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Abstract 

In the present investigation, we consider the heat and mass transfer characteristics of steady, 
incompressible and electrically conducting Casson fluid flow in a channel. The effect of chemical 
reactions have also been considered. The differential transform method (DTM) is applied to a 
system of non-linear ODEs, and the results are obtained in the form of DTM series. The principal 
gain of this approach is that it applies to the non-linear ODEs without requiring any discretization, 
linearization or perturbation. The velocity, mass and heat transfer profiles thus obtained are in 
good agreement with those provided by the quasi-linearization method (QLM). Graphical results 
for velocity, concentration and temperature fields are presented for a certain range of values of the 
governing parameters.  

Keywords: Casson fluid; channel flow; differential transform method (DTM); shrinking 
wall; quasi-linearization method (QLM) 

1. Introduction

Non-Newtonian fluid flow has been the objective of much research due to its increasing industrial 
and technological applications. Many fluids like drilling mud, polymer solutions, paints, shampoo, 
ketchup etc. do not obey the Newton’s law for viscosity. Hence, the Navier-Stokes theory is not 
able to explain the behaviour of these fluids and there is also no single equation in literature that 
represents properties for this type of fluids. Casson fluid model (preferred rheological 
representation for chocolate and blood) was presented by Casson for the flow of viscoelastic fluids 
in 1959. It is the main non-Newtonian fluid that exhibits yield stress, and have many applications 
in metallurgy, drilling operations, bio-engineering operations and food processing. 

Eldabe et al. (2014) considered the peristaltic movement of non-Newtonian fluid with mass 
and heat transfer with in a porous medium in a channel under an external magnetic field. Ahmed 
(2006) investigated the heat transfer properties of both cold side walls and hot fins and buoyancy 
nature of a flow inside an enclosure. The entrance region flow of a Casson fluid in a straight 
channel was examined numerically by Batra & Kandasamy (2006). The mass and heat transfer 
characteristics of magnetohydrodynamics Casson fluid in upright stretching walls channel was 
investigated by Sarojamma et al. (2014) using the shooting technique. Ramesh & Devakar (2015) 
obtained the interpretive solutions for flow of Casson fluid within parallel plates under slip 
settings. Raju et al. (2016) discussed the mass and heat transfer behaviour for Casson fluid past 
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exponentially porous stretching surface in the occurrence of magnetic field, thermal emission, 
chemical reaction, viscous dissipation and heat source. In this study, dual solutions were presented 
for the Casson fluid, contrary to the Newtonian flow. The consequence of thermal radiation on 
mass and heat transfer of MHD flow for Casson fluid above a stretching surface was considered 
by Haritha & Sarojamma (2014). Hafiz et al. (2016) studied the heat transfer and mixed convection 
in the Powell-Eyring flow with Newtonian heating, over a stretching cylinder. They conclude that, 
by increasing the Prandtl number and convection parameter, the temperature distribution decreases 
significantly whereas the flow may be accelerated by increasing the curvature parameter. 

Channel flows have applications in the fields of filtration, grain regression, surface 
sublimation, ablation cooling, microfluidic devices and binary gas diffusion, see Ashraf et al. 
(2009). Numerous studies have been presented on channel flow since the pioneering study by 
Berman in 1953. Recent investigations in this field are Si et al. (2010); Ali et al. (2014); 
Sheikholeslami et al. (2014); Ali & Asharf(2014) and Ali et al. (2015). Three iterative techniques 
(TAM, BCM and DJM) have been used by Majeed & Al-Zahraa (2020) for the approximate 
solution of the Jeffery-Hamel flow problem. They obtained approximate solutions in the form of 
convergent series in which no restriction assumptions were applied for nonlinear terms. Moreover, 
the obtained results were compared with Runge-Kutta technique.   

A large number of phenomena are basically non-linear and are modelled by non-linear 
equations. Several methods have been established to solve non-linear equations. Differential 
transform method (DTM) is one of the methods that do not require small parameters. This method 
has been effectively applied to many application problems (Hassan, 2002; Momania & Ert¨urk, 
2008; Abazari & Borhanifar, 2010; Fereidoom et al., 2010; Joneidi et al., 2009). The first use of 
DTM was in the solution of electrical circuit analysis by Zhou (1986). Chen & Ho (1999) presented 
this technique for PDEs whereas Ayaz (2004) applied it to a system of differential equations. To 
find out the exact solution of linear and non-linear space time fractional reaction diffusion 
equations on a finite domain, Mridula & Pratibha (2013) have used the generalized differential 
transform technique. Through this method, the drawbacks of homotopy perturbation method and 
the domain decomposition techniques have been overcome. For further details on DTM, we highly 
recommend the work by Mridula & Pratibha (2013). 

In this paper, we study the flow of Casson fluid accompanied by heat and mass transfer 
through channel with a stationary and a shrinking wall with the slip condition, in the presence of 
chemical reaction. A similarity transformation is utilized to transfer governing equations into a set 
of non-linear ODEs which are then solved by employing the differential transform method (DTM) 
and quasi-linearization method (QLM). Impact of the governing parameters on flow, heat and mass 
transfer features of the problem are explained. 

2. Mathematical Formulation

We take into account the magnetohydrodynamic (MHD) flow of Casson fluid in a parallel plate 
channel with a shrinking lower wall and a stationary upper wall, in the presence of applied 
magnetic field. It is assumed that the induced magnetic field is in significant in comparison with 
the imposed one. The magnetic Reynolds number (Re) is taken small. For small Re, magnetic field 
will have a tendency to settle down towards simply diffusive state. Also, it is assumed that there 
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is no electric polarization, and subsequently no electric field. The channel walls are positioned at
.Consequently, we may express the velocity  as 

                                                                                                                      (1) 

Figure 1 shows the physical model of the problem. 

Fig. 1. Physical model for the problem. 

By following Sarojamma et al. (2014), governing equations for flow, heat and mass transfer in 
viscous and incompressible flow are: 

                                                                                                          (2)

(3) 

  (4) 

  (5) 

(6)   

Here,  is  the pressure,  is the density,  is the dynamic viscosity,  is the Casson fluid 
parameter,  is electrical conductivity,  represents the magnetic field strength,  is the 

specific heat at constant pressure,  is the temperature,  is the thermal conductivity, and  is 

the concentration. Further,  is the first order chemical reaction rate, and is the molecular 
diffusivity. The boundary conditions are as follows: 
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(7) 

where and are the fixed temperatures and concentrations at the lower and upper walls, 
respectively. Further, is the shrinking rate of the lower channel wall, and  is the velocity 
slip factor. It is important to point out that such slip conditions have been considered by many 
researchers (Wang, 2009; Fang et al., 2009; Mukhopadyay & Andersson, 2009; Bhattacharyya et 
al., 2011; Aman et al., 2011; Fang et al., 2010). Slip flow is vital in microelectromechanical 
structures (MEMS) where the flow pattern is noticeably different from the conventional no slip 
flow due to the microscale dimensions of these devices.  

We introduce subsequent similarity variables: 

    

It is to point out that equation (8) represents a similarity transformation in which the velocity, 
temperature and concentration fields are defined in terms of a new dimensionless variable  
(which depends on y only) in such a way that the continuity equation is identically satisfied, and 
the mathematical model reduces to a set of non-linear ODEs. Further,  and  ( derivative of 

w.r.t ) represent the dimensionless streamwise and normal velocity fields. It is to point out 
that the use of similarity transformation is not rare, and there are numerous studies (for example, 
Ashhab, 2019; Wahab et al., 2016) where such a powerful tool has been employed. 

After eliminating pressure term from equations (3) - (4), and using (8), we get, 

(9) 

Whereas, equations (5) and (6) acquire the forms: 

         (10) 

              (11) 

Now, , , ,  and represent the Reynolds number, 

the magnetic parameter, the Prandtl number, the chemical reaction parameter and the Schmidt 
number, respectively. The related boundary conditions (7) become: 

                             (12) 

where  is the velocity slip parameter. 
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3. Solution Methodology 
 
System of ODEs (9-11) is solved by employing two different techniques, one is the differential 
transformation method (DTM), and the other is the quasi-linearization method (QLM). DTM is 
based on the Taylor series expansion and provides the solution in the form of polynomial series 
whereas the QLM gives numerical solution.  
 
3.1. Differential Transform Method (DTM) 
 
DT (differential transform) of function  is described as follows: 

                                                                                                               (13) 

 
where  is transformed function for the original function . Inverse DT of  is 
defined as                                       

                                                                                                               (14) 

 
Combining equations (13) and (14), we get                        

                                                                                                 (15) 

 
equation (15) demonstrates the fundamental idea of DTM that is consequent from the Taylor series 
expansion. 
 
3.2. Implementation of the DTM 
 
For the coupled non-linear differential equations (9-11), we first write: 
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where ,  and  are the transformed functions for , and  
respectively. In view of basic properties of the DTM, we have the subsequent system: 
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whereas the boundary conditions (12) are transformed into: 

                                (20) 

 
Now let: 

                (21) 
 
The constants a0 to a3, b0, b1, d0, d1 are obtained using the transformed boundary conditions given 
by equation (20). The phase diagram for the DTM is given in the Figure 2, which describes how 
the missing constants needed for the DTM are determined iteratively. It is important to point out 
that t (less than unity) is the under-relaxation factor needed to achieve convergence of the iterative 
process. Using the definition (14), for a certain set of parameters, we obtain solutions of the 
equations (9-11) as follows: 

      (22) 

 

           (23)    

         (24) 

 
3.3. Solution by Quasi-linearization Method (QLM) 
 
Quasi-linearization is utilized to build sequences  and which converge to 

solutions of equations (9-11). To construct , we first set: 

                                                              (25) 

 
Now, we linearized it about the  iteration, by retaining only the first order terms, and arrive at: 

      (26) 

 
which simplifies to: 

 

 

Now equation (27) provides a system of linear ODEs, where  denotes the solution of  
equation. For linear ODEs solution, we replace derivatives with central differences which gives 
rise to the following linear system:  
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where n is the number of grid points. Also equations (10) and (11) are linear in  and , and 
therefore, sequences  and  are determined from: 
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Fig. 2. Phase diagram for the DTM. 
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                                                                                                          (29)  
 

                         

(30) 
 
where  is considered to be known in the above equations and its derivatives are approximated 
by the central differences. The system of linear equations arising from equations (29-30), after 
using the central differences are thus solved iteratively by the SOR method.  
 
4. Results and Discussion 
 
The behaviour of temperature, velocity and concentration fields across the channel for different 
values of the parameters (such as , , ,  and  Sc) is discussed, and the results are 
illustrated in terms of graphs. To illustrate the accuracy of present schemes, comparison of the 
results for the normal velocity , streamwise velocity  and concentration  is 

presented in Figure 3. It is obvious that the results are found in excellent agreement. 

 
Fig. 3. Comparison of DTM solution with QLM 

 
Figures 4-7, show variation of  and  for various values of magnetic 

parameter . Apparently present phenomena happen when magnetic field creates the opposing 
or resistive force to the flow direction, which is called Lorentz force. This resistive force slows 
down motion of the fluid and raises the fluid temperature. Temperature of Casson fluid increases 
significantly as compared with the Newtonian fluid. Streamwise velocity decreases near the lower 
wall of the channel whereas an opposite behavior is noticed near the upper wall. A direct 
consequence of the imposed magnetic field is the increase in temperature and concentration. 
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Fig. 4. Normal velocity for  and various . 

 
Fig. 5. Streamwise velocity for  and various . 

 
Fig. 6. Temperature for  and various . 

1, 0.6,b l= = Re 20,Pr 2, 3, 0.01Sc Cr= = = = M

1, 0.6,b l= = Re 10,Pr 2, 0.8, 0.01Sc Cr= = = = M

1, 0.6,b l= = Re 10,Pr 2, 0.8, 0.01Sc Cr= = = = M
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Fig. 7. Concentration for  and various . 

The influence of the Reynolds number  on the velocity, concentration and temperature 
profiles is shown in Figures 8-11. Increasing Re decreases the normal velocity distribution across the 
channel. On the other hand, the streamwise velocity profiles are influenced by Re in opposite way 
near walls of channel. The concentration and temperature distributions decrease across whole 
domain. The Reynolds number also tends to mitigate the flattened character of concentration profiles. 

Fig. 8. Normal velocity for  and various . 

1, 0.6,b l= = Re 10,Pr 2, 0.8, 0.01Sc Cr= = = = M

Re

1.2, 0.8,b l= = 2,Pr 4, 3.5, 0.01M Sc Cr= = = = Re
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Fig. 9. Streamwise velocity for  and various 

. 

 
Fig. 10. Temperature for  and various . 

 
Fig. 11. Concentration for  and various . 

  

1.2,b = 0.8, 2,Pr 4, 3.5, 0.01M Sc Crl = = = = =
Re

1.2, 0.8,b l= = 2,Pr 4, 3.5, 0.01M Sc Cr= = = = Re

1.2, 0.8,b l= = 2,Pr 4, 3.5, 0.01M Sc Cr= = = = Re
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Figures 12-15 depict the influence of the slip parameter on the various profiles. The 
presence of slip parameter decreases normal velocity. Moreover, increase in the strength of the 
slip factor results in reduction of streamwise velocity near the lower wall while streamwise 
velocity is raised near the upper wall of the channel. The concentration and temperature profiles 
are also lowered. 
 

 
Fig. 12. Normal velocity for  and various . 

 

 
Fig. 13. Streamwise velocity for  and various . 

l

1,b = 5,Re 10,Pr 2, 0.8, 0.01M Sc Cr= = = = = l

1,b = 5,Re 10,Pr 2, 0.8, 0.01M Sc Cr= = = = = l
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Fig. 14. Temperature for  and various . 

 
Fig. 15. Concentration for  and various . 

 
 
The impact of the variation in the Casson parameter  on the flow, concentration and 

temperature fields is shown in Figures 16-19. The influence of increasing values of  is to reduce 
the normal velocity. The fluid streamwise velocity is also decreasing at the lower wall of channel 
with increasing Casson parameter. The fluid acts as Newtonian fluid as  becomes significantly 
large. Figures 18-19 show that the heat and concentration profiles rise with the increasing values 
of the Casson parameter . 

1, 5,Mb = = Re 10,Pr 2, 0.8, 0.01Sc Cr= = = = l

1, 5,Mb = = Re 10,Pr 2, 0.8, 0.01Sc Cr= = = = l

b
b

b

b
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Fig. 16. Normal velocity for  and various . 

 
Fig. 17. Streamwise velocity for  and various 

. 

 
Fig. 18. Temperature for  and various . 

0.6, 5,Ml = = Re 50,Pr 1, 0.8, 0.01Sc Cr= = = = b

0.6,l = 5,Re 50,Pr 1, 0.8, 0.01M Sc Cr= = = = =
b

0.6, 5,Ml = = Re 50,Pr 1, 0.8, 0.01Sc Cr= = = = b
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Fig. 19. Concentration for  and various . 

 
 

Figure 20 represents how thermal distribution across the channel is affected by the Prandtl 
number . Increase in the magnitude of , decreases the fluid temperature. Fluids at lower Pr 
have high thermal conductivities (and thicker thermal boundary layers). Therefore, heat can diffuse 
from the channel walls more rapidly. As a result, Pr can be used to increase rate of cooling. 
 

 
Fig. 20. Temperature for  and various . 

  
 

It is evident from Figures 21-22 that increase in  and significantly lowers the 
concentration profiles. 

0.6, 5,Ml = = Re 50,Pr 1, 0.8, 0.01Sc Cr= = = = b

Pr Pr

0.6, 5,Ml = = Re 5, 1, 0.8, 0.01Sc Crb= = = = Pr

Cr Sc
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Fig. 21. Concentration for  and various . 

Fig. 22. Concentration for  and various . 

5. Conclusions

In the present study, differential transform technique (DTM) has been successfully utilized for 
investigating the problem of Casson fluid flow in a channel with one wall at rest and the other 
shrinking with a slip velocity. It has been noted that magnetic parameter, Casson parameter and 
slip parameter increase the temperature and concentration distributions while slowing down the 
flow. The Prandtl number has been noted to increases the cooling rate of the flow. 

0.6, 5,Ml = = Re 10, 1, 0.8,Pr 2Scb= = = = Cr

0.6, 5,Ml = = Re 10, 1, 0.8,Pr 2Crb= = = = Sc
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