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ABSTRACT

In this paper, after a brief review of some algebraic properties of generalized
quaternions, we investigated the properties of generalized Hamilton operators and we
considered how the generalized quaternions can be used to described the rotation in 4-
dimensional space E. ;.
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INTRODUCTION

The quaternions are commonly used in physics, chemistry, robotics, mechanics,
electronics and etc., since they serve powerful computational tools to deal with
the rotations and translations in the real and dual spaces (Ward, 1997). Arthur
Cayley was first who discovered that quaternion could be used to represent the
rotations in E*. Any rotation in E* is a product of rotation in a pair of
orthogonal two-dimensional subspaces (Weiner & Wilkens, 2005). The
quaternion algebra is an associative and non-commutative 4-dimensional
Clifford algebra. Some algebraic properties of Hamilton operators are
considered in (Agrawal, 1987) where real quaternions have been expressed in
terms of 4x4 matrices by means of these operators. These matrices have
applications in mechanics, quantum physics and computer-aided geometric
design (Adler, 1995). In addition, the homothetic motions has been considered
with aid of the Hamilton operators in four-dimensional Euclidean space
E*(Yayli, 1992). The eigenvalues, eigenvectors and the others algebraic
properties of these matrices are studied by several authors (Farebrother et al.,
2003; Grof et al., 2001; Zhang, 1997). De-Moivre’s and Euler’s formulae for
matrices associated with real quaternions is studied in (Jafari et al., 2011) and
every power of these matrices are immediately obtained. A brief introduction to
the generalized quaternions is provided in (Pottman & Wallner, 2000), the
subject which have investigated in algebra (Savin et al., 2009; Unger & Markin,
2008). Recently, we have studied the generalized quaternion and some of their
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algebraic properties (Jafari &Yayli, 2010a). It is shown that the set of all unit
generalized quaternions with the group operation of quaternions multiplication
is a Lie group of 3-dimension. Their Lie algebra and properties of the bracket
multiplication are looked for, e.g. a matrix corresponding to Hamilton
operators, defined for the generalized quaternions, determines a Homothetic
motion in Eiﬂ (Jafari & Yayli, 2010b). In this paper, we briefly recall some
fundamental properties of the generalized quaternions, we investigate some
properties of the Hamilton operators and we show how the generalized
quaternions can be used to described the rotation in 4-dimensional space Eij

PRELIMINARIES

In this section, we brief describe some properties of real quaternions. Let C and
R be the fields of the complex and the real numbers, respectively. Let H be a
four-dimensional vector space over R with an ordered basis B= {e, i, ]_:k}

Real quaternion

A real quaternion is a vector
q= aoe+a1f+ a2/7+ Cl3l€ eH

with real coefficients ay, aj, a, as. Besides the addition and the scalar
multiplication of the vector space H over R, the product of any two quaternions
e, i J. k is defined such that eacts as an identity and the following properties are
fulfilled:

2 2

Real and complex numbers can be thought as quaternions in the natural way.
For any ¢ = doe +ari+ arj + ask, we define Req = o, the real part of ¢;
Coq = ay + aji, the complex part of ¢; Imq = ayi + arj + ask, the imaginary
part of ¢; § = age — ayi — azf—adg, the conjugate of g.

We can represent a quaternion g = ay + aii + a»j + ask by a 2 x 2 complex
matrix (with 7/ being the usual complex imaginary);
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ao + i’a1 —i’a1 + a»

—z'/al —dy dy— i’a3

or by a 4 x 4 real matrix

ap —dp —dy —a3
ai a —az @ .

A= (Girard, 2007).
ar az [7N) —da]

ay —dp ai ap

The Euler’s and De-Moivre’s formulae for the matrix 4 are studied in (Jafari
et al.,2011). From De- Moivre’s formula, it results that the equation 4" = I4 for
n > 2 has an infinity of solutions of matrices of unit quaternions.

Let i = (uy,uz, uz,uy), v= (vi,v2,v3,v4) € R* and o, B € R. The generalized
inner product of #/ and V'is defined by

(i, V) = u1vy + auavy + Buzvs + afugvy.
We put Eiﬁ = (R*, (). (Jafari & Yayli, 2010b)
Special cases:

1. Ifa=p=1,then Eiﬁ is an Euclidean 4-space E*.

2. Ifa=1, 8= -1, then Eiﬁ is a semi-Euclidean 4-space with 2-index E‘z‘
(Kula & Yayli, 2007)

Generalized quaternion

A generalized quaternion ¢ is an expression of the form
q=ay+ aii + a;f—i— a3lg

where ay, a;, a; and a3 are real numbers and i, j, k are quaternionic units
satisfying the equalities

~0

= —q, ]_2:_57 Ezz_aﬁv

=k =—ji. jk=pi=—-4k,
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and
kl':()zj:—fl?7 a, B € R.

The set of all generalized quaternions is denoted byH,s. A generalized
quaternion ¢ is a sum of a scalar and a vector, called scalar part, S, = ag, and
vector part I7q = alf + agf—k a3l€. Therefore H,3 is form a 4-dimensional real
space which contains the real axis R and a 3-dimensional real linear space Efw,
so that, Hys = R& E. 5.

Special cases:

1. a=p=1,isconsidered, then H,z is the algebra of real quaternions.

2. a=1, f=—1, isconsidered, then H,z is the algebra of split quaternions.
3. a=1, =0, isconsidered, then H,g is the algebra of semi-quaternions.
4

a=—1, 3=0,is considered, then H,s3 is the algebra of split semi-
quaternions.

1
5. a=0, =0, is considered, then H,s is the algebra of I -quaternions.
(Rosenfeld, 1997)

The multiplication rule for generalized quaternions is defined as

—

ap = S48y = (Vs V) + SV + S,V + 7 x

o

where
Sq = ay, Sp = by, <I7q, 171,> = aa1b| + Parby + afaszbs,

—

Vq xV,= ﬂ(a2b3 — a3b2)f+ a(a3b1 — a1b3)]7+ (a1b2 — a2b1)/€.

It could be written

[ay —aar —Bar —aPas] [ by
ap ap —Bay  PBay by
qp =
dy aaj ap —Qd b2
a3 —a  a; ap 1103 ]

Obviously, quaternions multiplication is associative and distributive with
respect to addition and subtraction, but the commutative law does not hold in
general.
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H,s with addition and multiplication has all the properties of a number field
without commutativity of the multiplication. Therefore it is called the skew field
of quaternions.

The conjugate of the quaternion ¢ = S, + I7q is denoted by g and defined as
qg=3S,— I7q. The norm of a quaternion ¢ = (ag,a;,a2,a3) is defined by
Ny =qq=q4q=d}+ adal + a3 + afaj and we say that go = ¢/N, is a unit
generalized quaternion where ¢ # 0. The set of unit generalized quaternions, G,
with the group operation of quaternions multiplication is a Lie group of 3-
dimension. The scalar product of two generalized quaternions ¢ = S, + I7q and
p==S,+ I7p is defined as

(q,p)= S¢Sy + <I7q, T7p> = S(gp).

Also, using the scalar product we can defined an angle A between two
quaternions ¢, pto be such

(Jafari & Yayli, 2010a).

A matrix 4 is called a quasi-orthogonal matrix if 47¢4 =¢ and det 4 = 1
where

o o o -

o o 0 ©

o © o
o

and «, 5 € R. The set of all quasi-orthogonal matrices with the operation of
matrix multiplication is called rotations group in 4-spaces Ezd (Jafari & Yayli,
2010Db).

GENERALIZED HAMILTON OPERATORS

In this section, we introduce the R—linear transformations representing left and
right multiplication in H,3. Let ¢ be a unit generalized quaternion, then

+ —_
h:H, ;Hap and s : H,3 — H,p are defined as follows:
q q
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(x)=gx, h(x)=xq x€Huy
q

S+

In both cases, considering H,3 to be EY 3 Spanned by the usual basic elements.
We suspect that both these maps correspond to rotation, since it easy to show
that they are norm and angle preserving. For example, considering the map h
we have already seen that if x,y,q € H,3 and N, = 1, then

Ny = NyN, = N,.

+ —
The generalized Hamilton operators H and H, could be represented as the
matrices;

ap —oad —ﬁaz —aﬁag

+ a  ap —Baz  Bay

H(q) = (1)
a  aa ap —ad
as  —da ap ao

and

ay —aay —Pa; —afas

- ap ap Bay  —Pa

H(q) = (2)
a, —aday A ad
as  dap —da )

A direct consequence of the above operators is the following identities:

H() =1, HD =E, H()=E, HK) =E: (3)

and

—

H) =1L, H) =F, H) = F, HKk)=F; L (4)

where I, is a 4x4 identity matrix. Note, that the properties of the E, and
F, (n=1,2,3) are identical to those of generalized quaternionic unit

- - = + -
i,j,k. Since H and H are linear, it follows that;

+ + + + + oo
H(q) =aoH(1)+ai H(i) + a H(j) + a3 H(k)
= aoly + a Ey + By + a3 B3,
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and

= - =

H(q) =aoH()+ai H(i) + ay H() + a3 H(k)
=aols + a1 F1 + a2 F> + az F3.

+ —
Using the definitions of H and H, the multiplication of the two generalized
quaternions ¢ and p is given by

ap = H(g)p = H(p)q.

+
Theorem 1: If ¢ and p are two generalized quaternions, A is a real number and H
and H are operators as defined in equations (1) and (2), respectively, then the
following identities hold:

i. q=pe Hq) = H(p) = Hq) = H(p).
i H(g+p) = H(q) + Hp), Hg+p) = Hg) + H(p).
iii.  H(\g) = AH(q), H(M) = \H(q).

iv. Hlap) = H(g) H(p), H(ap) = H(p) + H(g).

-1
+ —
vt = i) L i =[] w2 2o
T
. + + - - T
i ) = i) ) = (i)
. * _ 2 - _ 2
vii.  det [H(q)} = (N, det [H(q)} = (N,
+ =
viil.  tr [H(q)] = 4ay, tr[H(q)} = 4ay.
Proof: Identities (i), (if) and (iif) can be proved easily. Using the associative
property of the quaternions multiplication, it is clear that following identities

hold:

(ap)r = q(pr) = qpr

+ . .- .
In terms of operator H, the above identities can be written as

Higp)r = H(H(q)p)r
H(q)(H(p)r) = H(q) H(p)r-
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and similarly,

H(gp)r = H(H(q)p)r
= H(p)(H(q)r) = H(p) H(q)r.

Since r is arbitrary, the above relation employs equation (iv). Using the
inverse property, we have

. + . " .
and in terms of operator H, the above identities can be written as

Hgq™") = H(q) H(g™)

;1(14) = Iy,
H(qg'q9) = H(¢g"") H(q) = H

H(ly) =14,

therefore, the above relation employs equation(v). Identities (vi), (vii) and (viii)
can be proved easily.

Theorem 2: The map ¢ defined as

(2 (Haﬂa +a ) - (M(4,R)a @7 ®)

[ay —aay —Bay —afas ]
- - — ar do —Paz  Pa
wlay + ari + ayj + azk) —
dy adjz [ZN) —Qaa)
a3 —a2 ai ao |

is an isomorphism of algebras.
Proof: See Ward (1997) for a similar proof.

Theorem 3: Let ¢ be a unit generalized quaternion. Matrices generated by
+ = . . .
operators H and H are quasi-orthogonal matrices, i.e.

1 0 0 O

_ T —
ii) [H(q)} €H(q) =¢c,e= 8 g % 8
00 0 ap
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Corollary 1: Let ¢ = cosf + i/sin 0 be a unit generalized quaternion. Then the

+
generalized Hamilton operators /1, and h, represent rotations of x in Eiﬂ

+
The angle of rotation (using /,) is easily determined. This is the angle w
between x and gx:

S(x(gx))
\/N_\/ qu
_ Sx(xq)) _ S(q)

- NN VN

Therefore that the angle of rotation w is the angle of ¢.
1 1 1

COsSw =

= S(g) = cos#.

Example 1: Let g =

(— ,0) be a unit generalized quaternion and
\/— 2a' VB
a, 3 > 0. The matrix corresponding to this quaternion is
(V2 —a —B 0 ]
1
— V2 0 VB
1| Ve
— 0 V2 —Ja
Vi ve
1 1
e Vi
I VB Va 1

A is a quasi-orthogonal matrix and therefore it represents a rotation in 4-
space E‘iﬁ.

CONCLUSION

Rotations in four dimensions can be represented by 4th order orthogonal
matrices, as a generalization of the rotation matrix. Quaternions can also be
generalized into four dimensions, as even multivectors of the four dimensional
geometric algebra. In this paper, we showed how the generalized quaternions
can be used to described the rotation in 4-dimensional space E? g In the next
work, we will introduce the quaternion rotation operator in 3-space E3

APPENDIX

Matrices E, and F,, (n = 1,2, 3) defined in equations (3) and (4) are as follows;
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0 —a 0 0 T [0 —a 0 07
1 0 0 0 1 0 0 0
E = , Fy =
0 0 0 —« 0 0 0 o
0 0 1 0 | |10 0 -1 0]
00 -3 0 00 -8 0 7
00 0 0 00 —
E2: /B ) F2: ﬁ
1 0 0 0 1 00
0 -1 0 0 | L0 1 O J
0 0 0 —aB 0 —af
0 0 0 0
E; = g ; F; = B
0 o 0 O 0 —a 0 «
1 0 0 O 1 0 0 0 |

+ —
Following the definition of quaternionic unit and operators A and A it can be
proved that

E\Ey = —aly;, EE, = -l E3E; = —afly
E\E, = E; = —E>E
EyE3 = BE, = —E3E
E3E1 = CVE3 = —E1E3

and

FF =—aly;, FBhF,=-pBly FF=—-abl
FF=—F=—-FF|
FF = —pF = —F3F
F3F = —aF; = —F\F3,

In addition, we have
ElTsEl = ae, E{aEz = (e, E3T€E3 =af

and

F1T5F1 = ag, FzTer = [, F3T€F3 = afe.
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Not that the properties of E, and F,(n =1,2,3) are identical to those of
quaternionic units 7, . k. Further, The theorems presented above for operators
+ —_

H and H equally apply for matrices £, and F,, (n=1,2,3), since E, and F, are

+ —
special cases of matrices generated by H and H.
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