 6 3.83452017E — 6 2.195148780E — 5
50 6.935169329E — 6 1.912673949E — 6 2.821073544E — 7
60 1.218487093E — 6 6.082384957E — 6  4.043107888E — 6
70 4.879636380E — 6 2.521005237E -6  2.066552070F — 5
80 8.232163406E — 6 1.820707663E — 5 1.198184028E — 6
90 2.938746882E — 6 1.413213632E -5 1.416361888E — 5
100 1.057194367E —5  3.421007639E — 6 1.637102885E — 5

Application

To demonstrate the effectiveness of the proposed algorithm, the MLADM
and RK4 are applied to the nonlinear CGS with the same initial conditions
and parameters. MLADM results are obtained for M =2000, T=100 and
n=15. Moreover, LADM results given in Table 1 are used for comparison.
It is observed that the MLADM gives a much better performance in
approximate solutions compared to LADM for larger time interval.
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Fig. 4. Graphical comparison of x(¢) by using MLADM versus RK4.
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Fig. 5. Graphical comparison of y(¢) by using MLADM versus RK4.
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Fig. 6. Graphical comparison of z(¢) by using MLADM versus RK4.

seen, the system is highly chaotic.
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Table 2 shows the numerical outputs for MLADM and RK4 for t =0 to
t =100, As could be seen in Table 2, there is an extremely good agreement
between MLADM and RK4 for given time frame in terms of errors. Figs. 4, 5
and 6 show that the multi-step LADM solutions are very closed to the Runge-
Kutta solutions. In addition, phase portraits of solutions are given in Figs. 7, 8,
9 and 10. As could be
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Fig. 7. Phase portrait for Genesio System (1) Fig. 8. x(¢) — y(¢) Phase portrait for Genesio
by using MLADM System (1) by using MLADM

Fig. 9. x(7) — z(¢) Phase portrait for Genesio Fig. 10. y(7) — z(¢) Phase portrait for Genesio
System (1) by using MLAD System (1) by using MLAD

CONCLUSIONS

In this study, a novel method called multi-step LADM for solution of CGS is
introduced. The proposed method MLADM, which is a consistent modification
of the LADM, can be directly used without linearization, perturbation or
restrictive assumptions. Figs. 1, 2 and 3 show comparisons between Padé-
LADM and RK4. We can conclude that the Padé-LADM is only reliable on a
small domain of 7€ [0, 2.5]. Figs. 4, 5 and 6 show that the MLADM
approximate solutions for CGS are very closed to the Runge-Kutta
approximate solutions. MLADM, on the other hand, gives considerably good
results on a longer time span of ¢ € [0, 100] . Therefore, the proposed method is
very efficient and accurate method that can be used to provide approximate
analytical solutions for nonlinear systems of differential equations. This
confirms that this new algorithm of the LADM increases the interval of
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convergence for the series solution. Of course the accuracy can be improved
when the step size & becomes smaller and the number of terms in each
subinterval n becomes larger. Figs. 7, 8, 9 and 10 indicate the phase diagram
obtained from the MLADM solutions. We have shown that the proposed
algorithm is a very accurate and efficient method for CGS and it can be applied
to other chaotic systems.
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