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Abstract 

 

Several multivariate depth functions have been proposed in the literature, of which some satisfy 

all the conditions for statistical depth functions while some do not. Spatial depth is known to be 

invariant to spherical and shift transformations. In this paper, the possibility of using different 

versions of spatial depth in classification is considered. The covariance-adjusted, weighted, and 

kernel-based versions of spatial depth functions are presented to classify multivariate outcomes. 

We extend the maximal depth classification notions for the covariance-adjusted, weighted, and 

kernel-based spatial depth versions. The classifiers' performance is considered and compared with 

some existing classification methods using simulated and real datasets. 
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1. Introduction 

 

In classifying objects in ℝ𝑑 , several 

classification methods in the literature 

include discriminant analysis, support vector 

machine (SVM) (Vapnik, 1998), among 

others. Some of these methods have intuitive 

features like robustness against outliers, 

optimality under special conditions for some 

distributions. However, these methods are 

either based on some distribution 

assumptions or assume some parametric 

surfaces (Makinde & Chakraborty, 2015). 

Some involve estimating location and scale 

parameters whose model estimates are 

affected by outlying observations if present 

in the data. However, for discriminant 

analyses, Hubert & Van Driessen, 2004, 

presented robust versions of the classification 

rules.  Also,  high     dimension     poses    a  

 

 
significant challenge on many parametric 

classification methods.  

    Nonparametric analysis of multivariate 

outcomes based on data depth has received 

much attention over two decades. Liu et al., 

1999, proposed various ideas on analysing 

multivariate outcomes based on data depth 

notions. Data depth measures how central a 

multivariate object is concerning an 

underlying multivariate distribution or data 

cloud. Using this notion, Tukey, 1975; Liu, 

1990; Donoho & Gasko, 1992, defined 

several depth functions for multivariate 

outcomes. Jornsten, 2004, applied the notions 

of data depth to classification. Also, Ghosh & 

Chaudhuri, 2005, proposed some versions of 

the maximum depth classifier. The maximum 

depth classifier assigns an observation to the 

population or sample for which the classifier 

attains its highest depth value. Li et al., 2012; 
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Lange et al., 2014, proposed graphical 

approaches to classification based on depth-

depth plot, a two-dimensional representation 

of multivariate objects by their data depths 

concerning known classes. Makinde & 

Chakraborty, 2018, proposed classifiers 

based on multivariate rank and rank regions. 

Makinde & Chakraborty, 2015; Makinde, 

2020, proposed classifiers based on the 

distribution of versions of multivariate rank 

functions. In another development, Makinde, 

2020, presented some distance-based 

classification methods for gene expression 

data. 
 

     Spatial depth function has been applied in 

classification and performs competitively; 

see Ghosh & Chaudhuri, 2005, for example. 

However, the maximum depth classification 

method based on spatial depth suffers from a 

lack of robustness of spatial depth function 

against affine invariance. Also, each 

observation contributes equal weight to the 

spatial depth value. In real applications, some 

data points may be more important than 

others. Instead of each observation 

contributing equally to the spatial depth, 

some observations contribute more weight 

than others. Based on these, covariance-

adjusted, weighted, and kernel-based spatial 

depth functions are considered in this paper. 

Classification rules based on these versions 

of spatial depth functions are proposed. We 

compare the proposed classification rules' 

performance with some existing methods 

such as linear discriminant analysis, support 

vector machine, and maximum depth 

classification method based on projection 

depth.  
 

2. Classification rule based on spatial 

depth 

 

2.1 Spatial depth classifier 

 

Suppose 𝒀 is a 𝑑-dimensional random vector 

having a distribution 𝐹 . The spatial depth 

function of any point 𝒙 ∈ ℝ𝑑  concerning 𝐹 

is defined as 

      𝑆𝐷(𝒙, 𝐹) = 1 − ‖𝐸 [
𝒙 − 𝒀

‖𝒙 − 𝒀‖
]‖          (1) 

where ||. ||  is the usual Euclidean norm. 

Spatial depth possesses some intuitive 

features. 𝑆𝐷(𝒙, 𝐹)  characterizes the 

distribution 𝐹  in the sense that a more 

considerable depth value indicates more 

central observation and a smaller depth value 

indicates extreme observation.  
 

Let 𝜋1, 𝜋2, … , 𝜋𝐽  be  𝐽(≥ 2)  populations 

having 𝑑-dimensional distribution functions 

𝐹1, 𝐹2, … , 𝐹𝐽 . The classification rule for any 

𝒙 ∈ ℝ𝑑 is defined as 

assign  𝒙  to  𝜋𝑘  if  𝑆𝐷(𝒙, 𝐹𝑘)

=  max
1≤𝑗≤𝐽

𝑆𝐷(𝒙, 𝐹𝑗)           (2) 

 

In practice, 𝑆𝐷(𝒙, 𝐹𝑗) will hardly be known, 

and we need to estimate it from the training 

sample. Let 𝑿𝑗1, 𝑿𝑗2, … , 𝑿𝑗𝑛𝑗
∈ ℝ𝑑  be a 

random sample from the population 𝜋𝑗 

having distribution 𝐹𝑗 . We define the 

empirical depth functions as  

𝑆𝐷(𝒙, �̂�𝑗) = 1 − ‖
1

𝑛𝑗
∑ [

𝒙 − 𝑿𝑗𝑖

||𝒙 − 𝑿𝑗𝑖||
]

𝑛𝑗

𝑖=1

‖ 

for any 𝒙 ∈ ℝ𝑑 , where �̂�𝑗  is the empirical 

distribution of the sample from 𝐹𝑗. Then the 

empirical classification rule for any 𝒙 ∈ ℝ𝑑  

can be defined as 

assign  𝒙  to  𝜋𝑘  if  𝑆𝐷(𝒙, �̂�𝑘)

=  max
1≤𝑗≤𝐽

𝑆𝐷(𝒙, �̂�𝑗). 

 

A related depth function to 𝑆𝐷(𝒙, 𝐹𝑗)  was 

proposed in Gao, 2003. Denote the depth 

function in Gao, 2003, by 𝑆𝐷𝐺𝑎𝑜(𝒙, 𝐹𝑗) for  

𝑗-th distribution, then  

𝑆𝐷𝐺𝑎𝑜(𝒙, 𝐹𝑗) = 1 − 𝑂(𝒙, 𝐹𝑗) 

Where,  

Depth classification based on affine-invariant, weighted and kernel-based spatial depth functions
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𝑂(𝒙, 𝐹𝑗) = ‖𝐸 [
𝒙 − 𝑿𝑗

||𝒙 − 𝑿𝑗||
]‖

2

. 

 

The relationship between the depth functions 

𝑆𝐷(𝒙, 𝐹𝑗) and 𝑆𝐷𝐺𝑎𝑜(𝒙, 𝐹𝑗) can be expressed 

as 

𝑆𝐷𝐺𝑎𝑜(𝒙, 𝐹𝑗) = 𝑆𝐷(𝒙, 𝐹𝑗) (2 − 𝑆𝐷(𝒙, 𝐹𝑗)). 

It follows that 𝑆𝐷(𝒙, 𝐹𝑗)  and 𝑆𝐷𝐺𝑎𝑜(𝒙, 𝐹𝑗) 

perform equivalently in maximal depth 

classification. 
 

     Zuo & Serfling, 2000, set out four 

conditions for statistical depth functions. 

Both 𝑆𝐷(𝒙, 𝐹𝑗)  and 𝑆𝐷𝐺𝑎𝑜(𝒙, 𝐹𝑗)  satisfy all 

the conditions set out for statistical depth 

function of spherical symmetric population. 

However, neither 𝑆𝐷𝐺𝑎𝑜(𝒙, 𝐹𝑗)  nor 

𝑆𝐷(𝒙, 𝐹𝑗)  is invariant under general affine 

transformation, and hence classification rule 

based on any of them is non-invariant under 

the general affine transformation of the data.  
 

     Any invariant depth to shifts and 

orthogonal transformations can be affine 

invariant by sphering the data (transforming 

the depth by a proper matrix). There are many 

ways to do this. An example is to consider the 

root of the covariance matrix. Let 𝑆𝐷𝑎(𝒙, 𝐹𝑗) 

denote the spatial depth function based on 𝐹𝑗 

and 𝚺𝑗 , where, the 𝑑 -dimensional random 

vectors 𝑿𝑗  have distributions 𝐹𝑗  for              

𝑗 = 1,2, … , 𝐽 and 𝚺𝑗 is the covariance matrix 

of 𝐹𝑗, 

𝑆𝐷𝑎(𝒙, 𝐹𝑗) = 1 − ‖𝐸 [
𝑨−𝟏(𝒙 − 𝑿𝑗)

||𝑨−𝟏(𝒙 − 𝑿𝑗)||
]‖ 

where 𝑨 is a 𝑑 × 𝑑  matrix such that 𝑨𝑨′ =
𝑐𝚺 for some constant 𝑐. If the covariance of 

the distribution 𝐹𝑗 exists, we can take 𝑨 to be 

the Cholesky decomposition of the 

covariance matrix.  

 

The classification rule based on 𝑆𝐷𝑎(𝒙, 𝐹𝑗) is 

              assign  𝒙  to  𝜋𝑘  if  𝑆𝐷𝑎(𝒙, 𝐹𝑘)

=  max
1≤𝑗≤𝐽

𝑆𝐷𝑎(𝒙, 𝐹𝑗).         (3) 

Where, there is no confusion, we denote the 

classification rule based on 𝑆𝐷(𝒙, 𝐹𝑗) in (2) 

and 𝑆𝐷𝑎(𝒙, 𝐹𝑗)  in (3) by 𝑆𝐷  and 𝑆𝐷𝑎 

respectively in our numerical examples. 

 

2.2 Weighted spatial depth classifier 

 

The weighted spatial depth function, denoted 

by 𝑆𝐷𝑤(𝒙, 𝐹𝑗)  for population 𝜋𝑗  with 

distribution 𝐹𝑗, can be defined as 

𝑆𝐷𝑤(𝒙, 𝐹𝑗) = 1 − ‖𝐸[𝜔𝑗𝑆(𝑿𝑗 , 𝒙)]‖ 

where  

𝑆(𝑿𝑗 , 𝒙) =
𝒙 − 𝑿𝑗

||𝒙 − 𝑿𝑗||
 

 and 𝜔𝑗  is the random weight for 𝑗 

population. Using 𝑆𝐷𝑤(𝒙, 𝐹𝑗)  in place of 

𝑆𝐷(𝒙, 𝐹𝑗) in (2), the resulting classification 

rule, denoted by S.D., is  

         assign  𝒙  to  𝜋𝑘  if  𝑆𝐷𝑤(𝒙, 𝐹𝑘)

=  max
1≤𝑗≤𝐽

𝑆𝐷𝑤(𝒙, 𝐹𝑗)           (4) 

 

The sample version of 𝑆𝐷𝑤(𝒙, 𝐹𝑗) is defined 

as  

𝑆𝐷𝑤(𝒙, �̂�𝑗) = 1

− ‖
1

𝑛𝑗
∑ [𝜔𝑗𝑖

𝒙 − 𝑿𝑗𝑖

||𝒙 − 𝑿𝑗𝑖||
]

𝑛𝑗

𝑖=1

‖, 

Where, weights 𝜔𝑗𝑖, 𝜔𝑗2, … , 𝜔𝑗𝑛𝑗
 are weights 

of sample points 𝑿𝑗1, 𝑿𝑗2, … , 𝑿𝑗𝑛𝑗
∈ ℝ𝑑 from 

the population 𝜋𝑗  and are non-negative for 

𝑗 = 1,2, … , 𝐽.  

To implement the classification rule based on 

weighted spatial depth, the Gaussian weight 

function is used. The Gaussian weight 

employed for 𝑖th observation from 𝑗th class 

of size 𝑛𝑗  is defined as  

𝜔𝑗𝑖 = 𝑟𝑗𝑖/ ∑ 𝑟𝑗𝑖

𝑛𝑗

𝑖=1

 

Where, 
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𝑟𝑗𝑖 = 𝐾(𝑿𝑖 , 𝒀𝑗) = 𝑒𝑥𝑝 (−
1

𝜎2
‖𝑿𝑖 − 𝒀𝑗‖

2
), 

𝜎2 is the turning parameter. The value of 𝜎2 

is taken to be 9 for weighted spatial depth 

classifier in the numerical examples in the 

next section following Chen et al., 2009, 

argued that 𝐾(𝑿𝑖, 𝒀𝑗) captures the shape of 

some multivariate data at 𝜎2 = 9. 

 

2.3 Kernelized spatial depth classifier 

 

Chen et al., 2009, defined a kernel-based 

spatial depth function and proposed an outlier 

detection methodology based on the depth 

function. The idea is to evaluate the spatial 

depth in a feature space induced by a definite 

positive kernel.  

 

     The kernelized spatial depth (Chen et al., 

2009) is defined as  

𝑆𝐷𝑘(𝒙, 𝐹𝑗) = 1 − 𝑂𝑘(𝒙, 𝐹𝑗) 

where  

𝑂𝑘(𝒙, 𝐹𝑗) =
1

𝑛
( ∑

𝐾(𝒙, 𝒙) + 𝐾(𝒚, 𝒛) − 𝐾(𝒙, 𝒚) + 𝐾(𝒙, 𝒛)

𝜁(𝒙, 𝒚)𝜁(𝒙, 𝒛)
𝒙,𝒚∈ℝ𝑑

)

1
2⁄

, 

𝜁(𝒙, 𝒚) = √𝐾(𝒙, 𝒙) + 𝐾(𝒚, 𝒚) − 2𝐾(𝒙, 𝒚), 

𝜁(𝒙, 𝒛) = √𝐾(𝒙, 𝒙) + 𝐾(𝒛, 𝒛) − 2𝐾(𝒙, 𝒛), 
And 𝐾  is a kernel function based on          

semi-metric between two vectors 𝒙  and 𝒚 . 

The classification rule based on 𝑆𝐷𝑘(𝒙, 𝐹𝑗) is 

defined as   

         assign  𝒙  to  𝜋𝑘  if  𝑆𝐷𝑘(𝒙, 𝐹𝑘)

=  max
1≤𝑗≤𝐽

𝑆𝐷𝑘(𝒙, 𝐹𝑗).           (5) 

 

     The kernel functions in the literature 

include Gaussian kernel, polynomial kernel, 

Laplacian kernel, exponential kernel, among 

others. Gaussian Kernel, denoted by 𝐾(𝒙, 𝒚), 

is defined as 𝐾(𝒙, 𝒚) = exp (−
1

ℎ
‖𝒙 − 𝒚‖2), 

where ℎ is the tuning parameter. The rational 

quadratic kernel is computationally simple 

compared to the Gaussian kernel.  

It is defined as  

𝐾(𝒙, 𝒚) = 1 − (
‖𝑿𝑖 − 𝒀𝑗‖

2

𝑐 + ‖𝑿𝑖 − 𝒀𝑗‖
2), 

where 𝑐 is a constant term. 

 

3. Simulation study 

 

Simulation 1: Suppose 𝑿1, 𝑿2, … , 𝑿𝑛  and 

𝒀1, 𝒀2, … , 𝒀𝑚  are random training samples 

from trivariate normal populations 𝜋1 and 𝜋2 

with center of symmetries 𝝁1 = (1 0 0)′ 

and 𝝁2 = (1 1 1)′ , respectively and 

covariance matrix 𝑰 , where 𝑰  is an identity 

matrix.  

 

Simulation 2: Suppose 𝑿1, 𝑿2, … , 𝑿𝑛  and 

𝒀1, 𝒀2, … , 𝒀𝑚  are normally distributed with 

meanss𝝁1 = (1 1 1)′ and          𝝁2 = (1 0 0)′  

respectively and covariance matrix 𝚺 =

(
1 0.3 0.5

0.3 1 0.4
0.5 0.4 1

). 

 

Simulation 3: Suppose 𝑿1, 𝑿2, … , 𝑿𝑛  is a 

random training sample from a standard 

mixture distribution defined as  

𝐹 = {
𝑁(𝝁𝑋

1 , 𝑰)      with probability       𝑝

𝑁(𝝁𝑋
2 , 𝑰)     with probability   1 − 𝑝

 

where 𝑝 ∈ (0,1)  is the mixing proportion, 

𝝁𝑋
1 = (0 0)′  and 𝝁𝑋

2 = (1 0)′ . Suppose 

𝒀1, 𝒀2, … , 𝒀𝑚  is a random training sample 

from a bivariate normal distribution with 

mean    vector   (2 0)′    and    covariance  

matrix 𝑰. 

 

Simulation 4: Suppose 𝑿1, 𝑿2, … , 𝑿0.9𝑛  and 

𝑿0.9𝑛+1, 𝑿0.9𝑛+2, … , 𝑿𝑛  are random training 

samples from trivariate independent 

exponential distributions 𝐹 = (𝑒𝑥𝑝(1) +
1, 𝑒𝑥𝑝(1), 𝑒𝑥𝑝(1))  and 𝐺 = (𝑒𝑥𝑝(1) +
1, 𝑒𝑥𝑝(1) + 1, 𝑒𝑥𝑝(1) + 2) , respectively. 

Suppose 𝒀1, 𝒀2, … , 𝒀𝑚  is a random training 

sample from trivariate independent 

exponential distribution 𝐺 = (𝑒𝑥𝑝(1) +
1, 𝑒𝑥𝑝(1) + 1, 𝑒𝑥𝑝(1) + 2). 
 

Depth classification based on affine-invariant, weighted and kernel-based spatial depth functions
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The sample sizes for 𝑿1, 𝑿2, … , 𝑿𝑛   and 

𝒀1, 𝒀2, … , 𝒀𝑚  are taken to be                            

𝑛 = 𝑚 = 20, 50, 100. We simulate random 

test samples 𝒁1, 𝒁2, … , 𝒁𝑠  from the 

distribution of 𝑿1, 𝑿2, … , 𝑿𝑛  and 

𝒁𝑠+1, 𝒁𝑠+2, … , 𝒁2𝑠 

from the distribution of 𝒀1, 𝒀2, … , 𝒀𝑚  for 

each of the Simulations 1 - 4, then assign 

observations in the test samples to one of 𝐹 

and 𝐺. Setting 𝑠 = 𝑛 = 𝑚, the probability of 

misclassification is estimated by the mean of 

misclassification error rates in 

𝒁1, 𝒁2, … , 𝒁2𝑠 . The simulation procedure is 

repeated 100 times. 

 

Table 1. Effect of bandwidth on Gaussian 

kernel-based spatial depth classifiers (SDk) 

based on misclassification rates. 

Simulation 

values of bandwidth (h) 

1 5 9 25 

1 0.2357 0.2028 0.2094 0.2111 

2 0.3018 0.2670 0.2639 0.2767 

3 0.2487 0.2445 0.2318 0.2390 

4 0.2360 0.2599 0.2674 0.2838 

 

The kernelized spatial depth classifier using 

Gaussian kernel is denoted by SDk and 

kernelized spatial depth classifier using 

rational quadratic kernel by SDrq where there 

is no confusion. For SVM, C-support vector 

classification with Gaussian RBF-kernel was 

used. The default choice of parameters in the 

R package kernlab was used with Gaussian 

kernel, and 5-fold cross-validation was 

employed.  

     Simulation 1 consists of two spherically 

symmetric normal distributions with 

different location vectors. Simulation 2 

consists of two elliptically symmetric normal 

distributions with different location vectors. 

Simulation 3 consists of spherically 

symmetric normal distribution and mixture 

normal distribution. Simulation 4 comprises 

two trivariate independent exponential 

samples, containing 10% contamination from 

another independent exponential distribution. 

Table-3 presents averages of 

misclassification error rates of competing 

classifiers for spherically symmetric normal 

distribution (Simulation-1), elliptically 

symmetric normal distribution (Simulation 

2), mixture normal distribution (Simulation 

3), and independent exponential distribution 

with 10% contamination (Simulation 4) with 

different sample sizes. 

     The choice of bandwidth for SDk and 

SDrq were investigated in Simulations 1 – 4 

for 𝑚 = 𝑛 = 50 . Table 1 presents the 

performance of SDk for some values of 

bandwidth ℎ . In Simulation 1, the average 

misclassification rate is least at ℎ = 5. The 

average misclassification rates are least at the 

value of ℎ = 9 in Simulations 2 and 3, where 

the competing distributions are elliptical and 

mixture distributions, respectively. This is in 

agreement with the claim of Chen et al., 

2009. This may be attributed to the fact that 

SDk captures the shape of some multivariate 

data at ℎ = 9 . However, the average 

misclassification rate in Simulation-4 is 

minimized as lower value bandwidth(ℎ = 1).  

     Also, Table 2 presents the performance of 

SDrq for some values of bandwidth 𝑐 . In 

Simulations 1, 3, and 4, the average 

misclassification rates are minimized at      

𝑐 = 1. The average misclassification rate in 

Simulation 2 is minimized at 𝑐 = 1.5. For the 

implementation of SDk and SDrq, the choice 

of value for each of ℎ and 𝑐 were taken to be 

the optimal value obtained in Tables 1 - 2 in 

each simulation experiment. 

     In Table 3, a comparison of spatial depth 

classifiers (SD, SDw, SDk, and SDrq) was 

presented with some existing classification 

methods such as Fisher's linear discriminant  
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Table 2. Effect of bandwidth on rational quadratic kernel-based spatial depth classifiers (SDrq) 

based on misclassification rates. 
Simulation various values of c 

0.1 0.5 1 1.5 2 

1 0.2240 0.2225 0.2058 0.2158 0.2035 
2 0.2823 0.2810 0.2750 0.2644 0.2657 

3 0.2610 0.2491 0.2398 0.2473 0.2441 

4 0.1445 0.1311 0.1250 0.1252 0.1285 

analysis (LDA), maximal depth classifier 

based on projection depth (Donoho & Gasko, 

1992) (P.D.) and SVM based on 

misclassification rates. For standard samples 

(Simulations 1 and 2), LDA performs best. It 

is observed that LDA, SD, and SDw perform 

equivalently for standard samples for 

different training sample sizes. The 

performance of SDa is better than that of S.D. 

in Simulation 2 because of the ability of SDa 

to take care of correlation among variables 

but for large sample sizes. In Simulation 3, all 

the competing classification methods 

perform almost equivalently for a large 

sample size. It is expected that LDA will 

outperform other methods in Simulation 1-3. 

This is because LDA is Bayes rule when data 

is normally distributed (either spherically or 

elliptically symmetric) (Anderson, 1984). It 

is noted that if the covariance matrix in 

Simulation 2 has more extreme entries, for 

example, correlation values among some 

variables increase, the average 

misclassification error rate of LDA reduces 

as some correlation values among variables 

increase (Fan et al., 2012). Similarly, the 

average misclassification error rates of SDa 

reduce as some correlation values among 

variables increase. For instance, suppose   

𝚺 = (
1 0.8 0.5

0.8 1 0.85
0.5 0.85 1

) , the average 

misclassification error rates of LDA, SDa, 

PD, and SVM reduce compared to the results 

in Simulation 2 for training sample sizes 

n=20, 50, 100. However, the average 

misclassification error rates of SD, SDw, 

SDk, and SDrq are equivalent to Simulation 

2. This can be attributed to the lack of affine 

invariance of classifiers SD, SDw, SDk, and 

SDrq.   

     For exponential samples in Simulation 4, 

SVM performs best while SDrq and SDk 

compete well. SVM achieves the least 

average misclassification rate. This can be 

attributed to its optimal behaviour when 

competing populations are exponentially 

distributed. It is observed that SDk and SDrq 

perform competitively with LDA and P.D. 

for exponential samples. Figure 1 presents 

the boxplots of misclassification error rates 

of competing classifiers when 𝑛 = 𝑚 = 100 

for the four simulation examples. 

 

It can be inferred from Table 3 that S.D. and 

SDw can be used as alternative classification 

methods to LDA for spherically symmetric 

normally distributed data. These classifiers 

are robust against outliers if present in the 

data while LDA does not. The classifier SDa 

can be employed as an alternative LDA for 

elliptically symmetric normally distributed 

data. The classifiers SD, SDw, and P.D., can 

be used instead of LDA for normal mixture 

distribution. For exponentially distributed 

data, SVM is optimal. The spatial depth 

classifiers SDk and SDrq are preferred over 

LDA and P.D. The R codes for the spatial 

classification methods are freely available at 

https://github.com/osMakinde/osMakinde_s

patial_depth_classifiers. 
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Table 3. Average misclassification error rates of competing classifiers for trivariate normal and 

exponential samples with varying sample sizes. 

 
Simulation Sample size LDA PD SVM SD SDa SDw SDk SDrq 

1 20 0.206 0.269 0.301 0.222 0.238 0.209 0.220 0.243 

 50 0.198 0.223 0.284 0.200 0.211 0.203 0.200 0.212 
 100 0.196 0.210 0.275 0.196 0.201 0.196 0.201 0.207 

2 20 0.269 0.325 0.308 0.284 0.306 0.289 0.304 0.305 

 50 0.250 0.281 0.273 0.271 0.265 0.278 0.271 0.264 
 100 0.252 0.269 0.257 0.265 0.250 0.271 0.265 0.270 

3 20 0.235 0.270 0.266 0.252 0.257 0.245 0.249 0.269 

 50 0.236 0.244 0.247 0.234 0.230 0.231 0.233 0.240 

 100 0.225 0.228 0.232 0.229 0.236 0.228 0.239 0.233 

4 20 0.301 0.325 0.235 0.321 0.334 0.304 0.267 0.257 

 50 0.295 0.301 0.194 0.303 0.314 0.315 0.234 0.231 

 100 0.291 0.292 0.171 0.294 0.300 0.293 0.212 0.210 

 

Fig. 1. Boxplots of misclassification error rates of competing 

classifiers 
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4. Real data 

 

Four benchmark data sets are analysed to 

illustrate the performances of the proposed 

spatial depth classification methods. These 

datasets are South African heart disease 

data, E coli data, Iris data, and glass data. 

South African heart disease data, denoted 

by SAHD, consists of two classes (response 

and coronary heart disease). A random 

training and test sample of size 100 and 40 

respectively are chosen from each of the 

two classes with eight input features. 

SAHD data is available at 

http://www.stat.stanford.edu/~tibs/ElemSt

atLearn/datasets/SAheart.data. E. coli data 

consists of two classes with 5 features. 

Ecoli data and its description are available 

at https://archive.ics.uci.edu/ml/machine-

learning-databases/ecoli/ecoli.data. 

A random training sample of size 50 and a 

test sample of size 25 is chosen from each 

of the classes. Iris data consists of three 

classes (Setosa, Versicolor, and Virginica).  

A random training and test sample of size 

25 is chosen from each of the three classes. 

Glass data consists of seven classes and 9 

input features. A random training sample of 

size 50 is chosen from each of the first two 

classes, while the test samples consist of a 

complement of the training samples. We 

take the bandwidth ℎ for SDk to be 5.0 for 

E. coli and iris data while ℎ = 1 for glass 

data and ℎ = 0.25 for South African heart 

disease data. Also, the bandwidth 𝑐  for 

SDrq is chosen to be 1.0 for the four 

datasets. 

 

 

 

 

Table-4 presents the average 

misclassification error rates of SD, SDa, 

SDw, K.S.D., and SDrq compared to LDA, 

P.D., and SVM. For SAHD, SDk achieves 

perfect classification. Other competing 

classification methods perform 

equivalently. For E. coli data, LDA and 

SVM have the least average error rate while 

SDa performs competitively. For iris data, 

SDa performs best while P.D., SVM, SD, 

SDw, and SDk compete well. LDA has the 

highest average error rates.  For glass data, 

SDrq, SVM, and SDk have the least 

average misclassification error rates while 

SDa competes well with LDA. The 

classifiers, S.D. and SDw, have the highest 

average misclassification error rates. Figure 

2 presents boxplots of classifiers' 

performance based on average 

misclassification error rates for real data 

sets. 

 

      It has been discussed in the literature 

that iris data is normally distributed for each 

species. Makinde & Chakraborty, 2018, 

have shown that classification methods 

based on the function of spatial rank 

outlyingness are a Bayes rule for elliptically 

symmetric normally distributed 

multivariate. Under this condition, SDa is a 

Bayes rule. Comparing spatial depth 

classifiers, it is observed that SDw, SDk, 

and SDrq perform equivalently for E. coli 

and iris data. For all the datasets, spatial 

depth classifiers S.D. and SDw perform 

equivalently. 

 

 

 

Table 4. Average error rates of classifiers for some real datasets. 

Dataset LDA PD SVM SD SDa SDw SDk SDrq 

SAHD 0.313 0.341 0.501 0.330 0.348 0.332 0.000 0.343 

Ecoli 0.026 0.047 0.026 0.058 0.039 0.058 0.057 0.058 

Iris 0.164 0.042 0.052 0.065 0.029 0.065 0.059 0.064 

Glass 0.294 0.326 0.214 0.396 0.290 0.399 0.224 0.207 
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Fig. 2. Boxplots of misclassification error rates of competing classifiers for real data. 
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5. Summary 

 

Some forms of spatial depth function are 

defined in this study. A big advantage of the 

spatial depth over other notions of depth 

(such as location or projection depth) is its 

computational simplicity, which is linear both 

in dimension and in sample length. These 

depth functions are considered to classify 

observations in test set to one of the known 

classes correctly using maximum depth 

classification rules of Ghosh & Chaudhuri, 

2005. The depth functions are spatial depth, a 

modified version based on the cholesky 

decomposition of the data cloud's covariance 

matrix, weighted spatial depth, and some 

kernelized spatial depths. The performance of 

each associated classifier is examined using 

simulation as well as real data. Based on 

results from simulation and real data 

examples, classifiers based on some forms of 

spatial depth function, for example, SD, SDa, 

and SDk, perform well and competitively 

with others. When there is evidence of 

correlation among the data features, the 

maximum depth classification rule's better 

performance is observed with a modified 

spatial depth version (SDa). When some data 

points are more important than the other, 

weighted and kernelized spatial depth 

functions are recommended to be employed 

for maximum depth classification. For 

kernelized spatial depth function, it is 

observed that the impact of an optimal choice 

of bandwidth is more than the impact of the 

kernel in the classification.  
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