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Abstract 
In this study, two efficient numerical schemes based on B-spline finite element method (FEM) and time-splitting methods 
for solving Rosenau-KdV-RLW equation are presented. In the first method, the equation is solved by cubic B-spline 
Galerkin FEM. For the second method, after splitting Rosenau-KdV-RLW equation in time, it is solved by Strang time-
splitting technique using cubic B-spline Galerkin FEM. The differential equation system in the methods is solved by 
the fourth-order Runge-Kutta method. The stability analysis of the methods is performed. Both methods are applied to 
an example. The obtained numerical results are compared with some methods available in the literature via the error 
norms  and , convergence rates, and mass and energy conservation constants. The present results are found to be 
consistent with the compared ones. 
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1. Introduction  

High-order nonlinear evolution equations have a special 
place in PDEs. Rosenau-type high-order nonlinear 
evolution equations are of the form

              
(1)

with the initial condition

and the boundary conditions

where ,  and  are smooth functions; , 
,   ,     . In Equation (1), if  =   , 

then the Rosenau equation is obtained in dynamics of dense 
discrete systems (Rosenau, 1988). Theoretical studies 
on the existence and uniqueness of the solution of the 
Rosenau equation are carried out by Park (1993). Omrani 
et al. (2008) obtained numerical solutions by three-level 
finite difference. Atouani & Omrani (2015) obtained the 
numerical solutions by high-order FEMs. These schemes 
are conservative and unconditionally stable. Chung & Ha 
(1994) presented a study on error estimates of Galerkin 
FEM approximation for Rosenau equation. When  

 is taken in Equation (1), it is known as 

Rosenau-Burger equation. Some numerical solutions of 
the equation using finite difference methods are as follows: 
Hu et al. (2008) used Crank-Nicolson, Pan & Zhang 
(2012a) applied linear implicit, and Janwised et al. (2014) 
utilized modified three-level average. Piao et al. (2016) 
obtained the numerical solutions by quadratic B-spline 
Galerkin method. Zürnacı & Seydaoğlu (2019) presented 
convergence analysis of operator splitting methods to the 
equation. In Equation (1), if , then 
it is called the Rosenau-KdV equation. Hu et al. (2013) 
obtained the approximate solution of the equation using 
the second-order conservative finite difference scheme. 
Uçar et al. (2017) obtained numerical solutions of the 
equation using Galerkin cubic B-spline FEM. Kutluay et 
al. (2019) obtained numerical solutions of the equation 
by time splitting techniques. If  
is taken in Equation (1), then it is called the Rosenau-
RLW equation. Zuo et al. (2010) applied the Crank-
Nicolson finite difference scheme, Pan & Zhang (2012b) 
used three-level and conservative linear implicit finite 
difference scheme, and Atouani & Omrani (2013) 
proposed semidiscrete and fully discrete Galerkin 
methods. Yağmurlu et al. (2017) obtained the approximate 
solution of the equation by Galerkin cubic B-spline FEM. 
In Equation (1), if  is 
taken, then the Rosenau-KdV-RLW equation is obtained 
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for modelling dispersive shallow water waves (Razborova 
et al., 2014). Wongsaijai & Poochinapan (2014) utilized 
implicit finite difference method, Ak & Karakoç (2016) 
proposed quintic B-spline collocation method, Foroutan 
& Ebadian (2018) used fully discrete Chebyshev pseudo-
spectral scheme, Ghiloufi & Omrani (2018) applied three-
level linearized compact difference scheme, Wang & Dai 
(2018) obtained three level linear implicit conservative 
finite difference scheme, Karakoç et al. (2018) proposed 
septic B-spline collocation method, and Ӧzer (2018;2019) 
obtained the numerical solution using cubic and quintic 
B-spline collocation methods.

 In this study, the numerical solutions of Rosenau-
KdV-RLW equation

                    (2) 

with the initial condition

                                   (3)

and the boundary conditions

                  (4)

are obtained.  is the wave profile and  is linear 
evolution term,  is advection term,  is dispersion 
term,  and  are dissipative terms. , , , ,  
are real numbers, , ,  is an integer greater 
than  (Ghiloufi & Omrani, 2018). To solve Rosenau-
KdV-RLW equation, the two efficient numerical schemes 
based on B-spline finite element method (FEM) and time 
splitting methods are presented in the present article. In 
the literature, among others, the first method is used for 
solving mRLW equation by cubic B-spline Galerkin FEM 
(Karakoc et al., 2015). The second method is used for the 
solution of Burgers’ equation (Sari et al., 2019). 

The outline of the present study is as follows. In 
Section 2, the cubic B-spline Galerkin FEM and its 
stability analysis are given. In Section 3, Strang splitting 
cubic B-spline Galerkin FEM and its stability analysis 
are presented. In Section 4, a numerical example is used 
to test the methods, and the numerical results are given 
in tables and graphics. And finally in Section 5, a brief 
conclusion is given.

2. Scheme I: Cubic B-spline Galerkin FEM

Now, approximate solution of Rosenau-KdV-RLW 
equation is obtained using cubic B-spline Galerkin FEM. 

Rosenau-KdV-RLW equation given by Equation (2) is 
multiplied by weight function  and integrated from 

 to 

                           (5)

When  is taken and partial integration is 
applied to the fourth, fifth, and sixth terms in Equation 
(5), the weak form 

 

is obtained. Since this equation is valid on , it is 
applied to the typical element     
and the local transformation   is 
applied, and the equation is obtained

                              (6)

Let the approximate function corresponding to the 
analytical solution  of Equation (2) be . Taking  
as the time-dependent parameter,  is written as linear 
combinations of  cubic B-spline base functions in the 
literature

 

Since the non-zero B-spline functions on  are  
  and  by applying the local coordinate 

transformation, the approximate function on  is 
written in terms of  as follows:

 is taken with the same basis functions in Galerkin 
method. If we write  and cubic B-spline functions in 
places of  and  in Equation (6) respectively, we obtain
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(7)

For , , ,  the  type 
matrices , , , , , , , ,  and  on  
are calculated where

Thus, when  is taken, 
Equation (7) is arranged as follows:

Using this element-wise equation for , the global equation 
is obtained as

                         (8)

The unknowns in Equation (8) are of the form  
 and  dimensional. 

The matrices          are  

dimensional square seventh band matrices. The 
generalized rows of those matrices are

In this study, since  is taken,  
 is calculated. After eliminating the 

unknowns  and  and using       − 
   − ,   =    −    and  = 

−   the initial values are obtained in the following 
matrix form:

                       (9)

Matrix  is  dimensional square matrix and 
  having a dimension of . The 

integration of the IVP over time domain is obtained by 
RK4 method (Jain, 1984), and the numerical solution of 
Rosenau-KdV-RLW equation for    is obtained. 
Additionally, the following inner iteration

                                          (10)

is applied 3-5 times in each time step to improve the 
nonlinear term. Since the parameters at time steps   

 are   we need to find the 
parameter  to find the parameters at the next time steps. 
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Using the initial conditions in Equation (3), the parameters 
  are found by solving the 

following system of algebraic equations:

                        (11)

2.1 Stability analysis of scheme I

In this section, the discretization of the initial boundary 
value problem the Equations (2)-(4) according to the 
position is obtained after the cubic B-spline Galerkin FEM 
is used. The stability of the obtained numerical solution 
given by the Equation (9) is investigated

For the system of linear differential equations in the form 
of the matrix  with eigenvalue of  the stability function 
of the RK4 method   =  and 
the stability region are a set of  =   

  (Jain, 1984). Accordingly, for the stability of the 
proposed numerical solution, if the non-linear term in 
the matrix   in the matrix  is linearized as 

, then the matrix is represented by ,  
 is enough to show . In this study, the 

eigenvalues of the matrix  for the values of  , 
 and  are calculated and  for  

 for ,  for  and 
 for , and all eigenvalues (except one) 

obtained are found in . For values of , , 
, and  the graphs showing that the eigenvalues 

of the matrix  remain in the region  by taking , 
 , and , respectively, 

are given in Figures 1-2. It is seen from Figures 1-2 that 
as the number of nodes  grows, the eigenvalue outside 
the stability region approaches the stability region.

Fig. 1. Stability region for h=k=0.25 (left) and h=k=0.125 
(right) (black line: RK4, blue line: Scheme I).

Fig. 2. Stability region for h=k=0.0625 (left) and 
h=k=0.03125 (right) (black line: RK4, blue line: 
Scheme I).

3. Scheme II: Cubic B-spline Strang Splitting 
Galerkin FEM

In this section, after applying the Strang splitting 
technique to the initial-boundary value problem given by 
Equations (2)-(4), the numerical solution is obtained by 
cubic B-spline Galerkin FEM. For this, the Rosenau-KdV-
RLW equation given by Equation (2) is divided into two 
subequations, the first linear and the second nonlinear:

              (12)

                       (13)

To avoid any confusion, in Equation (12) in place of the 
variable  the variable  is written and the first equation 
has become

                          (14)

Then, in Equation (13) in place of the variable  the new 
variable  is written and the second problem has become

                      (15)

and finally in Equation (12) in place of the variable  the 
new variable  is written and the third problem has become

           (16)

Here,    and        
For the initial value problems given by Equations (14), 
(15), and (16), the boundary conditions given by Equation 
(4) are used. In a similar way used in Section 2, Equations 
(14), (15), and (16) are multiplied by the weight function 
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 and integrated from  to . Taking  
and applying the partial integration, the weak forms are 
obtained. Let the approximate function corresponding 
to the analytical solution  of Equation (14) be 

, analytical solution  of Equation (15) be 
, and analytical solution  of Equation (16) 

be . Taking the parameters ,  and  as the 
time-dependent parameters, those approximations are 
written as follows:

as linear combinations of cubic B-spline functions. Since 
the non-zero B-spline functions on  are , ,  
and  by applying the local coordinate transformation, 
the approximate functions on  are written as follows 
in terms of 

                                  (17)

                                 (18)

                                 (19)

When the local coordinate transformation is applied 
by writing the weak forms on a typical element , the 
following equations are obtained:

                    (20)

                                       

(21)

                      (22)

In Equations (20)-(22), in places of ,  and  their 
corresponding approximations ,  and  in Equations 
(17)-(19) are written, and cubic B-spline functions are written 
in place of , and required arrangements are made. Then, 
when  ,   

 and   are 
taken, the equations are written as follows:

Using these local equations on , the global equations on 
 are written as the following system of differential 

equations:

                        
(23)

                        
(24)

                        
(25)

The unknowns in the system of ODEs given by Equations 
(23)-(25) are ,  

,   and 
   dimensional and    

  also  
 and  are    dimensional square matrices. The 

matrices  and  are seventh 
band matrices, and their generalized rows are the same as 
given in Section 2. Since the boundary conditions are not 
applied, solving these systems, we have not solved the 
IVP given by Equations (2)-(4). By applying the boundary 
conditions given by Equation (4), the parameters , 

    and  are eliminated from the 
corresponding equations. After applying the boundary 
conditions, the unknowns are   

 ,  and 
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their dimension is   . When the matrices ,  
and  are arranged as being compatible with    
dimensional parameters,    dimensional square 
matrices are restructured. Under these conditions, taking 

 the ODEs given 
by Equations (23)-(25) are written as follows:

                    (26)

          (27)

          (28)

Then, these ODE systems are solved by RK4 method. 
The  parameters obtained from the solution of the 
ODEs system given by Equation (28) are written in their 
places in Equation (26) containing the parameters in the 
following time steps by replacing . To calculate  the 
initial parameter  must be known. From the solution of 
the equation system given by Equation (11) as in Section 2, 
the initial parameter  is obtained. Approximate solutions 
are made better by applying 3-5 times the inner iteration 
given in Equation (10) at each time step to the nonlinear 
term in the system of equations given by Equation (27).

3.1 Stability analysis of scheme II

In this section, after applying the Strang splitting 
technique to the initial-boundary value problem given by 
Equations (2)-(4), its discretization with respect to spatial

Fig. 3. Stability region for h=k=0.25 (left) and h=k=0.125 
(right)(black line: RK4, blue line: Scheme II).

variable is made with cubic B-spline Galerkin FEM, and 
the obtained equations are given by Equations (26)-(28), 
and the numerical solutions of those ODE systems are 
obtained by the application of RK4 method, and the stability 
of those equations is investigated. After linearizing the 
nonlinear term in the matrix  

it is enough to show that    for      where 
 are the eigenvalues of the square matrix  of type    

(Jain, 1984). Here, the matrix  is the    dimensional 
square zero matrix. In this study, the eigenvalues of the 
matrix  for the values of      and  
have been calculated and    for   ,    
for   ,    for    and    for 

  , and all the eigenvalues (except one) obtained 
have been found in the  region. Then, for values of  

 , ,  and , the graphs showing that 
the eigenvalues of the matrix  remain in the region  
are given. Taking   , ,  and , 
the graphs showing that they lie inside the region  are 
illustrated in Figures 3-4, respectively. Thus, the larger the 
number , the smaller the time step  required to satisfy 
the stability condition of the eigenvalues of the matrix 

 From Figures 3-4, as the number of nodes  grows, 
it is seen that the eigenvalue outside the stability region 
approaches the stability region.

4. Numerical results and comparisons

In this section, the numerical results obtained by applying 
the methods are proposed in Sections 2-3 to an example for 
Rosenau-KdV-RLWequation. To show the effectiveness

Fig. 4. Stability region for h=k=0.0625 (left) and 
h=k=0.03125 (right) (black line: RK4, blue line: 
Scheme II).

and reliability of the methods, fundamental conservative 
properties defined as 

                                                    (29)
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     (30)

for mass and energy conservation constants,

the error norms as defined above and L being any one of 
the above error norms the rate of convergence defined as 
below,

 

are calculated. All numerical calculations were obtained 
using Matlab2015a program on 4G RAM, 2.20 GHz 
computer.

Example: The analytical solution of the Rosenau-KdV-
RLW equation given by Equation (2) for parameters a = 1, 
b = 0.5, c = 1, d = 1, e = 1, p = 2 is (Wang, 2018)

where

The initial condition of the problem is obtained writing 
t = 0 in the analytical solution. In Tables 1-2 for xL     = 
40, xR = 100 at the time T = 30 the error norms L2 

and L  obtained by cubic B-spline Galerkin and cubic 
B-spline Strang Galerkin methods are compared with 
those of the numerical solutions given in the literature. 

As seen from Tables 1-2, the errors of the numerical 
solutions obtained by the presented methods are smaller 
than those of the compared methods. 

By taking xL = 40, xR = 100 at the time T = 30, the 
convergence rates for the error norms L2 and L  obtained 
for cubic B-spline Galerkin and cubic B-spline Strang 
Galerkin FEMs are calculated and given in Tables 3-4, 
respectively. The convergence rates of the proposed 
methods are compared with the convergence rates of the 
studies (Wang, 2018) and (Ӧzer, 2019). Although the 
error norms L2 and L  of the methods are smaller, it is 
seen that there is a fluctuation in convergence rates. For 
values of T = 0, xL = 40, xR = 160, the mass and energy 
conservation constants are calculated as Q = 21.67925844 

and E = 43.71719866 from Equations (29)-(30). For 
values of xL = 40, xR = 160, k = h = 0.25 at times 
T = 15, 30, 45, 60, the mass and energy conservation 
constants are calculated using the proposed methods 
and compared with the results of Wongsaijai (2014) and 
Ӧzer (2019) in Tables 5-6. According to the results, it 
is seen that the fundamental conservation properties of 
the Rosenau-KdV-RLW equation on the interval [0, 60] 
have slightly deteriorated with the proposed numerical 
schemes. Then, in Tables 7-8 for values of h = 0.25 and 
k = 0.125, 0.0625, 0.03125 at times T = 15,30,45,60, the 
mass and energy conservation constants are calculated by 
the recommended methods. It is seen from Tables 7-8 that, 
to maintain the mass and energy conservation constants in 
the future, a small selection of the parameter k is required. 
In Figures 5-6 over the range of [−40, 100], the graphs of 
the analytical solutions at the time T = 0,10,20,30 with 
h = k = 0.25 for the cubic B-spline Galerkin and cubic 
B-spline Strang Galerkin FEMs obtained from numerical 
solution and the graphs of absolute errors at times T = 
10,20,30 are given. The height of the wave in the analytical 
solution is U(0, 0) = 2.7731, and the height of the wave by 
the proposed methods is UG(19.5, 10) = 2.7698, UG(39, 

20) = 2.7684, UG(58.5, 30) = 2.7670, USG(19.5, 10) = 
2.7714, USG(39, 20) = 2.7705,

Table 1. A comparison of numerical results using the error norm L2 for various h = k and x  [ 40, 100] at time T = 30.
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Table 2. A comparison of numerical results using the error norm L  for various h = k and x  [ 40, 100] at time T = 30.

Table 3. A comparison of convergence rates for the error norm L2 at T = 30.

Table 4. A comparison of convergence rates for the error norm L  at T = 30.

Table 5. A comparison of mass invariants for h = k = 0.25, x  [ 40, 160] at T = 30.

Table 6. A comparison of energy invariants for h = k = 0.25, x  [ 40, 160].
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Table 7. A comparison of mass and energy invariants obtained by Scheme I for h = 0.25, k = 0.125, 0.0625, 
0.03125, x  [ 40, 160].

Table 8. A comparison of mass and energy invariants ontained Scheme II for h = 0.25, k = 0.125, 0.0625, 
0.03125, x  [ 40, 160].

Fig. 5. Analitical solution (left), numerical solution obtained by Scheme I for h = k = 0.25 (middle), absolute error (right).



Sibel Ӧzer 23

Fig. 6. Analitical solution (left), numerical solution obtained by Scheme II for h = k = 0.25 (middle), absolute error (right).

USG(58.5, 30) = 2.7696. Here, G and SG subscripts 
show the FEMs of cubic Galerkin and cubic Strang 
Galerkin, respectively. From Figures 5-6, it is seen that 
the numerical solutions and analytical solutions are 
compatible with each other, but as time progresses, the 
height of the wave decreases and thus, the absolute error 
increases. Additionally, the absolute error of the cubic 
B-spline Strang Galerkin method is less than that of the 
cubic B-spline method.

5. Conclusion

In this study, numerical solutions of Rosenau-KdV-RLW 
equation are obtained using cubic B-spline Galerkin 
and cubic B-spline Strang-splitting Galerkin FEMs. To 
show the accuracy and efficiency of the methods, those 
methods are applied to a test problem of which analytical 
solution is known. The mass and energy invariants, the 
error norms L2 and L  with the convergence rates are 
calculated. It is seen that the proposed methods yield good 
enough results. The illustrative test problem shows that the 
error norms are small enough and the conservation laws 
are nearly constant. In conclusion, numerical solutions of 
other important high-order nonlinear partial differential 
equations widely seen in various fields of science can 
be achieved easily and effectively by using the proposed 
methods.
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