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Abstract

In this study, two efficient numerical schemes based on B-spline finite element method (FEM) and time-splitting methods
for solving Rosenau-KdV-RLW equation are presented. In the first method, the equation is solved by cubic B-spline

Galerkin FEM. For the second method, after splitting Rosenau-KdV-RLW equation in time, it is solved by Strang time-

splitting technique using cubic B-spline Galerkin FEM. The differential equation system in the methods is solved by

the fourth-order Runge-Kutta method. The stability analysis of the methods is performed. Both methods are applied to

an example. The obtained numerical results are compared with some methods available in the literature via the error

norms L9 and L, convergence rates, and mass and energy conservation constants. The present results are found to be

consistent with the compared ones.
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1. Introduction

High-order nonlinear evolution equations have a special
place in PDEs. Rosenau-type high-order nonlinear
evolution equations are of the form

Ut + Uzma:zt - _F(U; UZ; UZJH Ua::vwv U{]?Zt)a

(z,t) € 2 x[0,T] M

with the initial condition
U(z,0)=Uy(z),z€Q

and the boundary conditions

Ul(zr,t) = fo(t),U(zr,t) = fi(t),t €[0,T]

where Up, fo and fi are smooth functions; Q = [z, zR],
xr, R €R,0<T <oo. In Equation (1), if FF=U,+UUy,,
then the Rosenau equation is obtained in dynamics of dense
discrete systems (Rosenau, 1988). Theoretical studies
on the existence and uniqueness of the solution of the
Rosenau equation are carried out by Park (1993). Omrani
et al. (2008) obtained numerical solutions by three-level
finite difference. Atouani & Omrani (2015) obtained the
numerical solutions by high-order FEMs. These schemes
are conservative and unconditionally stable. Chung & Ha
(1994) presented a study on error estimates of Galerkin
FEM approximation for Rosenau equation. When F' =
U,+UU,—U,, is taken in Equation (1), it is known as

Rosenau-Burger equation. Some numerical solutions of
the equation using finite difference methods are as follows:
Hu et al. (2008) used Crank-Nicolson, Pan & Zhang
(2012a) applied linear implicit, and Janwised et al. (2014)
utilized modified three-level average. Piao et al. (2016)
obtained the numerical solutions by quadratic B-spline
Galerkin method. Ziirnac1 & Seydaoglu (2019) presented
convergence analysis of operator splitting methods to the
equation. In Equation (1), if F' = U,+UU,+Uy,,., then
it is called the Rosenau-KdV equation. Hu et al. (2013)
obtained the approximate solution of the equation using
the second-order conservative finite difference scheme.
Ugar et al. (2017) obtained numerical solutions of the
equation using Galerkin cubic B-spline FEM. Kutluay et
al. (2019) obtained numerical solutions of the equation
by time splitting techniques. If ' = U, + UU, + Ugyy
is taken in Equation (1), then it is called the Rosenau-
RLW equation. Zuo et al. (2010) applied the Crank-
Nicolson finite difference scheme, Pan & Zhang (2012b)
used three-level and conservative linear implicit finite
difference scheme, and Atouani & Omrani (2013)
proposed semidiscrete and fully discrete Galerkin
methods. Yagmurlu et al. (2017) obtained the approximate
solution of the equation by Galerkin cubic B-spline FEM.
In Equation (1), if F' = U, 4+ UU, + Uppyt Uzt 18
taken, then the Rosenau-KdV-RLW equation is obtained



for modelling dispersive shallow water waves (Razborova
et al., 2014). Wongsaijai & Poochinapan (2014) utilized
implicit finite difference method, Ak & Karakog (2016)
proposed quintic B-spline collocation method, Foroutan
& Ebadian (2018) used fully discrete Chebyshev pseudo-
spectral scheme, Ghiloufi & Omrani (2018) applied three-
level linearized compact difference scheme, Wang & Dai
(2018) obtained three level linear implicit conservative
finite difference scheme, Karakog et al. (2018) proposed
septic B-spline collocation method, and Ozer (2018;2019)
obtained the numerical solution using cubic and quintic
B-spline collocation methods.

In this study, the numerical solutions of Rosenau-
KdV-RLW equation

Ui+aUy +b(UP), — cUppt + AUpya

+€Uzmx$t =0, (x,t) € [Q?L,%R] X [07T] (2)
with the initial condition

U(z,0)=Up(x),z € [z, xR] 3)
and the boundary conditions

U(xp,t) =U (xp,t) =0,

Up (@rat) = Uy (wpt) =0 | L E10T] )

are obtained. U is the wave profile and U; is linear
evolution term, U, is advection term, U, is dispersion
term, Uy, and Uy,oq are dissipative terms. a, b, ¢, d, e
are real numbers, ¢ > 0, e > 0, p is an integer greater
than 1 (Ghiloufi & Omrani, 2018). To solve Rosenau-
KdV-RLW equation, the two efficient numerical schemes
based on B-spline finite element method (FEM) and time
splitting methods are presented in the present article. In
the literature, among others, the first method is used for
solving mRLW equation by cubic B-spline Galerkin FEM
(Karakoc et al., 2015). The second method is used for the
solution of Burgers’ equation (Sari et al., 2019).

The outline of the present study is as follows. In
Section 2, the cubic B-spline Galerkin FEM and its
stability analysis are given. In Section 3, Strang splitting
cubic B-spline Galerkin FEM and its stability analysis
are presented. In Section 4, a numerical example is used
to test the methods, and the numerical results are given
in tables and graphics. And finally in Section 5, a brief
conclusion is given.

2. Scheme I: Cubic B-spline Galerkin FEM

Now, solution of Rosenau-KdV-RLW
equation is obtained using cubic B-spline Galerkin FEM.

approximate
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Rosenau-KdV-RLW equation given by Equation (2) is
multiplied by weight function W (z) and integrated from
rrtorg

TR
/W (U +al, +b(UP),

TL

_CUICEt + dU:m:a: + eUmwzmt) dr = 0.

®)

When Z = UP~! is taken and partial integration is
applied to the fourth, fifth, and sixth terms in Equation
(5), the weak form

TR
/ (WU + aWU, + bpZWU,

L

+cWoUp — AW, Uy + Wy Upay) da =
[WUy — dW U,y — eWUygzar + eWrUsai] |§§

is obtained. Since this equation is valid on [z, zg], it is
applied to the typical element e = [Ty, Tp41] C 2L, TR)]
and the local transformation § = x — x,,,0 < & < his
applied, and the equation is obtained

h
/ (WU, + aWUe + bpZW U
0

JrCWgUgt — dW5U§5+
6W§§U5§t) df = [CWU& — dWUgg
—eWUgger + eWeUgel[g -

(6)

Let the approximate function corresponding to the
analytical solution U of Equation (2) be Uy. Taking 0;
as the time-dependent parameter, Uy is written as linear
combinations of ¢; cubic B-spline base functions in the
literature

N+1

Uy (z,t) = > 3 (t) 5 (x).

j=—1

Since the non-zero B-spline functions on e are ¢,—1,
Om»> Pm+1 and P10 by applying the local coordinate
transformation, the approximate function on [0,h] is
written in terms of £ as follows:

m—+2

V(&)= Y 5516 (€).
j=m—1
W is taken with the same basis functions in Galerkin
method. If we write Uy and cubic B-spline functions in
places of U and W in Equation (6) respectively, we obtain
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For i,j=m—1, m, m+1, m+2 the 4 x4 type
matrices A¢, B¢, C¢, D¢, E¢, B¢, F¢, G¢, H® and K¢ on e
are calculated where

1

(7

0

A5 = 0/ by, BY = O/h b1 e,
/ b6 de, DY, O/h b,

/ bl 6de, B =7 / b e,

e ’ e n|h
Fz]:(ﬁi] Gz]:¢i¢j07

1" h / 1"
Hfj = ¢Z¢] 0 ¢ QS]

Thus, when 6¢ = (6, ,, 8%, 6%, ,0%.,)"

Equation (7) is arranged as follows:

is taken,

00°

(A +cC® 4 eE° — cF°+eH® — eK®) 5

n <aBe +bpB® — dD° + dGe) ¢ = 0.

Using this element-wise equation for e, the global equation
is obtained as
00

+<aB+pr—dD+dG)6:0.

(A+cCHeE —cF+eH —eK) —

The unknowns in Equation (8) are of the form § =
(6_1, 90, ...,(5N,6N+1)T and N + 3 dimensional.
The matrices A, B, E, C,D,E,F,G,H, K are N + 3

dimensional square seventh band matrices. The

generalized rows of those matrices are

A= 1,120,1191, 2416, 1191, 120, 1

140( 0,119 6,1191,120,1),
1

B = o5 (1, -56,~245,0,245,56,1)

C= 1(3 —72,—45,240, —45, - 72, —3) ,
10h

D= 3(8 ~19,0,19, -8, —1)
2h2 b) 9

E=5(1,0,-9,16,-9,0.1),

B = 55 (=21, —18Z1 — 382,971 — 18375 — 7173,
102, 4+ 15075 — 15073 — 107y,
7175 + 18373 — 974,3873 + 1874, Z4) ,

F:%(o,o,o,o,o,o,o),

G = 15 (0,0,0,0,0,0,0),
6

H =15 (-1,0,9,-16,9,0,-1).
18

K = 75(0,0,0,0,0,0,0).

In this study, since Z = U P=1 is taken, Z,, =
(U + Uy /2]
unknowns 01 and §y 1 and using A = A+ cC +eF —
¢cF+eH —eK,B(8)=aB+bpB —dD +dG and L =
—A~!'B(0) the initial values are obtained in the following
matrix form:

a5
ot

~!is calculated. After eliminating the

=L(8)0d, 6(0)=4° tel0,T]. )
Matrix L is N + 1 dimensional square matrix and
§ = (60, ..., 00)"
integration of the IVP over time domain is obtained by
RK4 method (Jain, 1984), and the numerical solution of
Rosenau-KdV-RLW equation for V¢ € [0, 7] is obtained.
Additionally, the following inner iteration

n+l _ sn
O = 0" + M (10)

having a dimension of N + 1. The

is applied 3-5 times in each time step to improve the

nonlinear term. Since the parameters at time steps o, t1,

tyot, tarare 80,80, 6M=1 M we need to find the

parameter ¢ to find the parameters at the next time steps.



Using the initial conditions in Equation (3), the parameters
80 = (691,68, ey 0%, 6?\,+1)T are found by solving the
following system of algebraic equations:

U(l)/ (.I'(), t) = U(/)/ ((L‘o) ’
Uy (I'ma t) = Uy (xm) s

1

UO (xN,t) = U(;, (xN) .

m = 0(1)N (11)

2.1 Stability analysis of scheme I

In this section, the discretization of the initial boundary
value problem the Equations (2)-(4) according to the
position is obtained after the cubic B-spline Galerkin FEM
is used. The stability of the obtained numerical solution
given by the Equation (9) is investigated

For the system of linear differential equations in the form
of the matrix L with eigenvalue of Ay the stability function
of the RK4 method R (2)=1+2+2%/2+23/6+ 2% /24 and
the stability region are asetof S={z € C:|R(z)| < 1,z
= Aik} (Jain, 1984). Accordingly, for the stability of the
proposed numerical solution, if the non-linear term in
the matrix B (d) in the matrix L is linearized as Z =
max (UP~'), then the matrix is represented by L, \ii
= 1(1)N+1is enough to show kX; € S. In this study, the
eigenvalues of the matrix L for the values of N = 560,1 120,
2240 and 4480 are calculated and £ < 0.34 for N = 560,
k < 0.17 for N = 1120, k < 0.09 for N = 2240 and
k < 0.04for N = 4480, and all eigenvalues (except one)
obtained are found in S. For values of N = 560, 1120,
2240, and 4480, the graphs showing that the eigenvalues
of the matrix L remain in the region S by taking &k = 0.25,
k =0.125, k = 0.0625, and £ = 0.03125, respectively,
are given in Figures 1-2. It is seen from Figures 1-2 that
as the number of nodes N grows, the eigenvalue outside
the stability region approaches the stability region.

-1 0 1 -3 -2 -1 0 1
Real Real
h=k=025 h=k=0.125

Fig. 1. Stability region for /=k=0.25 (left) and #=k=0.125
(right) (black line: RK4, blue line: Scheme I).

-3 -2
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0 1 T 2 -1 0 1
Real
h=k=0.03125

Fig. 2. Stability region for A=k=0.0625 (left) and
h=k=0.03125 (right) (black line: RK4, blue line:

Scheme I).

3. Scheme II: Cubic B-spline Strang Splitting
Galerkin FEM

In this section, after applying the Strang splitting
technique to the initial-boundary value problem given by
Equations (2)-(4), the numerical solution is obtained by
cubic B-spline Galerkin FEM. For this, the Rosenau-KdV-
RLW equation given by Equation (2) is divided into two
subequations, the first linear and the second nonlinear:

Ut - CUz:Et + eUIZEI:Et + aU:E + dUm:rz =0, (12)

Uy —CUmxt—FeUxmmt—Fb(Up)m =0. (13)

To avoid any confusion, in Equation (12) in place of the
variable U the variable u is written and the first equation
has become

Up — ClUggt + CUgzrat + AUz + dUgzy = 0,

w(z,tn) = U (z,tn) £ € [tn,t (14)

o

Then, in Equation (13) in place of the variable U the new
variable v is written and the second problem has become

Vt — CUzgt + €Vggzat + pr p_lv:z: =0,

v(z,ty) =u (x,thr%) ,t € [tn, tnyi] (15)

and finally in Equation (12) in place of the variable U the
new variable y is written and the third problem has become

Yt — CYaxt + €Yrazat + Yz + AYzze = 0,

(16)
y (:c,thr%) = 0 (2, tnt1)t € {tn%,tnﬂ} .

Here, tn+% =(n+ %) kand u (z,t0) =U (z,t9) = Up(x).
For the initial value problems given by Equations (14),

(15), and (16), the boundary conditions given by Equation
(4) are used. In a similar way used in Section 2, Equations
(14), (15), and (16) are multiplied by the weight function
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W and integrated from z; to xp. Taking Z = vP~!
and applying the partial integration, the weak forms are
obtained. Let the approximate function corresponding
to the analytical solution u (x,t) of Equation (14) be
Un (z,t), analytical solution v (z,t) of Equation (15) be
Vi (z,t), and analytical solution y (x, t) of Equation (16)
be Y (x,t). Taking the parameters 0;, o; and 7; as the
time-dependent parameters, those approximations are
written as follows:

N-+1

Uy (z,t) = > 05 (t) ) (x),
j=—1
N-+1

Vy (1) = Y o (t) ¢ (),
j=-1
N+1

Yiv (z,t) = Y 75 (1) ¢ ()
j=-1

as linear combinations of cubic B-spline functions. Since
the non-zero B-spline functions on e are ¢p,—1, P, Pm+1
and ¢,2 by applying the local coordinate transformation,
the approximate functions on [0, k] are written as follows
in terms of &

m—+2

Uv (&)= > 65(t)e; (&), (17)

j=m—1

m—+2

Vn (&)= D o5 (1) e, (), (18)

j=m—1

m-+2

Yn(&t)= D 75165 (). (19)

j=m—1

When the local coordinate transformation is applied
by writing the weak forms on a typical element e, the
following equations are obtained:

h
/ (Wut + CLW’LL&“ + CWEU@ — deUgg

0 (20)
+eWeeuger) d€ = [cWugr — dWuge
—eWugee + eWeugalllg
h
/ (W + bpZvg + cWevg
0 (21)

+6W5§U5§t) d{ = [CWUgt
—eWoeeer + eWeveer]|;

h

/ (Wyt + aWyg + CWgygt — deygg
0 (22)
+eWeeyeer) d§ = [cWyer — dWyee

h
= —eWyeeer + eWeyeerl| -

In Equations (20)-(22), in places of w, v and y their
corresponding approximations Uy, Vv and Yy in Equations
(17)-(19) are written, and cubic B-spline functions are written
in place of W, and required arrangements are made. Then,

when 0° = (85, 1,050,611, 05 1) 0 = (05,1, 0%,
T

Oty Ufnﬂ)T and 7 = (V_1s Vs Va1 V1) are
taken, the equations are written as follows:

(A€ 4 cC® 4 eE°® — cF° + eH® — eK°) %

+ (aB® — dD° + dG*¢) 6¢ = 0,
(A 4 cC® + eE°® — cF® + eH® — eK*) %2-
+bpB°o® =0,

(A°+cC®+ eE® — cF° + eH® — eK*) 887:
+ (aB° — dD? + dG€)~* = 0.

Using these local equations on e, the global equations on
[z, x g| are written as the following system of differential

equations:
(A+cC+eE—cF+eH—eK)% 23)
+(aB —dD +dG)d§ =0,
do
(A—l—cC’—i—eE—NcF—l—eH—eK)m (24)
+bpBo =0,
— _ [%i0]
(A+cC+eE —cF +eH —eK) 5] 25)

+ (aB —dD +dG)~y = 0.

The unknowns in the system of ODEs given by Equations
(23)-(25) are § = (5,1,50,...,5N,5N+1)T, g = (0'71,
00y .-y ON, O'N_H)T, Y= (’7_1, Y05 -+ YN ’}/N+1)T and
N + 3 dimensional and A = A+ cC + eE — cF'+ eH
—¢K, By = aB —dD + dG, By = bpB also A,
B and B, are N + 3 dimensional square matrices. The
matrices A, B, E, C,D,E,F,G,H and K are seventh
band matrices, and their generalized rows are the same as
given in Section 2. Since the boundary conditions are not
applied, solving these systems, we have not solved the
IVP given by Equations (2)-(4). By applying the boundary
conditions given by Equation (4), the parameters 6_1,
ON+1,0-1, ON+1, V—1 and yn 1 are eliminated from the
corresponding equations. After applying the boundary

conditions, the unknowns are § = ((50,51,...,(5N)T,

T
g = (0'0,0'1,...,O'N)T, Y= (’705717"'77]\/') and



their dimension is N + 1. When the matrices A, By
and B are arranged as being compatible with N + 1
dimensional parameters, N + 1 dimensional square
matrices are restructured. Under these conditions, taking
L; = —A7!'By, Ly = —A"!By(0) the ODEs given
by Equations (23)-(25) are written as follows:

15)) "

oo n+i

Fri La(o)o, 0 (t,) =0""2,t € [tn,tn+1], (27)
D Ly fy(t):o”Hte{t mH}. 28)
at s n ) 7L+§’ n

Then, these ODE systems are solved by RK4 method.
The ™! parameters obtained from the solution of the
ODE:s system given by Equation (28) are written in their
places in Equation (26) containing the parameters in the
following time steps by replacing §”. To calculate § > the
initial parameter 6° must be known. From the solution of
the equation system given by Equation (11) as in Section 2,
the initial parameter 0° is obtained. Approximate solutions
are made better by applying 3-5 times the inner iteration
given in Equation (10) at each time step to the nonlinear
term in the system of equations given by Equation (27).

3.1 Stability analysis of scheme II

In this section, after applying the Strang splitting
technique to the initial-boundary value problem given by
Equations (2)-(4), its discretization with respect to spatial

3 3

2 2

Imag
B
Imag
B

2 -1
Real Real
k=025 h=k=0.125

Fig. 3. Stability region for /=k=0.25 (left) and #=k=0.125
(right)(black line: RK4, blue line: Scheme II).

variable is made with cubic B-spline Galerkin FEM, and
the obtained equations are given by Equations (26)-(28),
and the numerical solutions of those ODE systems are
obtained by the application of RK4 method, and the stability
of those equations is investigated. After linearizing the
nonlinear term in the matrix Lo () as Z = max (U pfl)
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[, 0 O
L=|0 L, O
0 0 L

it is enough to show that k\; € S for A;, i=1(1) N +1 where
A; are the eigenvalues of the square matrix Lof type 3N +3
(Jain, 1984). Here, the matrix O is the NV + 1 dimensional
square zero matrix. In this study, the eigenvalues of the
matrix L for the values of N = 560, 1120, 2240 and 4480
have been calculated and k£ <0.34 for N =560, k£ <0.17
for N = 1120, k£ < 0.09 for N = 2240 and k£ < 0.04 for
N = 4480, and all the eigenvalues (except one) obtained
have been found in the S region. Then, for values of N
= 560, 1120, 2240 and 4480, the graphs showing that
the eigenvalues of the matrix L remain in the region S
are given. Taking k£ = 0.25, 0.125, 0.0625 and 0.03125,
the graphs showing that they lie inside the region .S are
illustrated in Figures 3-4, respectively. Thus, the larger the
number N, the smaller the time step k required to satisfy
the stability condition of the eigenvalues of the matrix
L. From Figures 3-4, as the number of nodes NV grows,
it is seen that the eigenvalue outside the stability region
approaches the stability region.

4. Numerical results and comparisons

In this section, the numerical results obtained by applying
the methods are proposed in Sections 2-3 to an example for
Rosenau-KdV-RLWequation. To show the effectiveness

Imag
s
Imag
-

<1 0 1 ] 2 -1 0 1
Real Real
h=l=0 0A75 h=k=0 03175

Stability region for A=k=0.0625 (left) and
h=k=0.03125 (right) (black line: RK4, blue line:
Scheme II).

and reliability of the methods, fundamental conservative

properties defined as
TR

Qlt) = / Uz, t)dz

TL

(29)
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B(t) = / U2, 1) + U2(x,t) +UL(2,0)] de (30)

zr

for mass and energy conservation constants,

2

N
Ly = hz |U(z,t) — Un(,1)
=1

Ly = 123‘5?\] |U(.’L‘,t) - UN(.’E,t)|

the error norms as defined above and L being any one of
the above error norms the rate of convergence defined as
below,

L(2h,2t
Rate = log, <I(/(ht))>

are calculated. All numerical calculations were obtained
using Matlab2015a program on 4G RAM, 2.20 GHz
computer.

Example: The analytical solution of the Rosenau-KdV-
RLW equation given by Equation (2) for parameters a = 1,
b=05,c=1,d=1,e=1,p= 2is(Wang, 2018)

U (x,t) = kysech? (kg (x — kst))

where
o P (25 — 131/457) V1344457
1= 456 ’ 2 — /—288 3
e 241 + 13v/457
5 266 '

The initial condition of the problem is obtained writing
t = 0 in the analytical solution. In Tables 1-2 for z; =
—40, z, = 100 at the time 7' = 30 the error norms L,
and Leo obtained by cubic B-spline Galerkin and cubic
B-spline Strang Galerkin methods are compared with
those of the numerical solutions given in the literature.

As seen from Tables 1-2, the errors of the numerical
solutions obtained by the presented methods are smaller
than those of the compared methods.

By taking x; = —40, z, = 100 at the time 7" = 30, the
convergence rates for the error norms L, and L obtained
for cubic B-spline Galerkin and cubic B-spline Strang
Galerkin FEMs are calculated and given in Tables 3-4,
respectively. The convergence rates of the proposed
methods are compared with the convergence rates of the
studies (Wang, 2018) and (Ozer, 2019). Although the
error norms L, and Lo of the methods are smaller, it is
seen that there is a fluctuation in convergence rates. For
values of T'= 0, z; = —40, z, = 160, the mass and energy
conservation constants are calculated as () = 21.67925844
and £ = 43.71719866 from Equations (29)-(30). For
values of z; = —40, x, = 160, k = h = 0.25 at times
T = 15, 30, 45, 60, the mass and energy conservation
constants are calculated using the proposed methods
and compared with the results of Wongsaijai (2014) and
Ozer (2019) in Tables 5-6. According to the results, it
is seen that the fundamental conservation properties of
the Rosenau-KdV-RLW equation on the interval [0, 60]
have slightly deteriorated with the proposed numerical
schemes. Then, in Tables 7-8 for values of h = 0.25 and
k =0.125, 0.0625, 0.03125 at times 7'= 15,30,45,60, the
mass and energy conservation constants are calculated by
the recommended methods. It is seen from Tables 7-8 that,
to maintain the mass and energy conservation constants in
the future, a small selection of the parameter & is required.
In Figures 5-6 over the range of [-40, 100], the graphs of
the analytical solutions at the time 7" = 0,10,20,30 with
h = k = 0.25 for the cubic B-spline Galerkin and cubic
B-spline Strang Galerkin FEMs obtained from numerical
solution and the graphs of absolute errors at times 7' =
10,20,30 are given. The height of the wave in the analytical
solution is U(0, 0) = 2.7731, and the height of the wave by
the proposed methods is U,(19.5, 10) = 2.7698, U,(39,
20) = 2.7684, U,(58.5, 30) = 2.7670, Uy,(19.5, 10) =
2.7714, Uq,(39, 20) = 2.7705,

Table 1. A comparison of numerical results using the error norm L, for various h = k and x € [—40, 100] at time 7"= 30.

Wongsaijai Wang Ozer Ozer

(2014) (2018) (2018) (2019)

h=k Scheme | Scheme I1 0=-1 Scheme I1 Strang
0.25 1.58026F —2 8.34849F —3 5.56190E —1 1.86617E —0 2.37668E —1 9.58702F — 2
0.125 7.09775FE —3  3.94750F —3 1.34741E —1 5.18662F —1 6.00345E —2 2.41393F — 2
0.0625  2.25510F —3 1.29341F —3 3.34447TE —2 1.33174E —1 1.50476FE — 2 6.04596F — 3
0.03125 6.24645E —4 3.62866F —4 — 3.35296F — 2 3.76437TE —3 1.51234F — 3
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Table 2. A comparison of numerical results using the error norm Lo for various h = k and = € [-40, 100] at time 7'= 30.

Wongsaijai Wang Ozer Ozer

(2014) (2018) (2018) (2019)

h=k Scheme I Scheme I1 0=-1 Scheme 11 Strang
0.25 6.62692E —3 3.69796E —3 2.14488E —1 6.99597E —1 9.10323E —2 3.70795E — 2
0.125 2.68306FE —3 1.44497F —3 5.19201FK —2 197127FE —1 230177FE —2 9.33938F — 3
0.0625  8.83886FL —4 4.94883FE —4 1.28858E —2 5.06954F —2 5.76980F —3 2.33925FE — 3
0.03125 2.47568E —4 1.40963E —4 — 1.27669E — 2 1.44360E — 3 5.85173E —4

Table 3. A comparison of convergence rates for the error norm L, at T'= 30.

Wongsaijai Wang Ozer Ozer

(2014) (2018)  (2018) (2019)
h=k Scheme I Schemell 6= —1 Scheme I~ Strang
0.25 3.17238  3.31169 2.21285 1.84721  1.93992 1.96108
0.125 1.15473  1.08058 2.04539 1.96149 1.98508 1.98970
0.0625  1.65417  1.60976 2.01034 1.98980 1.99625 1.99734
0.03125 1.85208  1.83367 - — — 1.99919

Table 4. A comparison of convergence rates for the error norm Lo at T'= 30.

Wongsaijai Wang Ozer Ozer

(2014) (2018)  (2018) (2019)
h=k Scheme I Schemell 6= -1 Scheme I~ Strang
0.25 3.23655  3.32927 2.20179 1.82740 1.92951 1.95614
0.125 1.30446  1.35569 2.04653 1.95920 1.98363 1.98922
0.0625  1.60195  1.54588 2.01051 1.98945 1.99838 1.99728
0.03125 1.83604  1.81177 — — - 1.99911

Table 5. A comparison of mass invariants for h = k = 0.25, € [-40, 160] at T'= 30.

T

Scheme I

Scheme 11

Wongsaijai
(2014)
0=-1

Ozer
(2018)
Scheme 11

Ozer
(2019)
Strang

0

15
30
45
60

21.67925844
21.66232590
21.64547429
21.62853523
21.61343158

21.67925844
21.66833634
21.65744876
21.64656881
21.63629834

21.67925844
21.68257703
21.68264127
21.68342617
21.67462536

21.67925844
21.67922326
21.67919310
21.67891685
21.68069226

21.67925844
21.67923476
21.67921009
21.67903058
21.68137637

Table 6. A comparison of energy invariants for h = k = 0.25, x € [-40, 160].

T

Scheme I

Scheme 11

Wongsaijai
(2014)
0=-1

Ozer
(2018)
Scheme II

Ozer
(2019)
Strang

0

15
30
45
60

43.70855146
43.65552275
43.60244732
43.54958713
43.49694776

43.70855146
43.67433910
43.64014854
43.60605430
43.57205751

43.70855146
43.72652015
43.72664228
43.72664409
43.72664408

43.70855146
43.71412237
43.71401660
43.71391006
43.71380341

43.70855146
43.71413508
43.71406292
43.71399045
43.71391799
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Table 7. A comparison of mass and energy invariants obtained by Scheme I for h = 0.25, k = 0.125, 0.0625,
0.03125, = € [-40, 160].

k=0.125

k = 0.0625

k = 0.03125

T

Q

E

Q

E

Q

E

15
30
45
60

21.67925844
21.67713954
21.67502087
21.67282341
21.67171697

43.70855146
43.70210063
43.69554915
43.68899932
43.68245283

21.67925844
21.67899367
21.67872766
21.67839978
21.67899351

43.70855146
43.70780173
43.70698665
43.70617076
43.70535490

21.67925844
21.67922538
21.67919111
21.67909953
21.67988777

43.70855146
43.70850659
43.70840538
43.70830351
43.70820161

Table 8. A comparison of mass and energy invariants ontained Scheme II for h = 0.25, & = 0.125, 0.0625,
0.03125, = € [-40, 160].

k=0.125 k = 0.0625 k =0.03125
T Q E Q E Q E
0 21.67925844 43.70855146 21.67925844 43.70855146 21.67925844 43.70855146
15 21.67789208 43.70434777 21.67908772 43.70807567 21.67923713 43.70853967
30 21.67652554 43.70008122 21.67891586 43.70754338 21.67921463 43.70847371
45 21.67511210 43.69581531 21.67869027 43.70701044 21.67913687 43.70840711
60 21.67449177 43.69155089 21.67931206 43.70647750 21.67992039 43.70834050
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Fig. 5. Analitical solution (left), numerical solution obtained by Scheme I for A = k£ = 0.25 (middle), absolute error (right).
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Fig. 6. Analitical solution (left), numerical solution obtained by Scheme II for A = k£ = 0.25 (middle), absolute error (right).

Ug,(58.5, 30) = 2.7696. Here, G and SG subscripts
show the FEMs of cubic Galerkin and cubic Strang
Galerkin, respectively. From Figures 5-6, it is seen that
the numerical solutions and analytical solutions are
compatible with each other, but as time progresses, the
height of the wave decreases and thus, the absolute error
increases. Additionally, the absolute error of the cubic
B-spline Strang Galerkin method is less than that of the
cubic B-spline method.

5. Conclusion

In this study, numerical solutions of Rosenau-KdV-RLW
equation are obtained using cubic B-spline Galerkin
and cubic B-spline Strang-splitting Galerkin FEMs. To
show the accuracy and efficiency of the methods, those
methods are applied to a test problem of which analytical
solution is known. The mass and energy invariants, the
error norms L, and Lo with the convergence rates are
calculated. It is seen that the proposed methods yield good
enough results. The illustrative test problem shows that the
error norms are small enough and the conservation laws
are nearly constant. In conclusion, numerical solutions of
other important high-order nonlinear partial differential
equations widely seen in various fields of science can
be achieved easily and effectively by using the proposed
methods.
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