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Abstract 

In this work, interval-valued optimization problems are considered. The ordering cone is used 

to generalize the interval-valued optimization problems on real topological vector spaces. 

Some definitions and their properties are obtained for intervals, defined via an ordering cone. 
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1. Introduction 
 

We encounter optimization problems 

(mathematical programming) in our life. 

When these problems are expressed 

mathematically, an objective function 

emerges. Naturally, these problems' solution 

methods have been attracted more attention by 

researchers working in the field such as 

mathematics, engineering, computer science, 

economics, business, etc. for years. 

Sometimes, we may encounter uncertainty in 

optimization problems. In this case, the 

objective function is an interval-valued. 

Optimization problems are classified 

according to the objective function. For 

example, the problems are called interval-

valued optimization problems (shortly, 

interval optimization problem) when the 

objective functions are interval-valued. 

Interval optimization problems generalize the 

scalar optimization problems because the 

interval-valued functions are generalizations 

of the real-valued functions. Adding to this, 

the interval optimization problems are a 

particular form of the set-valued optimization 

problems.  

 

 

The coefficients of the objective function 

for optimization problems are considered as 

fixed. However, the problem's coefficients 

may also change due to changing 

environmental conditions and various kinds of 

uncertainties. So, we can generate an interval 

optimization problem. For instance, an 

investor wants to convert her/his money into 

foreign currency for investment. If the 

investor knows the foreign currencies' 

intervals (it can be obtained via excel forecast 

application) after a while, then the investor 

can encounter an interval optimization 

problem. Therefore, interval optimization 

problems have an essential place in our life. 

Order relations defined on intervals are 

used to solve the interval optimization 

problems. These order relations are obtained 

using natural order relation on the real 

numbers ( Bhurjee  & Panda, 2012; Bhurjee & 

Pandahan, 2016; Chalco-Cano et al., 2013; 

Costa et al., 2015; Ishibuchi & Tanaka, 1990; 

Moore, 1966; Karmakar et al., 2009). Using 

order relations on real numbers, significant 



 2 

                                                                                                              

 

results related to the interval optimization 

problems are obtained by some researcher as 

Ishibuchi & Tanaka, 1990; Costa et al., 2015, 

and Moore, 1966, and the references therein. 

Most of these order relations are partial order 

relations.  

In any vector space, there is no natural 

order relation, such as on real numbers. So, an 

order relation is defined with the help of a 

subset of the space to compare the vector 

optimization vectors. This set is called 

ordering cone. According to the ordering 

cone, this order relation is either preorder 

relation, partial order relation, or total order 

relation. So, all definitions and results used in 

vector optimization problems depend on the 

ordering cone. Also, all order relations, which 

are defined on vector space, induce an 

ordering cone. Thus, each order relation in the 

vector space corresponds to an ordering cone 

and vice versa. Naturally, definitions of the 

minimal and maximal elements can also be 

changed when the ordering cone or order 

relation changes. 

We use many tools as scalarization 

(Karaman et al., 2018b), vectorization 

(Karaman et al., 2018a), derivative (Karaman 

et al., 2020b), and subdifferential (Chen & 

Jahn, 1998; Karaman et al., 2020a; Hernández 

& Rodríguez-Marín, 2011), tangent cones 

(Zivari-Rezapou,r 2016), embedding space 

(Karaman, 2019), etc. to obtain the solutions 

or optimality conditions for optimization 

problems. Scalarization has significant 

importance. One of the essential goals in this 

method is to follow the problem to a scalar 

optimization problem. We know that there is 

a natural order relation in the scalar 

optimization problems. So, the solution of the 

scalar optimization problem, obtained via the 

original optimization problem, can be found 

without using an ordering cone. Gerstewitz’s 

function is recently used to achieve this idea  

( Gerth & Weidner, 1990; Luc, 1989; Ansari 

et al., 2018; Khan et al., 2015). This function 

is also used to obtain vectorization of the 

vector-valued and set-valued optimization 

problems ( Ansari et al., 2018; Karaman et al., 

2018a; Khan et al., 2015; Gerth & Weidner, 

1990). Moreover, scalarization is derived 

using the unified scalarization technique (see 

Karaman et al., 2018a).  
Another method is subdifferential in order 

to obtain not only the solutions but also the 

optimality conditions of the optimization 

problems. Chen & Jahn, 1998, introduced a 

weak subgradient. They obtained some 

optimality conditions for set-valued 

optimization problems concerning the vector 

approach. Hernández & Rodríguez-Marín, 

2011, defined strong subgradient. Some 

optimality conditions are derived via weak 

and strong subgradients for set-valued 

optimization problems concerning the set 

approach. Additionally,  Karaman et al., 

2020a,  presented necessary and sufficient 

optimality conditions for set-valued 

optimization problems concerning an order 

relation, which is a partial order relation on the 

family of nonempty and bounded sets. 

There are two purposes in this 

investigation. The first one is to get a general 

version of the interval optimization problems 

on real topological vector spaces since there is 

no work about the intervals on any real 

topological vector space up to now, to our 

knowledge. Thus, intervals are defined by 

using the ordering cone, and two new preorder 

relations are defined to obtain the solutions to 

the interval optimization problems. The 

second purpose is to find the solutions and 

optimality conditions of the interval 

optimization problems using scalarization and 

subdifferentials. 

2. Preliminaries 

 

Throughout this paper, 𝑋 and 𝑌 are real 

topological vector spaces, 𝐶 ⊂ 𝑌 is convex 

(𝜆𝑥 + (1 − 𝜆)𝑦 ∈ 𝐶 for all 𝑥, 𝑦 ∈ 𝐶 and 𝜆 ∈
[0,1]), pointed (𝐶 ∩ (−𝐶) = {0}), nonempty 

interior cone (𝜆𝑥 ∈ 𝐶 for all 𝑥 ∈ 𝐶 and 𝜆 > 0) 

and 𝑌 is ordered by cone 𝐶. Let 𝐴 ⊂ 𝑌. The 

topological interior of 𝐴 is denoted by 𝑖𝑛𝑡(𝐴). 

We denote the non-negative orthant of ℝ𝑛 

(𝑛 ≥ 1) by ℝ+
𝑛 . 

It is known that a convex, pointed ordering 

cone 𝐶 induces a partial order relation on 𝑌 as 

follows: For 𝑥, 𝑦 ∈ 𝑌  
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𝑥 ≤𝐶 𝑦 ⟺ 𝑦 − 𝑥 ∈ 𝐶. 
 

Similarly, a partial order relation ≤𝐶 on 𝑌 

induces a convex, pointed ordering cone      

𝐶 = {𝑥 ∈ 𝑌 ∶ 0 ≤𝐶 𝑥}.  Thus, there is a 

directly relationship between partial order 

relation ≤𝐶 and convex, pointed ordering cone 

𝐶. Also, the order relation ≤𝐶 is compatible 

with the addition (𝑥1 ≤𝐶 𝑦1 and 𝑥2 ≤𝐶 𝑦2 

imply 𝑥1 + 𝑥2 ≤𝐶 𝑦1 + 𝑦2) and the              

non-negative scalar multiplication (𝑡𝑥 ≤𝐶 𝑡𝑦 

for all 𝑥 ≤𝐶 𝑦 and 𝑡 ∈ ℝ+). 

Strict order relation <𝐶 is defined as 

follows:  For 𝑥, 𝑦 ∈ 𝑌 

 

𝑥 <𝐶 𝑦 ⟺ 𝑦 − 𝑥 ∈ 𝑖𝑛𝑡(𝐶). 
 

Let 𝐴 ⊂ 𝑌 and 𝑎 ∈ 𝐴. If 𝐴 ∩ (𝑎 − 𝐶) = {𝑎} 

(𝐴 ∩ (𝑎 + 𝐶) = {𝑎}), then 𝑎 is called a minimal 

(maximal) element of 𝐴 concerning the 

ordering cone 𝐶 and all minimal (maximal) 

elements of 𝐴 are denoted by 

min(𝐴) (𝑚𝑎𝑥(𝐴)). We say that 𝑎 is a weak 

minimal (weak maximal) element of 𝐴 

concerning the ordering cone 𝐶 if 𝐴 ∩
(𝑎 − 𝑖𝑛𝑡(𝐶)) = ∅ (𝐴 ∩ (𝑎 + 𝑖𝑛𝑡(𝐶)) = ∅). 

All weak minimal (weak maximal) elements 

of 𝐴 are denoted by Wmin(𝐴) (𝑊𝑚𝑎𝑥(𝐴)). 

It is clear that  min(𝐴) ⊂ 𝑊𝑚𝑖𝑛(𝐴) and 

𝑚𝑎𝑥(𝐴) ⊂ 𝑊𝑚𝑎𝑥(𝐴). 

 

3. Intervals and arithmetic on real 

topological vector spaces 

 

A closed interval on Y is defined by using the 

ordering cone C as: For a1, a2 ∈ Y 

 

𝐴 = [𝑎1, 𝑎2] = {𝑥 ∈ 𝑌 ∶ 𝑎1 ≤𝐶 𝑥 ≤𝐶 𝑎2}
= (𝑎1 + 𝐶) ∩ (𝑎2 − 𝐶), 

where 𝑎1 and 𝑎2 are called the lower and 

upper bounds of 𝐴, respectively. If 𝑎1 = 𝑎2, 

then the interval 𝐴 is called degenerate, and 

this interval equals to 𝑎1 or 𝑎2.  The shape of 

an interval on 𝑌 associates with the ordering 

cone 𝐶. That is, an interval on 𝑌 may be a line 

segment, unlimited area, etc., depending on 

the shape of the ordering cone. In the rest of 

the study, 𝐼𝐶(𝑌) denotes a set of all intervals 

on  𝑌. That is, 

 

𝐼𝐶(𝑌) = {[𝑎1, 𝑎2]: 𝑎1, 𝑎2 ∈ 𝑌 𝑎𝑛𝑑 𝑎1 ≤𝐶 𝑎2}. 

Each vector in 𝑌 can be considered as a 

closed and bounded interval. In this case, we 

can write 𝑎 = [𝑎, 𝑎] for all 𝑎 ∈ 𝑌. 

Let 𝐴 = [𝑎1, 𝑎2], 𝐵 = [𝑏1, 𝑏2] ∈ 𝐼𝐶(𝑌),  
and 𝜆 ∈ ℝ. Addition and difference of 

intervals 𝐴 and 𝐵 and scalar multiplication 

with 𝜆 are defined by 

 

𝐴 + 𝐵 = {𝑥 + 𝑦 ∈ 𝑌 ∶ 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑦 ∈ 𝐵}
= [𝑎1 + 𝑏1, 𝑎2 + 𝑏2], 

 

𝐴 − 𝐵 = {𝑥 − 𝑦 ∈ 𝑌 ∶ 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑦 ∈ 𝐵}
= [𝑎1 − 𝑏2, 𝑎2 − 𝑏1] 

and 

 

𝜆𝐴 = {
[𝜆𝑎1, 𝜆𝑎2]  ; 𝜆 ≥ 0
[𝜆𝑎2, 𝜆𝑎1]  ; 𝜆 < 0

, 

respectively.  

Now, some notations are given used in the 

interval analysis. Let 𝐴 = [𝑎1, 𝑎2] ∈ 𝐼𝐶(𝑌). 

Then, the width, midpoint and radius of 𝐴 are 

defined as 𝑤(𝐴) = 𝑎2 − 𝑎1, 𝑚(𝐴) =
1

2
(𝑎1 + 𝑎2) 

and 𝑟(𝐴) =
1

2
(𝑎2 − 𝑎1), respectively. By 

using these notations, an interval is also 

defined as: 
 

𝐴 = [𝑎1, 𝑎2] 
     = [𝑚(𝐴) − 𝑟(𝐴), 𝑚(𝐴) + 𝑟(𝐴)]  

     = 𝑚(𝐴) + [−
1

2
𝑤(𝐴),

1

2
𝑤(𝐴)]  

     = 𝑚(𝐴) +
1

2
𝑤(𝐴)[−1,1]. 

Let 𝐴 = [𝑎1, 𝑎2], 𝐵 = [𝑏1, 𝑏2] ∈ 𝐼𝐶(𝑌). 

Then, 𝐴 + (−𝐴) = 0 = [0𝑌, 0𝑌] if and only if 

𝑎1 = 𝑎2, where 0𝑌 is zero element of 𝑌. This 

says that the difference of an interval and itself 

in 𝐼𝐶(𝑌) cannot be the zero element. That is, 

each element in 𝐼𝐶(𝑌) cannot have the additive 

inverse element. Thus, 𝐼𝐶(𝑌) is not a vector 

space.  

𝐴 equals to 𝐵 if and only if 𝑎1 = 𝑏1 and 

𝑎2 = 𝑏2. When 𝑎1 = −𝑎2, 𝐴 is called a 

symmetric interval. The midpoint of a 

symmetric interval is zero. Let assume that 

𝑎1 ≤𝐶 0 and 0 ≤𝐶 𝑎2. Non-negative and    

non-positive part of the interval 𝐴 are defined 

as 𝐴+ = [0, 𝑎2] and 𝐴− = [𝑎1, 0], 
respectively. Therefore, we have 𝐴 = 𝐴+ + 𝐴−. 
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4. Interval optimization problems 

 

Interval optimization problems are 

constructed in this section.  

Let 𝑀 ⊂ 𝑋 and 𝐹: 𝑀 → 𝐼𝐶(𝑌) be an 

interval-valued function. That is,              

𝐹(𝑥) = [𝑓𝐿(𝑥), 𝑓𝑈(𝑥)] for all 𝑥 ∈ 𝑀, where 

vector-valued functions 𝑓𝐿 , 𝑓𝑈: 𝑀 → 𝑌 satisfy 

𝑓𝐿(𝑥) ≤𝐶 𝑓𝑈(𝑥) for all 𝑥 ∈ 𝑀. Then, primal 

interval optimization problem is defined as: 

 

(𝐼𝑉𝑂𝑃) {
min (𝑚𝑎𝑥)𝐹(𝑥)

𝑥 ∈ 𝑀.
 

 

To find a solution of (𝐼𝑉𝑂𝑃), an order 

relation, which is defined on intervals, is 

needed. To achieve this situation, we should 

use the order relation ≤𝐶. So, we will use the 

following order relations defined on the 

intervals by using the order relation ≤𝐶. 

 

Definition 4.1 Let 𝐴 = [𝑎1, 𝑎2] and 

 𝐵 = [𝑏1, 𝑏2] be two intervals defined on 𝑌. 

Lower and Upper order relations are defined 

as: 

(i) 𝐴 ≼𝐿 𝐵 ⟺ 𝑎1 ≤𝐶 𝑏1, 

(ii) 𝐴 ≼𝑈 𝐵 ⟺ 𝑎2 ≤𝐶 𝑏2, 

respectively. 

These order relations are preorder 

relations. Also, they are generalizations given 

by   Karmakar et al., 2009.  That is, when we 

take 𝑌 = ℝ and 𝐶 = ℝ+, we obtain the known 

order relations in the literature. 

Now, we introduce the strict version of ≼𝐿 

and ≼𝑈 by using strict order relation <𝐶. The 

relations ≺𝐿 and ≺𝑈 are used to detect the 

weak solutions of (𝐼𝑉𝑂𝑃). 
 

Definition 4.2 Let 𝐴 = [𝑎1, 𝑎2] and 𝐵 = [𝑏1, 𝑏2] 

be two intervals defined on 𝑌. Strict Lower 

and strict Upper order relations are defined 

by: 

(i) 𝐴 ≺𝐿 𝐵 ⟺ 𝑎1 <𝐶 𝑏1, 

(ii) 𝐴 ≺𝑈 𝐵 ⟺ 𝑎2 <𝐶 𝑏2, 

respectively. 

 

We will assume ⋆∈ {𝐿, 𝑈} in the rest of the 

work. Therefore, all properties given for order 

relation ≼⋆ will be valid the order relations ≼𝐿 

and ≼𝑈. 

 

Proposition 4.3 Order relation ≼⋆ have the 

following properties: 

(i) ≼⋆ is compatible with the addition, 

(ii) ≼⋆ is compatible with the non-negative 

scalar multiplication. 

Proof. Let us consider order relation ≼𝐿. 

Similarly, one can obtain for the other order 

relation. 

(i) Let 𝐴 = [𝑎1, 𝑎2], 𝐵 = [𝑏1, 𝑏2],       
(ii) 𝐷 = [𝑑1, 𝑑2], 𝐸 = [𝑒1, 𝑒2] ∈ 𝐼𝐶(𝑌),

𝐴 ≼𝐿 𝐵 and 𝐷 ≼𝐿 𝐸.  Then, we have 

𝑎1 ≤𝐶 𝑏1 and 𝑑1 ≤𝐶 𝑒1. Since ≤𝐶 is 

compatible with the addition, we yield 

𝑎1 + 𝑑1 ≤𝐶 𝑏1 + 𝑒1. This gives       

𝐴 + 𝐷 ≼𝐿 𝐵 + 𝐸. 

(iii) Proof can be obtained similar to (i) by 

using the compatibility with the       

non-negative scalar multiplication of 

≤𝐶. 

Now, definitions of minimal, maximal, 

weak minimal, weak maximal, strongly 

minimal, and strongly maximal intervals for 

preorder relations are given. 
 

Definition 4.4 Let ℘ ⊂ 𝐼𝐶(𝑌) and 𝐴 ∈ ℘. 

Then, we say that 

(i)  𝐴 is ⋆ −minimal interval of ℘ if for 

any 𝐵 ∈ ℘ such that 𝐵 ≼⋆ 𝐴 implies 

𝐴 ≼⋆ 𝐵, 

(ii) 𝐴 is ⋆ −maximal interval of ℘ if for 

any 𝐵 ∈ ℘ such that 𝐴 ≼⋆ 𝐵 implies 

𝐵 ≼⋆ 𝐴, 

(iii) 𝐴 is weak ⋆ −minimal interval of ℘ if 

for any 𝐵 ∈ ℘ such that 𝐵 ≺⋆ 𝐴 implies 

𝐴 ≺⋆ 𝐵, or equivalently ∄𝐵 ∈ ℘ such 

that 𝐵 ≺⋆ 𝐴, 

(iv) 𝐴 is weak ⋆ −maximal interval of ℘ if 

for any 𝐵 ∈ ℘ such that 𝐴 ≺⋆ 𝐵 implies 

𝐵 ≺⋆ 𝐴, or equivalently ∄𝐵 ∈ ℘ such 

that 𝐴 ≺⋆ 𝐵, 

(v) 𝐴 is strongly ⋆ −minimal        (strongly 

⋆ −maximal) interval of ℘ if 𝐴 ≼⋆ 𝐵 

(𝐵 ≼⋆ 𝐴) for all 𝐵 ∈ ℘. 

If we consider the interval optimization 

problem concerning the order relation ≼⋆, 

then we denote it by (⋆ −𝐼𝑉𝑂𝑃).  We say that 

𝑥0 ∈ 𝑀 is a solution of (⋆ −𝐼𝑉𝑂𝑃) iff 𝐹(𝑥0) 

is a ⋆-minimal (⋆-maximal) interval of the 
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image set ℱ(𝑀) ≔ {𝐹(𝑥) ∶ 𝑥 ∈ 𝑀}. 

Similarly, 𝑥0 is called a weak solution of         

(⋆ −𝐼𝑉𝑂𝑃) iff 𝐹(𝑥0) is a weak ⋆-minimal 

(weak 

⋆-maximal) interval of ℱ(𝑀). 

Furthermore, 𝑥0 is called a strongly solution 

of (⋆ −𝐼𝑉𝑂𝑃) 

iff 𝐹(𝑥0) is a strongly ⋆-minimal (strongly 

⋆-maximal) interval of ℱ(𝑀). 

 

Note that every strong solution of                 

(⋆ −𝐼𝑉𝑂𝑃) is also a solution to the problem. 

Moreover, every solution of (⋆ −𝐼𝑉𝑂𝑃) is 

also a weak solution to the problem. 

 

The solution of an interval optimization 

problem concerning ≼𝐿 and ≼𝑈 are obtained 

in the following example. 

 

Example 4.5 Let ordering cone 𝐶 = ℝ+ and 

interval-valued function 𝐹: ℝ → 𝐼𝐶(ℝ) be 

defined as 

 

𝐹(𝑥) = {
[𝑥2, |𝑥|]    ; 𝑥 ∈ [−1,1]

[|𝑥|, 𝑥2]    ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

 

 
 

 

 

 

 

 

 

 

Consider the following optimization problem: 

 

(𝐼𝑉𝑂𝑃) {min 𝐹(𝑥)
𝑥 ∈ ℝ

. 

 

Some images of 𝐹 are given in Figure 1. 

Because [0,0] ≼𝐿 𝐹(𝑥) and [0,0] ≼𝑈 𝐹(𝑥) 

for all 𝑥 ∈ ℝ, 0 is a strong solution of          

(𝐿 − 𝐼𝑉𝑂𝑃) and (𝑈 − 𝐼𝑉𝑂𝑃). Also, 0 is also 

a solution and weak solution of the 

corresponding problem. There is no solution 

to the problems other than 0. Really, assume 

that 𝑥0 ∈ ℝ ∖ {0}   is a solution to the 

problem. Then, [0,0] ≼𝐿 𝐹(𝑥) is not imply 

𝐹(𝑥) ≼𝐿 [0,0] and [0,0] ≼𝑈 𝐹(𝑥) is not 

imply 𝐹(𝑥) ≼𝑈 [0,0]. Also, it is clear that 0 is 

the unique weak solution of the problems 

concerning ≼𝐿 and ≼𝑈. 

Fig. 1. Graph of the interval-valued function in  

Example 4.4. 
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5. Nonlinear Scalarization 

 

In this section, scalarization is obtained for 

interval optimization problems using 

nonlinear Gerstewitz's function, used to 

separate nonconvex sets. This method allows 

us to characterize the interval optimization 

problems with scalar optimizations. 
 

Definition 5.1 A given function 𝑡: 𝑌 → ℝ is 

said to be 

(i) increasing if for any 𝑥, 𝑦 ∈ 𝑌 such that 

𝑥 ≤𝐶 𝑦 implies 𝑡(𝑥) ≤ 𝑡(𝑦), 

(ii) strictly increasing if for any 𝑥, 𝑦 ∈ 𝑌 

such that 𝑥 <𝐶 𝑦 implies 𝑡(𝑥) < 𝑡(𝑦). 

 

Definition 5.2 (Gerth & Weidner, 1990; Luc, 

1989) Let 𝑒 ∈ 𝑖𝑛𝑡(𝐶) and 𝑦 be a point in 𝑌. 

Then, Gerstewitz’s function ℎ𝑒: 𝑌 → ℝ is 

defined as 

 

ℎ𝑒,𝑦(𝑥) = min {𝑡 ∈ ℝ ∶ 𝑥 ∈ 𝑦 + 𝑡𝑒 − 𝐶} 

for any 𝑥 ∈ 𝑌. 

Gerstewitz's function is nonlinear, 

continuous, real-valued, increasing, strictly 

increasing, and convex (see Ansari, Köbis & 

Yao, 2018; Gerth & Weidner, 1990; Luc, 

1989; Hernández & Rodríguez-Marín, 2011). 
 

In this work, we will use a particular form 

of Gerstewitz's function. When we use 0 

instead of 𝑦 in the Gerstewitz's function, we 

obtain the following well-defined function 

 

𝑧𝑒(𝑥) = min {𝑡 ∈ ℝ ∶ 𝑥 ∈ 𝑡𝑒 − 𝐶}. 

 

We assume 𝑒 ∈ 𝑖𝑛𝑡(𝐶) in the rest of the study. 

Some properties of 𝑧𝑒 are stated in the 

following proposition. 

 

Proposition 5.3 Let 𝑥, 𝑦 ∈ 𝑌 and 𝑟 ∈ ℝ.  𝑧𝑒 

has the following properties: 

(i) 𝑥 ≤𝐶 𝑦 ⟺ 𝑧𝑒(𝑥) ≤ 𝑧𝑒(𝑦), 

(ii) 𝑥 <𝐶 𝑦 ⟺ 𝑧𝑒(𝑥) < 𝑧𝑒(𝑦), 

(iii) 𝑥 ∈ 𝐶 ⇒ 𝑧𝑒(𝑥) ≥ 0, 

(iv) 𝑧𝑒(𝑥) ≤ 𝑟 ⟺ 𝑥 ∈ 𝑟𝑒 − 𝐶, 

(v) 𝑧𝑒(𝑥) < 𝑟 ⟺ 𝑥 ∈ 𝑟𝑒 − 𝑖𝑛𝑡(𝐶), 

(vi) 𝑥 ≤𝐶 𝑦 ⟺ 𝑧𝑒(𝑦 − 𝑥) ≥ 0, 

(vii) 𝑥 <𝐶 𝑦 ⟺ 𝑧𝑒(𝑦 − 𝑥) > 0. 

 

Proof. (i) Assume that 𝑥 ≤𝐶 𝑦 and         

𝑧𝑒(𝑦) = 𝑘 ∈ ℝ for a fixed 𝑒 ∈ 𝑖𝑛𝑡(𝐶).  Then, 

we have 𝑦 ∈ (𝑘 + 𝜀)𝑒 − 𝐶 for all 𝜀 > 0. 𝑥 ∈
𝑦 − 𝐶 ⊂ (𝑘 + 𝜀)𝑒 − 𝐶 − 𝐶 = (𝑘 + 𝜀)𝑒 − 𝐶 

because 𝐶 is convex and 𝑦 − 𝑥 ∈ 𝐶. This 

gives 𝑧𝑒(𝑥) ≤ 𝑘 + 𝜀 for all 𝜀 > 0. Because 

𝑧𝑒(𝑥) ≤ 𝑘 + 𝜀 for all 𝜀 > 0, we get       

𝑧𝑒(𝑥) ≤ 𝑘 for 𝜀 → 0.  Hence 𝑧𝑒(𝑥) ≤ 𝑧𝑒(𝑦) 

yields. 

 

Converse, assume that 𝑡 = 𝑧𝑒(𝑥) ≤ 𝑧𝑒(𝑦) = 𝑘 

and 𝜀 = 𝑡 − 𝑘 < 0 for 𝑡, 𝑘 ∈ ℝ. Because 𝑥 ∈
𝑡𝑒 − 𝐶, 𝑦 ∈ 𝑘𝑒 − 𝐶 and 𝐶 is convex ordering 

cone,  

we have 𝑥 − 𝑦 = (𝑡 − 𝑘)𝑒 − 𝐶 − 𝐶 = 𝜀𝑒 − 𝐶 ⊂ −𝐶.  

Therefore, we obtain 𝑥 ≤𝐶 𝑦. 

 

(ii-vii) can be proved similar to (i). 

We obtain the relationships between the 

solutions of interval optimization problems 

and scalar optimization problems  

 

(𝑆𝑃𝐿) {
min(𝑚𝑎𝑥) 𝑧𝑒(𝑓𝐿(𝑥))

𝑥 ∈ 𝑀
  

 

and 

 

(𝑆𝑃𝑈) {
min(𝑚𝑎𝑥) 𝑧𝑒(𝑓𝑈(𝑥))

𝑥 ∈ 𝑀
. 

 

This method has also eliminated the use of 

the ordering cone to identify minimal 

(maximal), weak minimal (weak maximal), 

and strongly minimal (strongly maximal) 

solutions.   Additionally, the   solutions    of  

the interval      optimization     problems   are 

 characterized by the solutions of the scalar 

optimization problems. 

 

Theorem 5.4 𝑥0 ∈ 𝑀 is a solution of 

 (𝐿 − 𝐼𝑉𝑂𝑃) if and only if 𝑥0 is a solution of 

(𝑆𝑃𝐿). 
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Proof. We will prove for the minimal 

solutions. Similarly, it can be obtained for 

maximal solutions. 

 We assume that 𝑥0 is a solution of                  

(𝐿 − 𝐼𝑉𝑂𝑃).  Then, we have two the 

following conditions: 

(i) 𝐹(𝑥) ≼𝐿 𝐹(𝑥0) 

(ii) 𝐹(𝑥) ⋠𝐿 𝐹(𝑥0) 

for all 𝑥 ∈ 𝑀.   

Let us consider the condition (i). Since 𝑥0 is a 

solution of (𝐿 − 𝐼𝑉𝑂𝑃), we get 

𝐹(𝑥0) ≼𝐿 𝐹(𝑥). Then, 𝑓𝐿(𝑥) ≤𝐶 𝑓𝐿(𝑥0) and 

𝑓𝐿(𝑥0) ≤𝐶 𝑓𝐿(𝑥).  

We obtain   𝑧𝑒(𝑓𝐿(𝑥)) ≤ 𝑧𝑒(𝑓𝐿(𝑥0)) and  

𝑧𝑒(𝑓𝐿(𝑥0)) ≤ 𝑧𝑒(𝑓𝐿(𝑥)) from Proposition 5.3 

(i). This gives 

 

𝑧𝑒(𝑓𝐿(𝑥)) = 𝑧𝑒(𝑓𝐿(𝑥0))    (1) 

 

from anti-symmetrically of ≤𝐶.  

Let us consider the condition (ii). Since 

𝐹(𝑥) ⋠𝐿 𝐹(𝑥0), we have 𝑓𝐿(𝑥) ≰𝐶 𝑓𝐿(𝑥0). 

Then, from Proposition 5.3 (i), we get 

 

𝑧𝑒(𝑓𝐿(𝑥)) ≰ 𝑧𝑒(𝑓𝐿(𝑥0)).    (2) 

 

Finally, 𝑧𝑒(𝑓𝐿(𝑥0)) ≤ 𝑧𝑒(𝑓𝐿(𝑥)) for all 𝑥 ∈
𝑀 from Equation (1) and Equation (2). Then, 

𝑥0 is a solution of (𝑆𝑃𝐿). 

Conversely, let 𝑥0 be a solution of (𝑆𝑃𝐿). We 

assume that 𝑥0 is not a solution of                  

(𝐿 − 𝐼𝑉𝑂𝑃). Then, there exists an 𝑥̅ ∈ 𝑀 ∖ {𝑥0} 

such that 𝐹(𝑥̅) ≼𝐿 𝐹(𝑥0) and 𝐹(𝑥0) ⋠𝐿 𝐹(𝑥̅). 

That is 𝑓𝐿(𝑥̅) ≤𝐶 𝑓𝐿(𝑥0) and 

𝑓𝐿(𝑥0) ≰𝐶 𝑓𝐿(𝑥̅).  

We have 𝑧𝑒(𝑓𝐿(𝑥̅)) ≤ 𝑧𝑒(𝑓𝐿(𝑥0)) and 

𝑧𝑒(𝑓𝐿(𝑥0)) ≰ 𝑧𝑒(𝑓𝐿(𝑥̅)) from Proposition 5.3 

(i). Because 𝑧𝑒 is real-valued, we obtain 

𝑧𝑒(𝑓𝐿(𝑥̅)) < 𝑧𝑒(𝑓𝐿(𝑥0)) for an 𝑥̅ ∈ 𝑀. This 

contradicts with the solution of (𝑆𝑃𝐿). 

Therefore, 𝑥0 is a solution of (𝐿 − 𝐼𝑉𝑂𝑃). 

 

Theorem 5.5 If 𝑥0 ∈ 𝑀 is unique the solution 

of (𝑆𝑃𝐿), then 𝑥0 is a strong solution of        

(𝐿 − 𝐼𝑉𝑂𝑃). 

 

Proof. We will prove the minimum solution of 

the corresponding problems. Similarly, it can 

be proved for the maximum solutions. 

 

     We assume that 𝑥0 is unique solution of 

(𝑆𝑃𝐿).  Then, we have  

𝑧𝑒(𝑓𝐿(𝑥0)) < 𝑧𝑒(𝑓𝐿(𝑥)) for all 𝑥 ∈ 𝑀 ∖ {𝑥0}. 

This gives 𝑓𝐿(𝑥0) <𝐶 𝑓𝐿(𝑥) for all 𝑥 ∈ 𝑀 ∖ {𝑥0} 

from Proposition 5.3 (ii). Then, 

𝐹(𝑥0) ≺𝐿 𝐹(𝑥) for all 𝑥 ∈ 𝑀 ∖ {𝑥0}. That is, 

𝐹(𝑥0)  ≼𝐿 𝐹(𝑥) for all 𝑥 ∈ 𝑀. Hence, 𝑥0 is a 

strongly solution of (𝐿 − 𝐼𝑉𝑂𝑃). 

 

Theorem 5.6 Let 𝑥0 ∈ 𝑀 be unique solution 

of (𝑆𝑃𝐿), then 

(i) 𝑥0 is a solution of (𝐿 − 𝐼𝑉𝑂𝑃), 

(ii) 𝑥0 is a weak solution of (𝐿 − 𝐼𝑉𝑂𝑃). 
 

Theorem 5.7 𝑥0 ∈ 𝑀 is a solution of             

(𝑈 − 𝐼𝑉𝑂𝑃) if and only if 𝑥0 is a solution of 

(𝑆𝑃𝑈). 

 

 

Proof. The proof follows immediately from 

Proposition 5.3 (i), such as the proof of 

Theorem 5.4. 

 

Theorem 5.8 If 𝑥0 ∈ 𝑀 is unique solution of 

(𝑆𝑃𝑈), then  

(i) 𝑥0 is a strongly solution of                

(𝑈 − 𝐼𝑉𝑂𝑃), 

(ii) 𝑥0 is a solution of (𝑈 − 𝐼𝑉𝑂𝑃), 

(iii) 𝑥0 is a weak solution of (𝑈 − 𝐼𝑉𝑂𝑃). 

 

Proof. The proof follows immediately from 

Proposition 5.3 (i-ii), such as the proof of 

Theorem 5.4 and Theorem 5.5. 

 

Example 5.9 Let us consider Example 4.4. 

In this example  

𝑧𝑒(𝑓𝐿(𝑥)) = {
𝑥2    ; 𝑥 ∈ [−1,1]
|𝑥|    ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

and  

𝑧𝑒(𝑓𝑈(𝑥)) = {
|𝑥|    ; 𝑥 ∈ [−1,1]

𝑥2    ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

Graph of 𝑧𝑒(𝑓𝐿(𝑥)) and 𝑧𝑒(𝑓𝑈(𝑥)) are given 

in Figure 2 and Figure 3, respectively. 

     We consider the following scalar 

optimization problems: 

 

(𝑆𝑃𝐿) {
min 𝑧𝑒(𝑓𝐿(𝑥))

𝑥 ∈ ℝ
  

and 
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(𝑆𝑃𝑈) {
min 𝑧𝑒(𝑓𝑈(𝑥))

𝑥 ∈ ℝ
. 

 

As seen in Figure 2, 0 is the unique solution 

of (𝑆𝑃𝐿). Then, we can say that 0 is also a 

strong solution, solution, and weak solution of 

(𝐿 − 𝐼𝑉𝑂𝑃) from Theorem 5.5 and Theorem 

5.6. 

Similarly, 0 is unique solution of (𝑆𝑃𝑈). 

Then, we can say that 0 is also a strong 

solution,  solution,  and  weak   solution    of 

(𝑈 − 𝐼𝑉𝑂𝑃) from Theorem 5.7 and Theorem 

5.8. 

We can say that there is no solution to the 

problems other than 0 from Theorem 5.4 and 

Theorem 5.7. 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 2. Graph of the 𝑧𝑒(𝑓𝐿(𝑥)) in Example 5.9. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 3. Graph of the 𝑧𝑒(𝑓𝑈(𝑥)) in Example 

5.9. 

6. Subdifferentials of interval-valued 

functions and optimality conditions of 

interval optimization problems. 

 

Inspired by works in Hernández & Rodríguez-

Marín, 2011; Chen & Jahn, 1998, and 

Karaman et al., 2020a, we present two 

subgradients for the interval-valued functions 

in this section. We define two subdifferentials, 

and some optimality conditions are obtained 

by using these subdifferentials. 

 

Definition 6.1 A continuous linear operator 

𝑇: 𝑋 → 𝑌 is called a weak subgradient of 𝐹 at 

𝑥0 ∈ 𝑀 if 

𝐹(𝑥) − 𝐹(𝑥0) − 𝑇(𝑥 − 𝑥0) ⊂ 𝑌 ∖ {−𝑖𝑛𝑡(𝐶)} 

for all 𝑥 ∈ 𝑀. The class of all weak 

subgradients of 𝐹 at 𝑥0 is called weak 

subdifferential of 𝐹 at 𝑥0 and denoted by 

𝜕𝑤𝐹(𝑥0). 

 

Definition 6.2 A continuous linear operator 

𝑇: 𝑋 → 𝑌 is called a subgradient of 𝐹 at 𝑥0 ∈
𝑀 if 

𝐹(𝑥) − 𝐹(𝑥0) − 𝑇(𝑥 − 𝑥0) ⊂ 𝐶 

for all 𝑥 ∈ 𝑀 ∖ {𝑥0}. The class of all 

subgradients of 𝐹 at 𝑥0 is called 

subdifferential of 𝐹 at 𝑥0 and denoted by 

𝜕𝐹(𝑥0). 

 

It is clear that 𝜕𝑤𝐹(𝑥0) ⊂ 𝜕𝐹(𝑥0) for 𝑥0 ∈ 𝑀.  

 

Proposition 6.3 Let 𝑥0 ∈ 𝑀. Then, 𝜕𝐹(𝑥0) 

and 𝜕𝑤𝐹(𝑥0) are convex sets. 

 

Proof. Proof is obtained for subdifferential 

𝜕𝐹(𝑥0). Similarly, it can be obtained for weak 

subdifferential.  

Let 𝑇1, 𝑇2 ∈ 𝜕𝐹(𝑥0) and 𝜆 ∈ [0,1]. We shown 

that 𝜆𝑇1 + (1 − 𝜆)𝑇2 ∈ 𝜕𝐹(𝑥0). Since 𝑇1 ∈
𝜕𝐹(𝑥0), we have  

 

𝐹(𝑥) − 𝐹(𝑥0) − 𝑇1(𝑥 − 𝑥0) ⊂ 𝐶  (3) 
 

for all 𝑥 ∈ 𝑀.  

Also, because 𝑇2 ∈ 𝜕𝐹(𝑥0), we get 

 

𝐹(𝑥) − 𝐹(𝑥0) − 𝑇2(𝑥 − 𝑥0) ⊂ 𝐶  (4) 

 

for all 𝑥 ∈ 𝑀. Because 𝐶 is convex ordering 

cone, we yield 𝜆𝐹(𝑥) − 𝜆𝐹(𝑥0) − 𝜆𝑇1(𝑥 − 𝑥0) +
(1 − 𝜆)𝐹(𝑥) − (1 − 𝜆)𝐹(𝑥0) − (1 − 𝜆)𝑇2(𝑥 − 𝑥0) 

= 𝐹(𝑥) − 𝐹(𝑥0) − (𝜆𝑇1 + (1 − 𝜆)𝑇2)(𝑥 − 𝑥0) ⊂ 𝐶 +
𝐶 = 𝐶. 

Therefore, (𝜆𝑇1 + (1 − 𝜆)𝑇2(𝑥 − 𝑥0) ∈
𝜕𝐹(𝑥0). Then, 𝜕𝐹(𝑥0) is a convex set. 

𝒙 

𝒚 

−1 1 

1 

𝑧𝑒(𝑓𝐿(𝑥)) 

𝒙 
−1 1 

1 

𝒚 

𝑧𝑒(𝑓𝑈(𝑥)) 
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Proposition 6.4  

Let 𝑥0 ∈ 𝑀  and 𝐹, 𝐺: 𝑀 → 𝐼𝐶(𝑌) be  

interval-valued functions.     

Then,  

(i)      𝜕𝐹(𝑥0) + 𝜕𝐺(𝑥0) ⊂ 𝜕(𝐹 + 𝐺)(𝑥0), 

(ii) 𝜕𝑤𝐹(𝑥0) + 𝜕𝑤𝐺(𝑥0) ⊂ 𝜕𝑤(𝐹 +
    𝐺)(𝑥0). 

 

Proof. It follows immediately from Definition 

6.1 and Definition 6.2. 

 

Theorem 6.5 Let 𝑥0 ∈ 𝑀. If 0 ∈ 𝜕𝐹(𝑥0), then 

𝑥0 is a strongly minimal solution of  

(𝐿 − 𝐼𝑉𝑂𝑃). 

 

Proof. Let 0 ∈ 𝜕𝐹(𝑥0). Then, we have 

𝐹(𝑥) − 𝐹(𝑥0) ⊂ 𝐶 for all 𝑥 ∈ 𝑀 ∖ {𝑥0}. This 

gives [𝑓𝐿(𝑥), 𝑓𝑈(𝑥)] − [𝑓𝐿(𝑥0), 𝑓𝑈(𝑥0)] ⊂ 𝐶 

for all 𝑥 ∈ 𝑀 ∖ {𝑥0}.  That is,  

𝑓𝐿(𝑥) − 𝑓𝑈(𝑥0) ∈ 𝐶 and 𝑓𝑈(𝑥0) ≤𝐶 𝑓𝐿(𝑥) for 

all 𝑥 ∈ 𝑀 ∖ {𝑥0}. Since 𝑓𝐿(𝑥0) ≤𝐶 𝑓𝑈(𝑥0), we 

obtain 𝑓𝐿(𝑥0) ≤𝐶 𝑓𝐿(𝑥) for all 𝑥 ∈ 𝑀 ∖ {𝑥0}. 

So, 𝐹(𝑥0) ≼𝐿 𝐹(𝑥) for all 𝑥 ∈ 𝑀. Therefore, 

𝑥0 is a strongly minimal solution of  

(𝐿 − 𝐼𝑉𝑂𝑃). 

 

 

Remark 6.6 Let 𝑥0 ∈ 𝑀. If 0 ∈ 𝜕𝐹(𝑥0), then 

(i)  𝑥0 is a minimal solution of 

 (𝐿 − 𝐼𝑉𝑂𝑃), 

(ii) 𝑥0 is a weak minimal solution of 

 (𝐿 − 𝐼𝑉𝑂𝑃). 

 

Theorem 6.7 Let 𝑥0 ∈ 𝑀. If 0 ∈ 𝜕𝐹(𝑥0), then 

𝑥0 is  a    strongly     minimal    solution     of 

 (𝑈 − 𝐼𝑉𝑂𝑃). 

 

Proof. It follows similarly to the proof of 

Theorem 6.5. 

 

Theorem 6.8 Let 𝑥0 ∈ 𝑀. If 0 ∉ 𝜕𝐹(𝑥0), then 

𝑥0 is a maximal solution of (𝐿 − 𝐼𝑉𝑂𝑃). 

 

Proof. Let 0 ∉ 𝜕𝐹(𝑥0). Then, 

[𝑓𝐿(𝑥), 𝑓𝑈(𝑥)] − [𝑓𝐿(𝑥0), 𝑓𝑈(𝑥0)] ⊄ 𝐶 for all 

𝑥 ∈ 𝑀 ∖ {𝑥0}. That is, 

 [𝑓𝐿(𝑥) − 𝑓𝑈(𝑥0), 𝑓𝑈(𝑥) − 𝑓𝐿(𝑥0)] ⊄ 𝐶 for all 

𝑥 ∈ 𝑀 ∖ {𝑥0}. This means 𝑓𝐿(𝑥) − 𝑓𝑈(𝑥0) ∉
𝐶 or 𝑓𝑈(𝑥) − 𝑓𝐿(𝑥0) ∉ 𝐶 for all 𝑥 ∈ 𝑀 ∖ {𝑥0}. 

Then, 𝑓𝑈(𝑥0) ≰𝐶 𝑓𝐿(𝑥) or 𝑓𝐿(𝑥0) ≰𝐶 𝑓𝑈(𝑥) 

for all 𝑥 ∈ 𝑀 ∖ {𝑥0}. Since 𝑓𝐿(𝑥) ≤𝐶 𝑓𝑈(𝑥) 

for all 𝑥 ∈ 𝑀, we obtain 𝑓𝐿(𝑥0) ≰𝐶 𝑓𝐿(𝑥) or 

𝑓𝐿(𝑥0) ≰𝐶 𝑓𝐿(𝑥) for all 𝑥 ∈ 𝑀 ∖ {𝑥0}. Hence, 

𝐹(𝑥0) ⋠𝐿 𝐹(𝑥) for all 𝑥 ∈ 𝑀 ∖ {𝑥0}.  

Therefore, 𝑥0   is   a   maximal  solution  of 

 (𝐿 − 𝐼𝑉𝑂𝑃). 

 

Theorem 6.9 Let 𝑥0 ∈ 𝑀. If 0 ∈ 𝜕𝑤𝐹(𝑥0), 

then 𝑥0 is a   weak   minimal   solution   of 

 (𝑈 − 𝐼𝑉𝑂𝑃). 

 

Proof. Assume that 0 ∈ 𝜕𝑤𝐹(𝑥0). Then we 

have 𝐹(𝑥) − 𝐹(𝑥0) ⊂ 𝑌 ∖ {−𝑖𝑛𝑡(𝐶)} for all 

𝑥 ∈ 𝑀. This gives [𝑓𝐿(𝑥) − 𝑓𝑈(𝑥0),
𝑓𝑈(𝑥) − 𝑓𝐿(𝑥0)] ⊂ 𝑌 ∖ {−𝑖𝑛𝑡(𝐶)} for 

all 𝑥 ∈ 𝑀. Then, 𝑓𝐿(𝑥) − 𝑓𝑈(𝑥0) ∉ −𝑖𝑛𝑡(𝐶) 

that is, 𝑓𝑈(𝑥0) − 𝑓𝐿(𝑥) ∉ 𝑖𝑛𝑡(𝐶) for all 𝑥 ∈
𝑀. Since 𝑓𝐿(𝑥) ≤𝐶 𝑓𝑈(𝑥) for all 𝑥 ∈ 𝑀, we 

get 𝑓𝑈(𝑥) ≮𝐶 𝑓𝑈(𝑥0) for all 𝑥 ∈ 𝑀. So, 

𝐹(𝑥) ⊀𝑈 𝐹(𝑥0) for all 𝑥 ∈ 𝑀. This means 𝑥0 

is a weak minimal solution of (𝑈 − 𝐼𝑉𝑂𝑃). 

 

Theorem 6.10 Let 𝑥0 ∈ 𝑀. If 0 ∈ 𝜕𝑤𝐹(𝑥0), 

then 𝑥0 is a weak minimal solution of 

 (𝐿 − 𝐼𝑉𝑂𝑃). 

 

Proof. It can be proved similarly to the proof 

of Theorem 6.9. 
 

7. Conclusion 

 

A new generalization of (IVOP) on real 

topological vector spaces is given in this 

work. Intervals on the real topological vector 

space are defined by using the ordering cone. 

To obtain the solutions and optimality 

conditions for (IVOP), scalarization and 

subdifferentials are used. New optimality 

conditions may be found by using the 

proposed method, vectorization and 

directional derivative, etc. 
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