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ABSTRACT

In this paper, it is given a fast algorithm to solve chaotic differential systems using the
multi-step differential transforms method (MsDTM). The approach is applied to a
number of chaotic nonlinear differential equations and numerical results are given.
Performance analyses reveal that the proposed approach is an efficiency tool to solve
using fewer time step to the considered equation systems.
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INTRODUCTION

The differential transform method (DTM) is a semi-analytical-numerical
methodfor solving integral equations, ordinary, partial differential equations
and differential equation systems. The method enables the solution in terms of
convergent series with easily computable components. The concept of the
differential transform was first proposed by Zhou (1986) and its main
application concern with both linear and nonlinear initial value problems in
electrical circuit analysis. The DTM gives exact values of the nth derivative of
an analytic function at a point in terms of known and unknown boundary
conditions in a fast manner. This method generates, for differential equations,
an analytical solution in the form of a polynomial. It is different from the
traditional high order Taylor series method, which requires symbolic
computations of the necessary derivatives of the data functions. The Taylor
series method is computationally taken long time for large orders. The DTM is
an iterative procedure for obtaining analytic Taylor series solutions of
differential equations. Different applications of DTM can be found in Jang et al.
(1997); Chen & Liu (1998); Ho & Chen (1998); Jordan & Smith (1999); Chen &
Ho (1999a, 1999b); Jang et al. (2000a, 2000b, 2001); Koksal & Herdem (2002);
Merdan et al. (2011a); Abdel-Halim Hassan (2002); Yildirim et al. (2012); Ayaz
(2004); Arikoglu & Ozkol (2005); Merdan et al. (2011b); Ertirk & Momani
(2007); Chang & Chang (2008); Ravi & Aruna (2008); Momani & Ertiirk (2008);
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El-Shahed (2008); Ravi & Aruna (2009a,2009b); Ebaid (2010); Merdan &
Gokdogan (2011).

However, DTM has some drawbacks. By using the DTM, we obtain a series
solution, actually a truncated series solution. This series solution does not
exhibit the real behaviors of the problem but gives a good approximation to the
true solution in a very small region. To overcome the shortcoming, MsDTM
was presented in Odibat et. al. (2010); Gokdogan et al. (2012a, 2012b).On the
other hand, MsDTM has also some drawbacks. By using the DTM, the interval
[0, 7] is divided into M sub-interval and the series solutions is obtained in
t€titin], i=0,1,....,. M — 1. In some problems, MsDTM can be required a
very small sub-division of intervals. In this case, both the solution time
lengthens and series solutions are obtained for a great number of sub-intervals.

In this study, we present the fast and effective algorithm to eliminate the
above-mentioned disadvantages of classical MsDTM (Gokdogan et al., 2012a).
The speed and efficiency of the provided algorithm were evaluated on the
chaotic differential equations.

DIFFERENTIAL TRANSFORM METHOD

The basic definitions of differential transform are introduced as follows. Let
x(7) be analytic in a domain D and let 7 = #; represent any point in D. The
function x(7) is then represented by one power series whose center is located at
to. The differential transform of the k th derivative of a function x()is defined as
follows:

kx
k) = % [ddz’(‘[)} P .

In (1), x(¢)is the original function and X (k) is the transformed function. The
differential inverse transformation of X (k) is defined as follows:

i)( k)(t— 1), vie D (2)
k=0

From (1) and (2), we obtain

i k! {dr’(cq , Vte D 3)

=0 t=tg

The fundamental theorems of the one-dimensional differential transform are:
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Theorem 1. If z(#)=x(#)£y(¢), then Z(k)=X (k)L Y (k).
Theorem 2. If z(1)= cy(t), then Z(k)= cY(k).

Theorem 3. If z(¢) = dJiT(z[)’ then Z(k)=(k+ 1) Y(k + 1).
k+n)!
Theorem 4. Ifz(t):dn%l(l), then Z (k)= ;n) Y(k).

Theorem 5. If (1) = x(1)1(1), then Z(k) = Y35 _o X(k1) Y(k — ky).
1 k=n

Theorem 6. If z(¢)=¢", then Z(k) = 6(k — n) = { 0 k#n

37

In real applications, the function x(¢)is expressed by a finite series and (3) can

be written as
N

x(1) =Y _X(k)(t— 1), Ve D

k=0

)

Equation (4) implies that)_> \., X(k)(r — t,»)kis negligibly small.To illustrate
the differential transform method (DTM) for solving differential equations

systems, Consider a general system of first-order ODES

dx

71 + hl(t7x17x25 "'7x’77) = gl(t)’
t

dx

72+112(t,x1,x2, o Xm) = &2(1),
t

dx

7:1 + hm([a X1, X2, ,..,Xm) = g’"<t)’

subject to the initial conditions
xi(to) = di, Xo(to) = o, X(to) = dp-

()

According to DTM, by taking differential transformed both sides of the

systems of equations given Eq. (5) and (6) is transformed as follows:

(k+ D)Xk + 1) + Hi(k) = Gi(k),
(k+ 1) Xa(k + 1) + Hay(k) = Ga(k),

(k+ 1) X,(k 4+ 1) + Hy(k) = Gp(k).
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Xi(0)=di,  X>(0) =db,--, Xn(0) = dy. (8)

Therefore, according to DTM the N—term approximations for (5) can be
expressed as

e1a(t) = x,(1) = S0, X (k) i,

Prt) = X, (1) = S0, Xa (k) 1K,

Qom,n(t) = xm([) = Z/JCVZI X;n(k)lk.

MULTI-STEP DIFFERENTIAL TRANSFORM METHOD

The approximate solutions (3) are generally, as will be shown in the numerical
experiments of this paper, not valid for large ¢z. A simple way of ensuring
validity of the approximations for large ¢ is to treat (9) as an algorithm for
approximating the solutions of (4) in a sequence of intervals choosing the initial
approximations as

x10(t) = x1(1) = dj,
x20(1) = x2(1) = dy,

(10)

Xmo(t) = Xm(t) = d,,.

In order to carry out the iterations in every subinterval [0,#1), [t1, %), [f2,13), ..., [t,-_l ,t)
of equal length h, we would need to know the values of the following (Odibat et al.,
2010),

Xo(0) = x1(17), X50(1) = x2(17), oery X3 0(8) = X (17). (11)
But, in general, we do not have these information at our clearance except at
the initial point * = #;. A simple way for obtaining the necessary values could

be by means of the previous n-term approximations @, ,, ;- ¢, of the
preceding subinterval, i.e.,

X0 Z P1a(l)s X309 Z @2u(1)s vy Xy = D (1) (12)
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THE ALGORITHM

By sub-dividing interval [0, 7] into equilength M numbered sub-intervals,
MsDTM method finds DTM solutions of these sub-ranges. But, it is necessary
to select the step length of the small to solve some differential equations and this
requires finding DTM solutions in more sub-intervals. Hence, the solution time
prolongs in large values of T. A new approach is needed to overcome this
problem. For this, we recommend a fast algorithm (Gékdogan et al., 2012a).

We apply the DTM to system (5) over the interval|0, #;], we will obtain the
following approximate solution,

pra(t) = x, (1) = kz Xi(k), 1 €[0,1]
(1) = x,(1) = kz X(K)*, 1€ (0,1

(13)

ot (1) = x_(1) = z W), 1 € [0,1]

using the initial conditions xx(0) = dx, k:1 2,...m.For i>2, at each
subinterval [t;_y, ], if maxi_;, m‘gzﬁl/ (tior) — e 1(1, 1)[> e, we will use the
initial conditions xx(#;,-1) = xx—1(#;-1), k= 1,2,...,m and apply the DTM to Eq.
(5) over the interval [t;_1,1] , where £, in Eq (1) is replaced by ;. If

nlmx‘gb”l(ll)— f\;}( )’<€ we get xg(t) = xx1(2), k=1,2,...,m, not

apﬁiy the DTM to Eq. (5) over the this interval. The process is repeated and
generates a sequence of approximate solutions

oki(t), i=1,2,., K< M, k=1,2,...,mfor the solution x;(¢), k =1,2,....m

NUMERICAL RESULTS

In this section, some chaotic systems are solved by using the proposed approach
and MsDTM. The performance analyses are given for both methods. For
performance analyses, only the operations up to the finding step of x,,(7)'s are
taken, the elapsed time for graphic drawings are not included in the analysis.
Analyses are carried out by MAPLE 7 software in a PC with a Pentium 1.6 GHz
and 512 MB of RAM.

Example 1
The Genesio system, proposed by Genesio (Olek 1994) and Tesi (Genesio &
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Tesi, 1992), is one of paradigms of chaos since it captures many features of
chaotic systems. The dynamic equations of the system is given by

X'=y

V =z (14)

7 =az+ by + ex + dx?
whena=—12,b=-292,¢=—6,d = 1, by taking with the initial conditions

x(0) = 0.2, ¥(0) = —0.3,2(0) = 0.1 (15)

We will apply classic DTM and the adaptive MsDTM to nonlinear ordinary
differential Eq. (14)-(15). Applying classic DTM for Eq.(14)- (15)

X(k+1) = Y(k)k + 1

Y(k +1) = Z(k)k + 1
(aZ (k) + BY(K) + eX(h) + A5, o X)X (k — K)) (16)

Z(k+1) = .

X(0) =0.2, Y(0) =—0.3,Z(0) =0.1

By applying the multi-step DTM to (14)- (15), X;(n), Yi(n) and Z;(n)satisfy
the following recurrence relations for n =0,1,2...N — 1.

Xi(k+1) = Zl—f—kl)
Yik +1) = iikl)
i) (aZi(k) + bYi(k) + eXi(k) + d'Sf, o Xilleo) Xi(k — k) ) 7

k+1
Xo(0) = 0.2, X;(0) = x;_1(¢;), Yo(0) = —0.3, Y;(0) = yi_1(t:), Zo(0)
=0.1,Z;0) =zi1(t;), i=1,2, .. K< M

The solutions obtained from the proposed approach are given below.The

performance analyses are obtained by MsDTM and the approach summarized
in Table 1. It is showed that the proposed approach is very fast and effective.
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Table 1. Comparison processing time and time-step for ¢ € [0, 20]

5-term MsDTM(% = 0.1)

5-term the proposed approach (2 = 0.1)

processing time time-step processing time time-step
0.530s 200 e =0.01 0.290s 53
€ =10.001 0.370s 98
e =0.0001 0.580s 149
MsDTM(k = 0.01) 5-term the proposed approach (h = 0.01)
Proessing time time-step processing time time-step
5.038s 2000 e =0.01 0.761s 47
e =0.001 0.831s 75
e =0.0001 0.951s 121
MsDTM(k = 0.001) 5-term the proposed approach (2 = 0.001)
processing time time-step processing time time-step
274.334s 20000 e =0.01 4.517s 46
€ =0.001 4.667s 73
e =0.0001 6.119s 117
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Fig. 1. Comparison 5-term MsDTM with 2 = 0.1 and RK4 with 1 = 0.001 (al) x(¢), (b1)
»(1), (cl) z(¢) when e = 0.01, (a2) x(¢), (b2) y(¢), (c2)z(¢) when e = 0.001
and (a3) x(¢), (b3) y(1), (c3)z(¢) when e = 0.0001
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Figure 1 show the approximate solutions for chaotic Genesio system obtained
using the proposed approach with 4 = 0.1 and RK4 method with 2 = 0.001. We
can observe that local changes obtained using the approach are in high
adaptation with RK4 method for small value of €. At the same time, we present
the absolute errors between the 5-term MsDTM (h=0.1) solutions and the
RK4(h=0.001) solutionin Table 2. It is showed that results obtained for small
values of € are compatible with RK4 even at large time step.

Table 2. Differences between 5-term MsDTM with 2 = 0.1 and RK4 with 4 = 0.001 for
different ¢ values in ¢ € [0, 20]

A = |MsDTMy 1 — RK4y001

and ¢ = 0.01

A = |MsDTMy 1 — RK4 01|

and ¢ = 0.001

A = |MsDTMy 1 — RK4 01|
and ¢ = 0.0001

10
12
14
16
18
20

Ax
1.783e-03
6.136¢-03
9.748¢-03
4.148¢-03
1.551e-02
5.412¢-02
7.782e-02
9.427¢-02
4.329¢-02
9.535¢-03

Ay
3.201¢-03
9.659%-04
1.345¢-02
4.055¢-02
6.128¢-02
6.020¢-02
2.191e-03
1.520e-01
2.406¢-01
1.893¢-01

Az
4.375¢-03
2.151e-02
4.124e-02
3.675¢-02
3.231e-02
1.768e-01
2.752e-01
2.834e-01
3.484¢-01
2.367e-01

Ax
2.528¢-04
5.348¢-04
4.297e-04
3.834¢-04
2.350e-03
4.707e-03
6.366¢-03
3.811e-03
3.318¢-03
4.073e-03

Ay
1.803¢-04
3.965¢-04
1.771e-03
3.497¢-03

3.861¢-03
1.291e-03
4.817¢-03
1.823¢-02
2.865¢-02
2.370e-02

Az
8.008¢-04
2.089¢-03
2.304e-03
2.619¢-04
6.403¢-03
1.791e-02
2.330e-02
1.510e-02
3.047¢-02
2.403e-02

Ax
1.687e-05
2.436¢-05
7.440e-06
5.435¢-05
1.858¢-04
2.835¢-04
3.764¢-04
6.664¢-05
1.913e-04
4.558¢-04

Ay
2.155-06
3.681¢-05
1.224e-04
2.027e-04
1.635¢-04
8.540¢-05
4.683¢-04
1.291e-03
2.043¢-03
1.663¢-03

Az
5.926¢-05
1.033e-04
7.986¢-05
1.098e-04
5.418¢-04
1.183e-03
1.367e-03
5.866¢-04
1.878e-03
1.363¢-03
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Fig. 2. Chaotic attractors for Genesio system with time span [0, 100] using adaptive MsDTM

In Figure 2, we reproduce the well-known chaotic attractors of the Genesio
system using 5-term the proposed approach solutions with 2 = 0.01.
Example 2
Consider chaotic Coullet system (Coullet ez al. 1979; Arnodo et al., 1981)
X=y
V =z (18)
2 = az + by + cx + dx?
whena=0.8,b=—1.1,¢c = —0.45,d = —1, by taking with the initial conditions

x(0) = 0.1, y(0) = 0.41,2(0) = 0.31 (19)

We will apply classic DTM and the adaptive MsDTM to nonlinear ordinary
differential Eq. (18)-(19). Applying classic DTM for Eq.(18)-(19)
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X(k+1) = kY(k)l
Yk + 1 kZ—)
)+ BY(K) + eX(k)+ (20)
X(k)) X (ks — k) X(k — k)
KT

X(0) = 0.1, Y(0) = 0.41,Z(0) = 0.31

By applying the multi-step DTM toEq. (18)-(19), X;(n), Y;(n) and Z;(n) satisfy
the following recurrence relations for n =0,1,2...N — 1.

Xi(k+1) = %
Vilk+1) =2 o
( aZi(k) + bYi(k) + cXi(k) )
Zika 1) = N A3 o S0 Xi(ky) Xi(ky — key) Xik — ko) (21)

k+1
Xo(0) =0.1, X;(0) = x;1(¢), Yo(0) = 0.41, Y;(0) = y;_1(t:), Zo(0)
=0.31,Z;00) =z, 4(t;), i=1,2,.. K< M

The performance analyses are obtained by MsDTM and the approach

summarized in Table 3. It is showed that the proposed approach is very fast and
effective.
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Table 3. Comparison processing time and time-step for ¢ € [0, 20]

45

5-term MsDTM(h=0.1)

5-term the proposed approach MsDTM(h=0.1)

processing time time-step processing time time-step
1.262s 200 e =0.01 0.491s 48
€ =0.001 1.002s 137
e =0.0001 1.352s 199

MsDTM(h=0.01)

5-term the proposed approach (h=0.01)

processing time time-step processing time time-step
14.421s 2000 e =10.01 0.911s 43
e =10.001 1.021s 102
e =0.0001 1.943s 228

MsDTM(h=0.001)

5-term the proposed approach (h=0.001)

processing time time-step processing time time-step
614.233s 20000 e=0.01 2.974s 43
e =0.001 3.244s 100
e =0.0001 4.066s 216
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Fig. 3. Comparison MsDTM with 4 = 0.1 and RK4 with 1 = 0.001 (al) x(¢), (b1) y(¢), (c1) z(¢)
when € = 0.01, (a2) x(¢), (b2) (1), (¢2)z(¢) when e = 0.001 and (a3) x(¢), (b3) ¥(z), (c3)z(¢)

when £ = 0.0001
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Figure 3 show the approximate solutions for chaotic Coullet system obtained
using adaptive MsDTM with 4 = 0.1 and RK4 method with # = 0.001. We can
observe that local changes obtained using the approach are in adaptation with
RK4 method for small value of .

Table 4. Differences between 5-term MsDTM with 2 = 0.1 and RK4
with # = 0.001 for different ¢ values in ¢ € [0, 20]

A = ‘MSDTM‘).] — RK40‘001| A = ‘MSDTM‘).] — RK40‘001‘ A = ‘MSDTM{].I — RK40,001‘
and e = 0.01 and e = 0.001 and ¢ = 0.0001

t Ax Ay Az Ax Ay Az Ax Ay Az
2.776e-03 4.529¢-03 3.159e-03 3.266e-04 2.717e-04 6.930e-04 4.255¢-05 2.537e-05 9.442¢-05

A~

1.099¢-02 9.492¢-03 8.943e-03 8.381e-04 7.566e-04 6.223e-04 1.469¢e-04 9.007e-05 2.441e-04
6 1.658e-02 8.172e-03 5.696e-03 1.396e-03 3.834¢-04 3.726e-04 1.844¢-04 3.928e-05 6.347¢-05
8 2.634e-02 1.693e-02 4.631e-02 1.677e-03 1.161e-03 2.747e-03 2.127e-04 1.406e-04 4.287¢-04
10 6.142e-02 2.859¢-02 5.362e-02 4.058e-03 1.879e-03 3.522e-03 5.604e-04 1.948e-04 6.672¢-04
12 7.266e-02 7.440e-03 2.320e-02 4.782¢-03 4.977e-04 1.269e-03 6.558e-05 2.993e-05 2.845¢-04
14 1.504e-01 8.325¢-02 5.004e-02 9.341e-03 5.031e-03 3.078e-03 2.163e-04 1.484e-04 3.850e-05
16 4.331e-01 2.053e-01 5.878e-02 2.581e-02 1.034e-02 5.794e-04 5.004e-04 1.863e-04 3.047¢-05
18 8.356e-01 7.264e-02 2.990e-01 2.265¢-02 2.801e-02 3.931e-02 4.521e-04 5.983e-04 8.671e-04
20 2.422e-01 5.472e-01 3.564e-02 5.059e-02 1.385e-03 7.466e-02 1.102e-03 2.455e-04 1.599e-03

we submit the absolute errors between the 5-term MsDTM (h=0.1) solutions
and the RK4(h=0.001) solution in Table 4. It is showed that results obtained
for small values of ¢ are compatible with RK4 even at large time step.
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Fig. 4. Chaotic attractors for Coullet system with time span [0, 100] using adaptive MsDTM

In Figure 4, we reproduce the well-known chaotic attractors of the Coullet
system using 5-term the approach solutions with 2 = 0.01.

Example 3

Here, we take Lorenz system into consideration. In 1963, the Lorenz system is
introduced by Edward Lorenz, (1963). The nonlinear differential equations that
describe the Lorenz system are

X' =p(y—x)
YV =Rx—y—xz (22)
Z=xy+bz

when p = 10,5 = —8/3, R = 28, by taking with the initial conditions
x(0) = —15.8, y(0) = —17.48,2(0) = 35.64 (23)

We will apply classic DTM and the adaptive MsDTM to nonlinear ordinary
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differential Eq. (22)-(23). Applying classic DTM for Eq. (22)-(23)

p(Y(k) — X(k))

A+ D) ==
(RX(k) — Y(k) = Yok o X (k1) Z(k — kl))

Y(k+1) = o o4
(b2(k) + T, Lo Xk Y(k — k1))

Z(k+1) = T

X(0) = 15.8, Y(0) = —17.48, Z(0) = 35.64

By applying the multi-step DTM to Eq. (22)-(23), X;(n), Y;(n) and Z;(n) satisfy
the following recurrence relations for n =0,1,2..N — 1.

p(Yi(k) — Xi(k))

Xik+1) = e
(RXi(k) = Yilk) = S2F o Xilk) Zilk — k) )
Yilk+1)= ]
bZi(k K Xk Yilk — k
Zi(k+1) = ( o HZklkoff o 1)) (25)

Xo(0) = 15.8, X;(0) = x;:_1(1;), Yo(0) = —17.48, ¥,(0) = y;_1(1;), Zo(0)

= 3564,21(0) = Z,'_l(l,'), i= 1,2, K< M

The performance analyses are obtained by MsDTM and the approach
summarized in Table 5. It is showed that the proposed approach is very fast and
effective.
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Table 5. Comparison processing time and time-step for ¢ € [0, 10]

5-term MsDTM(h=0.1)

5-term the proposed approach MsDTM(h=0.1)

processing time time-step processing time time-step
0.641s 100 e =0.01 0.471s 98
€ =0.001 0.480s 100
e =0.0001 0.480s 100

MsDTM(k = 0.01)

Adaptive MsDTM(h = 0.01)

processing time time-step processing time time-step
6.529s 1000 e =0.01 0.981s 100
€ =0.001 1.112s 127
€ =0.0001 1.282s 162

MsTM( = 0.001)

Adaptive MsDTM(% = 0.001)

processing time time-step processing time time-step
315.785s 10000 e=0.01 5.778s 94
e =0.001 5.888s 120
e =0.0001 6.159s 150
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Fig. 5. Comparison 10-term MsDTM with 4 = 0.1 and RK4 with 1 = 0.001 (al) x(¢), (b1)
(1), (cl) z(r) when e = 0.01, (a2) x(¢), (b2) y(¢), (c2)z(¢) when ¢ = 0.001
and (a3) x(¢), (b3) (1), (c3)z(¢) when e = 0.0001
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Figure 5 show the approximate solutions for chaoticLorenz system obtained
using the approach with #=0.1 and RK4 method with h = 0.001. We can
observe that local changes obtained using the approach are in high adaptation

with RK4 method for small value of .

Table 6. Differences between 10-term MsDTM with 4 = 0.01 and RK4

with 7 = 0.001 for different ¢ values in ¢ € [0, 10]

A = |MsDTMy 1 — RK4y001

and ¢ = 0.01

A = |MsDTMy 1 — RK4 01|

and ¢ = 0.001

A = |MsDTMy 1 — RK4 01
and ¢ = 0.0001

A~

10
12
14
16
18
20

Ax
7.490e-04
4.153¢-04
2.128¢-03
1.515¢-03
2.150e-02
1.472¢-01
1.446¢-01
3.952¢-01
6.305¢+00

1.770e+01

Ay
1.758¢-03
2.449¢-03
4.930e-03
5.008¢-03
3.501e-02
247701
1.590e-01
6.251e-01
1.204e +01

1.188e+01

Az
4.903¢-03
1.098e-02
9.280e-03
8.055¢-03
9.312¢-03
2.164¢-02
1.055¢-01
2.349-01
2.465¢+00
2.340e +00

Ax
7.820e-05
4.234e-04
9.715¢-04
7.427¢-03
1.113e-02
8.109¢-02
7.958¢-02
1.882e-01
2.971e+00

2.106e +01

Ay
3.861e-04
7.867¢-04
3.165¢-03
3.554¢-03
1.817¢-02
1.327¢-01
7.959¢-02
2.996e-01
5.794¢+00

1.542¢+01

Az
1.072e-04
2.777e-03
8.144e-04
1.501e-02
2.074e-03
2.128e-02
6.547¢-02
1.117e-01
2.391e-01

7.081e-01

Ax
3.350e-07
2.031e-05
2.646e-05
5.309¢-04
6.323¢-04
4.511e-03
4.358¢-03
1.071e-02

1.611e-01
4.305¢-02

Ay
9.623¢-06
1.308¢-05
3.327e-04
2.024e-04
1.024¢-03
7.378¢-03
4.408¢-03
1.713¢-02
3.140e-01
8.495¢-01

Az
1.529¢-05
5.638¢-05
2.834e-04
1.023e-03
3.757e-05
1.257¢-03
3.521e-03
6.000e-03
2.897e-02
7.908¢-01

we present the absolute errors between the 10-term MsDTM (h=0.1) solutions
and the RK4(h=0.001) solution in Table 6. It is showed that results obtained

for small values of € are compatible with RK4.
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Fig. 6. Chaotic attractors for Lorenz system with time span [0, 100] using adaptive MsDTM

In Figure 6, we reproduce the well-known chaotic attractors of the Genesio
system using 5-term the approach solutions with 2 = 0.01.

CONCLUSION

In this work, we suggested a new efficient and fast algorithm for the MsDTM, a
reliable modification of the DTM that develops the convergence of the series
solution. Comparisons between the proposed method solutions and RK4’s
numerical solutions were made. The method provides immediate and visible
symbolic terms of analytic solutions. The validity of the proposed method has
been successfully demonstrated by applying it for the well-known chaotic
systems (Genesio, Coullet, Lorenz). The results show that adaptive MsDTM
provides the user remarkable performance in terms of processing time and time
step.
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