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Abstract

A p-rose graph I' = RG(as, ay, .. .,as) is a graph consisting of p = a3 + a4 + --- +a;, > 2
cycles that all meet in one vertex, and a@; (3 < i < s) is the number of cycles in I of length i.
A graph G is said to be DLS (resp. DQS) if it is determined by the spectrum of its Laplacian
(resp. signless Laplacian) matrix, i.e., if every graph with the same spectrum is isomorphic to
G. He and van Dam recently proved that all p-roses, except for two non-isomorphic exceptions,
are DLS. In this paper, we show that, for p > 3 all p-roses are DQS.
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1. Introduction

Let G = (V(G), E(G)) be a simple graph with
vertex set V(G) = {vy,...,v,} and edge set
E(G) = {eiy,...,en}, and let A(G) denote
the adjacency matrix of G. The Laplacian
and the signless Laplacian matrix are respec-
tively defined as L(G) = D(G) — A(G) and
Q(G) = D(G) + A(G), where D(G) is the diag-
onal matrix of vertex degrees.

For M € {A, L,Q}, we consider the M-po-
lynomial of G defined as

Py (G)(x) = det(xI — M(G)),

where [ is the identity matrix of order n.
The multiset Spec,,(G) consisting of the M-
eigenvalues, i.e., the roots of the M-polynomial
of G, is called the M-spectrum of G.

Two graphs are said to be M-cospectral if

they have the same M-spectrum. When the
only graphs which are M-cospectral to G are

those isomorphic to G, we say that G is deter-
mined by its M-spectrum or, equivalently, that
G is a DMS-graph.

Establishing whether a graph G in a fixed
class G is DMS or not and, in the latter case,
detecting all graphs which are M-cospectral to
G is now a classical topic in spectral graph the-
ory. In the last few years, many results have
been obtained when G is the class of p-roses.
A p-rose I' = RG(a3,ay, . . .,as) (here p > 2)
is a graph consisting of p = az+as+- - -+a; cy-
cles all sharing a single vertex, @; (3 < i < s)
is the number of cycles in I' of length i, and
ag > 0.



Fig. 1. The 5-rose RG(3,2)

Indeed, Wang et al. (2010) showed that al-
most all 2-rose graphs are DQS, the exception
being the one with ay; = asr+; = 1 if the or-
der is 4k, and the one with ar,_1 = ayr = 1
if the order is 4k — 2. The same result can be
now retrieved from (Belardo & Brunetti 2019,
Table 1).

3-roses have been investigated in (Liu &
Huang 2013; Wang et al. 2013); it turned out
that they are both DLS and DQS. Ma & Huang
(2016) proved that any 4-rose graph is DQS. Fi-
nally, He & van Dam (2018) have shown that,
apart from two exceptional cases of order 6 and
7, all roses are DLS.

The following theorem is our main result.

Theorem 1.1. Every p-rose with p > 3 is
DOS.

The remainder of the paper is structured as
follows: Section 2 contains preliminary results
on the signless Laplacian spectrum of a graph,
while Section 3 is devoted to the proof of The-
orem 1.1.

2. Preliminaries

Let G be a graph of order n. We assume
that its vertices vy, ..., v, are arranged in such
a way that di(G) > d»(G) > --- = d,(G),

where d;(G) = dg(v;) is the vertex degree of
v; in G (the subscript will be omitted if the
graph context is clear). We respectively de-
note by 1;(G) > (G) > --- > A,(G) and
by q1(G) = q2(G) = -+ > gu(G) the A- and
the Q-eigenvalues of G. The latter are non-
negative since Q(G) is positive semidefinite.

We start by recalling the simplest version of
the celebrated Interlacing Theorem.

Theorem 2.1. (Cvetkovié er al. 2010, Section
1.3) Let G be a graph of order n > 1, and let
G —v be the graph obtained from G by deleting
the vertex v and all the edges having v as an

Ali Zeydi Abdian, Ali Reza Ashrafi, Maurizio Brunetti

endpoint. Then,

A(G) = (G -v)
P /lZ(G) Z 2 /ln—l(G - V) P /ln(G)

We now collect some known results on the
signless Laplacian of simple graphs. They are
all necessary to prove Theorem 1.1. The first
one is a consequence of the following well-
known fact: the Q-eigenvalues of a graph inter-
lace with the Q-eigenvalues of an edge-deleted
subgraph.

Proposition 2.2. (Wang & Belardo 2011,
Corollary 2.7) Let G be a graph of order n
and let G’ be a subgraph of G of order n’ < n.
Then, for 1 <i < n’ we have g;(G") < qi(G).

Proposition 2.3. (Cvetkovi¢ et al. 2010, Sec-

tion 5) Let G be a non-empty graph of order
n > 2. Then, qi(G) > di(G) + 1, and the
equality holds if and only if G is the star K1 1.

Proposition 2.4. (Das 2010, Corollary 2.6)
Let G be a graph of order n. Then, q1(G) <
di(G) + dr(G), where the equality holds if and
only if G is either K1, or any regular graph.

Proposition 2.5. (Das 2010, Corollary 3.2)
For any graph G of order n > 2, we have
¢2(G) = dr(G) — 1. If the equality holds,
the maximum and second maximum degree ver-
tices are adjacent, and di(G) = d>(G).

In Lemma 2.6 below, and in the rest of the
paper as well, ng(Cs3) denotes the number of
triangles contained in a graph G.

Lemma 2.6. (Cvetkovi¢ et al. 2007b, Corol-
lary 4.3) Let G be a graph with n vertices,
m edges and D(G) = diag(dy,...,d,). Let

T,(G) = X qf(G), (k = 0) be the k-th spectral
i=1

moment for the Q-spectrum. Then,

n
o(G)=n  Ti(G)= Z d: =2m,
i=1
n
T5(G) = 2m + Z d?,
i=1

n n
T5(G) = 6n(C3) +3 »_d? + " ds.
i=1 i=1
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From Lemma 2.6 it is not hard to obtain the
following result.

Proposition 2.7. Let H be a graph Q-
cospectral to G. Then:

(i) G and H have the same number of vertices
and the same number of edges.

n n
(if) zl d*(G) = 21 d*(H).

i= i=
(iii) 6 (nG(C3)—np(C3)) = ,zl<d,-3(H>—d§(G)>.

We now consider the numbers
T5(G) = ) (di(G) - 2)?
i=1

and

~ n

T5(G) = tr(A(G)*) + ) (di(G) - 2)".

i=1

After expanding the powers in the sums and
using the well-known equality

tr(A(G)*) = 6ng(C3),

Proposition 2.8 below follows from Lemma 2.6
and Proposition 2.7.

Proposition 2.8. If G and H are Q-cospectral,
then

T(G) = Ta(H) and T3(G) = T5(H).

For any graph G, we recall that the subdivi-
sion graph S(G) is obtained from G by replac-
ing each of its edges by a path of length 2, or,
equivalently, by inserting an additional vertex
into each edge e of G.

Proposition 2.9. (Cvetkovi¢ et al. 2010, The-
orem 2.4.4) Let G be a graph of order n and
size m. Then,

PA(S(G))(x) = x""Po(G)(x?).

The following corollary is a consequence of
Propositions 2.7 and 2.9.

Corollary 2.10. G and H are Q-cospectral if
and only if S(G) and S(H) are A-cospectral.

Proposition 2.11. (Cvetkovi¢ et al. 1995, p.
73) The adjacency spectrum Spec 4(P,) of the
path P, with n vertices is

{/li:2cos ml I = 1,2,...,n}.

n+

Given two graphs G and G” we shall denote
by G U G’ the disjoint union of G and G’.

Proposition 2.12. (Liu et al. 2014, Propo-
sition 3.2) Let G be a connected graph with
q2(G) < 4, and let the graph H be Q-cospectral
to G.

(1) If G is non-bipartite, then H is con-
nected.

(2) If G is bipartite, then either H is con-
nected or H = P, U H|, where P, is a
pathwith r vertices and Hy is connected
and non-bipartite.

3. Proof of Theorem 1.1

Our aim is to prove that, for p > 3, every p-rose
is DQS.

Lemma 3.1. Let I’ = RG(a3, ay, . .
p-rose graph. Then,

(i) 2p+1<q() <2p+2;
(ii) q2(I') < 4.

Proof. (i) Note that p-roses are neither regu-
lar nor they have pendant vertices. Now, the
strict inequalities come from Propositions 2.3
and 2.4 since d{(I') = 2p and d,(T") = 2.

.,day) be a

(i) Let v be the vertex with maximum degree
in V(I'). Then,

S(F) —v=a3Ps UaqP;U---Ua,Pry_;.

By Proposition 2.11, 4;(S(I') — v) < 2. There-
fore, 4(S(I')) < 2 by Theorem 2.1. Finally, by
Proposition 2.9 we have ¢»>(I') < 4. O

Lemma 3.2. Let the graph H be Q-cospectral
to a fixed p-rose I'. Then,

2p—2<di(H)<2p and dr(H) <4.

Proof. Proposition 2.3 and Lemma 3.1 imply
that

di(H) <qiH)-1=q(I)-1<2p+1.



Therefore, d\(H) < 2p. Moreover, by Proposi-
tion 2.5 and Lemma 3.1, we get

dy(H) =1 < g2(H) = () < 4,

which is possible only if d>(H) < 4.
We use such inequality, Proposition 2.4 and
Lemma 3.1 to infer that

2p+1 < qi(I') = q1(H)
<d|(H)+ dy(H) < d\(H) + 4,

from which we deduce 2p — 2 < di(H) as
claimed. O

Lemma 3.3. Let the graph H be Q-cospectral
to afixed p-rose U withp > 4. Thendr(H) < 3.

Proof. Since in our hypotheses p > 4,
Lemma 3.2 ensures that di(H) > 2p—-2 > 6
and d>(H) < 4. We now argue by contradic-
tion assuming that d>(H) = 4. Let v, be a
vertex of H with degree d>(H) = 4. Clearly,
the graph H contains as subgraphs two distinct
stars S = Kj6 and §” = Kj4 with centers v,
and v, respectively. Let H’ be the (not neces-
sarily disjoint) union of $” and §”,i.e., V(H’) =
V(§)UV(S”)and E(H") = E(S") U E(S”).
There are several possibilities: i) S” and S”
are both edge- and vertex-disjoint; ii) S” and S”
are edge-disjoint and have i vertices in common
(with 1 < i < 4);iii) $” and S” have one edge
and i vertices in common (with 2 <i < 5). In
all the nine cases, a direct computation shows
that ¢o(H’) > 4. This contradicts Proposi-
tion 2.2. Infact, 4 > ¢>(H) by Lemma 3.1. O

Lemma 3.4. Let the graph H be Q-cospectral
to a fixed p-rose I with p > 4, and let v\ be
the vertex of H with degree di(H). Then, each
triangle contained in H has v among its ver-
tices.

Proof. As in the proof of Lemma 3.3, we argue
that dj(H) > 6. The existence of a triangle in
H not having v among its vertices would imply
the presence of one of the graphs H’s depicted
in Figure 2 among the subgraphs of H. But this
is not possible, since qz(Hl.’) >4forl <i<4
(note that the H’s all contain C3 U Ky 3, and
¢2(C3 U Kj3) = 4). Once again, this con-
tradicts Proposition 2.2, since 4 > ¢»(H) by
Lemma 3.1. O
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Fig. 2. Four ‘forbidden’ subgraphs: their second
signless Laplacian eigenvalue is at least 4.

Proposition 3.5. Let the graph H be Q-
cospectral to a fixed p-rose I' with p > 4,
and let n3y be the number of vertices in V(H)
of degree 3. Then,

(1) np(C3) < 2min{d,(H),n3}
+ max{d;(H) — n3,0}.

Proof. As before, we denote by v; the vertex in
H whose vertex degree is d(H). Each neigh-
bour of v; belongs to at most two triangles.
This fact comes from Lemma 3.3 and the ab-
sence of the graph H in Figure 2 among the sub-
graphs of H. On the other hand, we deduce
by Lemma 3.4 that each triangle of H has two
neighbours of v among its vertices. Therefore,
the maximum possible number of triangles is
attained if

e all vertices of degree 3 are adjacent to vy;

e cach of them belongs to two triangles;

e cach neighbour of v; whose degree is not 3, if
any, belongs to a triangle (which is necessarily
unique by Lemma 3.3).

This means that

2n3+(di(H)-n3) if di(H) > n3,
ng(C3) < {Zdl(H)

Such inequality is equivalent to (1). O

otherwise.

The upper bound for the number of trian-
gles in H established in Proposition 3.5 is far
from being sharp. In any case, Inequality (1)
is restrictive enough to prove Theorem 3.6.

Theorem 3.6. Suppose that H and the p-
rose graph I = RG(as,aq,...,as) are Q-
cospectral. Then H and 1" share the same de-
gree sequence.

16
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Proof. Sinceitis already known that all 3-roses
are DQS (Wang et al. 2013, Theorem 5.3) and
all 4-roses are DQS as well (Ma & Huang 2016,
Theorem 4.8), the statement clearly holds for
p € {3,4}.

In any case, we suppose for the rest of the
proof that p > 4, and assume that H has n; ver-
tices of degree i for 1 < i < d|(H). According
to Proposition 2.7, the graphs H and I' have
the same order n and the same size, which is
n + p — 1. They also share the other Q-spectral
invariants collected in Section 2. The equalities

To(H)=To(I'),  Ti(H)=T(I'),
dy(H) d(I)

D diHY =Y di(TY, To(H)=Tx(I)
i=1 i=1
lead to the following four equations:

d\(H)
2) >omi=mn
i=1
d\(H)
(3) D ini=2n+p-1);
i=1
d\(H)
4) i’n; = 4(n - 1) + 4p*;

i=1

() D (d(H) =27 = (2p-2)"
i=1

By adding up (2), (3) and (4) multiplied by
2, =3, and 1 respectively, we obtain
d\(H)
©) ) (@ =3i+2m = (2p - D(2p-2);
i=1

and if we equate T5(H) and
T5(T) = 6as + (2p - 2)°,

we get
(2p -2~ ¥ (d(H)-2)

6

A priori, there are just three possibilities for
di(H). In fact, Lemma 3.2 says in particular
that d\(H) € {2p -2, 2p — 1, 2p}.

(7) nu(C3)=asz+

If di(H) = 2p, (5) implies that
n

D (di(H)~2)* =0,
i=2

and this is only possible if d;(H) = 2 for all
i € {2,...,n}, as claimed. The proof will be
over once we show that the cases dj(H) = 2p—1
and d>(H) = 2p — 2 cannot occur.

In fact, suppose by contradiction that
di(H) = 2p — 1. Since dr(H) < 3 by
Lemma 3.3, and in our hypotheses d|(H) > 7,
we have ny,_| = 1. Therefore, (6) becomes

(2p = 1) =3(2p — 1) +2) + 2n3

=2p-1)(2p-2),
which, together with (2) and (3), gives
ny=2p-3, np=n—4p+4, and n3 = 2p—2.

Finally, by (7), we get

ny(C3) = az + 2p* — 5p + 3.

In the case at hand, Proposition 3.5 implies that
ng(C3) < 4p — 3. But

ng(C3) = az +2p* —5p+3 <4p-3

is false for p > 4, being a3 > 0.

The case di(H) = 2p — 2 is excluded in a
similar way. Assuming d;(H) = 2p — 2 and
p = 4, we have ny,_» = 1, since do(H) < 3.
Therefore, (6) becomes

((2p =22 =3(2p —2) +2) + 2n3

=(2p-1D@2p-2),
which, together with (2) and (3), gives
ny=4p-7, no =n—-8p+11and n3 =4p->5.

From (7) we get

ng(C3) = a3 + 4p2 - 12p +9.

This time, Proposition 3.5 implies that
ng(Cs) < 4p — 4. In this case too, it is easily
seen that

ng(C3) = az +4p* — 12p+9 < 4p — 4
is false for p > 4. O

Corollary 3.7. Let p > 3, and let H be a graph
Q-cospectral to a p-rose I'. Then H is a p-rose
itself.



Proof. Let n be the order of the graph H. By
Theorem 3.6 we know that

2p ifi =1;
@ dH =1, 4 <ign

The absence of pendant vertices in V(H) im-
plies that H cannot have a path among its
connected components. By Proposition 2.12
it follows that H is connected, and the only
connected graphs having a degree sequence as
given in (8) are p-roses. O

We are now ready to complete the proof
of Theorem 1.1. He & van Dam (2018) in-
troduced the universal Laplacian matrix of a
graph G

O(a, B)(G) := aD(G) + BA(G),

defined for every real number « and for every
non-zero real number 5. They proved that if
two p-roses are Q(&, [3)-cospectral for a fixed
(@, B) € R x (R\ {0}), then they are isomor-
phic (He & van Dam 2018, Proposition 3.1).
Now, Corollary 3.7 can be rephrased by say-
ing that if H is a graph Q-cospectral to a p-
rose I' for p > 3, then H is a p-rose which is
Q(1, 1)-cospectral to I'. By (He & van Dam
2018, Proposition 3.1), the graphs H and I" are
isomorphic. In other words every p-rose for
p = 3 is determined by its signless Laplacian
spectrum.
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