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On the curvatures of spacelike circular surfaces
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Abstract

In this paper a complete system of invariants is presented to study spacelike circular surfaces with fixed radius. The 
study of spacelike circular surfaces is simplified to the study of two curves: the Lorentzian spherical indicatrix of the 
unit normals of circle planes and the spacelike spine curve. Then the geometric meanings of these invariants are used to 
give corresponding properties of spacelike circular surfaces with classical ruled surfaces. Later, we introduce spacelike 
roller coaster surfaces as a special class of spacelike circular surfaces.
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 Introduction1. 

At the beginning of the twentieth century, Einstein’s 
theory constructed a bridge between mathematical physics 
and modern differential geometry. It has been observed 
that Lorentz-Minkowski geometry is an attractive area 
for geometers who can penetrate surprisingly quickly 
into cosmology (redshift, expanding universe and big 
bang) and a topic no less interesting geometrically, the 
gravitation of a single star (perihelion procession, bending 
of light and black holes) (O’Neill, 1983; McNerty, 1980; 
Blum, 1980).

Despite its long history, the theory of surface is still 
one of the most important interesting topics in differential 
geometry and it is still studied by many mathematicians 
until now, see for example (Izumiya et al., 2007; Izumiya 
& Takeuchi, 2001; Izumiya, 2003a; Xu et al., 2006). 
Among the surfaces, a circular surface with constant 
radius has been drawing attention to scientists as well as 
mathematicians because of its various applications such 
as networks of blood vessels and neurons in medicine, or 
tube and hose systems in industrial environments.

In this paper we study geometric properties and 
singularities of circular surfaces with constant radius 
in Minkowski 3-space . In section 3, we introduce 
spacelike circular surfaces and give their Gaussian and 
mean curvatures. Also we show that the parameter curves 

on spacelike circular surface are lines of curvature. Then 
we study local singularities of a spacelike circular surface. 
In section 4, we introduce spacelike roller coaster surfaces 
as a special class of spacelike circular surfaces. Also, we 
give some examples of spacelike roller coaster surface by 
using computer aided graphics.

 Basic concepts2. 

Let  be the three-dimensional Minkowski space, that 
is, the three-dimensional real vector space E 3 with the 
metric 

where  denotes the canonical coordinates in 
E 3. An arbitrary vector x of  is said to be spacelike if 

 or x = 0, timelike if  and lightlike 
or null if  and . A timelike or light-like 
vector in  is said to be causal. For  the norm 
is defined by , then the vector x is 
called a spacelike unit vector if  and a timelike 
unit vector if . Similarly, a regular curve in 

 can locally be spacelike, timelike or null (lightlike), if 
all of its velocity vectors are spacelike, timelike or null 
(lightlike), respectively (O’Neill, 1983; McNerty, 1980; 
Blum, 1980). For any two vectors  and 

 of , the inner product is the real number 
  and the vector product is 
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defined by 

 

Definition 1. The angle between two vectors in Minkowski 
space is defined as follows:

i) Spacelike angle: Let x and y be spacelike vectors in  
that span a spacelike vector subspace; then we have

, 

and hence, there is a unique real number  such that 

This number is called the spacelike angle between the 
vectors x and y.

ii) Central angle: Let x and y be spacelike vectors in 
that span a timelike vector subspace; then we have 

and hence, there is a unique real number  such that 

This number is called the central angle between the 
vectors x and y. 

iii) Lorentzian timelike angle: Let x be spacelike vector 
and y be timelike vector in . Then there is a unique real 
number  such that 

This number is called the Lorentzian timelike angle 
between the vectors x and y (Ratcliffe, 2006).

On the other hand, the hyperbolic and Lorentzian unit 
spheres are

is called the hyperbolic unit sphere in and

is called the hyperbolic unit sphere in  (O’Neill, 
1983).

A surface in the Minkowski 3-space  is called a 
spacelike surface, if the induced metric on the surface is a 
positive definite Riemannian metric. This is equivalent to 
saying that the normal vector on the spacelike surface is a 
timelike vector (O’Neill, 1983).

3. Spacelike circular surfaces

In this section, we introduce the notion of spacelike 
circular surface in . 

A spacelike circular surface with a constant radius is 
swept out by moving a spacelike circle with its center 
following a curve, which acts as the spine curve. Each 
circle is called a generating circle, which lies on a plane 
called circle plane. A non null curve  is called the 
spine curve, whose tangent vector is  such that 

 for every , and a positive number .

Let e1 denote the timelike unit normal vector of a circle 
plane. The vector e1 is attached to each point of the spine 
curve C for a generating spacelike circle with the radius . 
Hence, a spacelike circular surface is determined by both 
C and e1.
If  is the arc-length of the spherical curve  
then the unit tangent vector of  is . We 
define a vector  then we have

          (1)

Excluding  is constant or null or  null. This 
parametrization gives rise to exploring the kinematic 
geometry and relevant geometric characteristics.

Depending on the causal character of the curve  we 
have the following Frenet formulae

 
                    

 (2)

where γ is called the geodesic curvature of the curve  
on  (Walrave, 1995). The derivative with respect to  
will be denoted by a dash over functional symbol.

In the parametrized representation, the tangent vector 
 can be expressed by

                       (3)

where  and  are the 
coordinate functions of the tangent vector . Let e2 and 
e3 form a pseudo-orthonormal basis of the corresponding 
circle plane at each point of the spine curve  Then, 
by means of the solutions of the differential system (2), 
the spacelike circular surface M is described by
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                      (4)

The four functions  and  
constitute a complete system of curvature functions of the 
surface M. The standard circles 

are called generating circles.

Differentiating the vector equation of the circular surface 
(4) by the parameters , respectively, we get the tangent 
vectors of the parametric curves: 

          (5)

Then, the coefficients  and G of the first fundamental 
form with respect to ( ) are given by:

             (6)

and thus the timelike unit normal vector of the surface for 
regular points is given by:

        
  (7)

By a straightforward calculation, we get:

          (8)

 

This leads to the coefficients e, f, and g of the 
second fundamental form with respect to ( ) as in the 
following:

              
(9)

Hence, for the regular points, the Gaussian curvature K 
and the mean curvature H are given by

                   (10)

and

                  (11)  

respectively.
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3.1. Striction curves

In the Euclidean space, striction curves are defined as 
generating circles located on the normal planes of the 
spine curve  (Izumiya, 2003b; Kasap & Akyıldız, 
2006; Walrave, 1995). Then, for the spacelike circular 
surface M, the position vector

       (12)

is the striction curve if  satisfies

and this is equivalent to

        (13)

In this case, any curves on the surface, which 
transverse to generating circles satisfy the condition of 
striction curves. So these curves construct a surface which 
is called a spacelike canal (tube) surface. Therefore the 
class of spacelike canal surfaces is analogous to the class 
of cylindrical ruled surfaces. Since the lines of curvatures 
are geometric features, it is interesting to construct 
spacelike canal surface whose parametric curves are lines 
of curvature. Therefore, from Equations (6), (9) and (12), 
it follows that the parametric curves are lines of curvature 
if and only if

If we substitute this into the equation (2), we obtain

                      (14)

The curve that satisfies the condition found in the 
equation (14) is a great circle on . For example, a great 
circle can be expressed as  
The normal vector can be found from  as 

 

Thus e₃ has the form

. In this case, with the aid of equation (3), 
 can be expressed as

Thus, we obtain the following spacelike canal surfaces 
family

Figures 1(a), 1(b), 1(c) show members in the family with 
 and 

Fig. 1(a). Spacelike canal surface of P  

  

Fig. 1(b). Spacelike canal surface of P 

Fig. 1(c). Spacelike canal surface of P 

We also define the notion of non-canal spacelike circular 
surfaces analogous to that of non-cylindrical ruled 
surfaces:
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Definition 2. A spacelike circular surface M is called a 
non-canal surface at  if  and C satisfy

         (15)

We call M a non-canal if it is non-canal at any .

3.2. Local singularities

Singularities are essential for understanding the properties 
of circular surfaces and are investigated in the following: 
From equations (6), we can show that M has a singularity 
at  if and only if

  (16)

This is equivalent to the following equations

            (17)

It can be seen that there are two main possible cases, 
as presented in the following:

Case (1) exists when  If  and  
there are two singular points occuring at 

  and

If  (resp. ) and  (resp. ), 
the spacelike circular surface is a non-canal and the 
singular points are on the generating circles occurring at 

Case (2) exists when  and  If 
, there are no singular points. If , the 

singular points occur at . If  there are 
singular points on the generating circle occurring at 

 

For a spacelike canal circular surface to have singular 
points, it is necessary that  and . 

From equation (3), it follows that . The tangent 
vectors  are always parallel to , which is normal to 
the circle plane. In other words, the tangent vectors of 
the spine curve are always perpendicular to the circle 
planes. Therefore, we have the following cases:there are 
no singular points, if . The singular points occur 
at  if  The singular points occur at 

 if 

3.3. Lines of curvature

A ruled surface is developable, if and only if its Gaussian 
curvature K vanishes at any regular point; this is equivalent 

to saying that all of rulings are lines of curvature except 
at umbilical points or singular points. In that case, from 
equations (6) and (9) it can be seen that all generating 
circles are lines of curvature if and only if  is a multiple 
of . This is equivalent to

      (18)

We will now investigate the condition (18) by 
assuming that it is satisfied for all , in detail. According 
to the assumption of M being regular, the equation (18) is 
equivalent to

                  (19)

for all values of . It can be seen that there are three cases 
that equation (19) can be satisfied for all values of :

Case (1) if , then the tangent vector 
of the spine curve is 0, that is, the spine curve is a 
fixed point. This means that the spacelike circular 
surfaces are hyperbolic spheres with radius , namely, 

Case (2) if , then tangent vector  is parallel 
to , which is normal to the circle plane. The circular 
surface becomes spacelike canal circular surface.

Case (3) if , then tangent vector  is parallel to 
. Hence, the tangent vector of the spine curve lies on the 

circle plane at each point of M, namely, . When σ 
is constant, it follows that

                             (20)

where  is a constant vector. From Equations (4) and (20) 
it can be found that

                        (21)

This means that all the circle points lie on a hyperbolic 
sphere of radius  with  being its center point 
in 

A spacelike circular surface with a non-constant  
and  is the circular surface with spacelike spin 
curve , i.e. . 

In analogous with (Izumiya & Takeuchi, 2001), we 
call this surface as a spacelike roller coaster surface.

According to the above analysis, we obtain the 
following result;

Theorem 1.Besides the general spacelike circular surfaces 
there are two families of spacelike circular surfaces whose 
generating circles are lines of curvature in the Minkowski 
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3-space . These two families are the spacelike roller 
coaster surfaces and the hyperbolic spheres with radius 
being larger than that of the generating circles.

4. Spacelike roller coaster surfaces

In this section we give some properties of the spacelike 
roller coaster surface. First, let s be arc-length parameter 
of the spacelike spine curve  and  is 
the moving Frenet frame along , such that  
and  are the unit tangent, the principal normal and the 
binormal vector fields, respectively. Then, we have

                          
  (22)

Thereby, the following relations exist:

           
(23)

where

                          (24)

By differentiating equation (23) with respect to s and 
using the inverse transformation, we obtain

 
        

 (25)

where κ(s) and τ(s) are the natural curvature and torsion 
of the spine curve  respectively;

       (26)

From equation (26) it follows that if  (resp. γ) is a 
constant, the torsion of the spine curve vanishes. Thus the 
spine curve is a spacelike planar one.

On the spacelike roller coaster surface, the singularities 
can be obtained as

                 (27)

From this it follows that singular points occur at 
, since  and . Hence there are two 

singular points on every generating circle. Connecting 

these two sets of singular points gives two striction curves 
that contain all the singular points of a spacelike roller 
coaster surface. From equation (11), it follows that the 
expression of these two curves is

    (28)

Proposition 1. Any spacelike roller coaster surface has 
exactly two striction curves and intersections with each 
generating circle which are antipodal points each other.
The curvatures  and torsions  of the striction 
curves can be obtained 

              
(29)

Moreover, by substituting  into equation 
(10), we have

                       (30)

Since every generating circle is a line of curvature for a 
spacelike roller coaster surface, the value of one principal 
curvature is

                                  (31)

The other principal curvature is given by

                   (32)

The results can be summarized in terms of the 
following theorem:

Theorem 2. If a family of spacelike roller coaster 
surfaces has the same radius  the curvature function  
and its derivative  then the values of their Gaussian 
curvature and the principal curvatures are the same at 
the corresponding point. Furthermore, these values are 
independent of the geodesic curvature of the spherical 
indicatrix of the vector 

In terms of the Frenet frame  the 
parametric expression of the spacelike roller coaster 
surfaces can be given as follows:

              (33)

the partial differentiations of M with respect to s and  are 
as follows 
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           (34)

Hence, the unit normal vector field N at any point is:

          (35)

therefore, we find the elements of the first and second 
fundamental forms, respectively, as follows:

              (36)

And

                   (37)

                                
 

Then, the Gaussian curvature K and the mean curvature H, 
respectively, are given by

      (38)

and

        (39)

where  It is known that a regular surface is a flat 
surface if and only if its Gaussian curvature vanishes 
identically. Therefore, we immediately derive from (38) 
that

Thus in a neighborhood of any point on M with  
the vanishing of the coefficients of , and r² implies 

and 

 

This is equivalent to that the torsion τ is an identically 
zero function and . 

A spacelike roller coaster surface whose Gaussian 
curvature vanishes identically is a part of spacelike 
plane. In the same manner,we get that M is a minimal flat 
surface.

We now give some examples of spacelike roller coaster 
surfaces. They also serve to verify the correctness of the 
formulae derived above.

Example 1.Given the spacelike circular helix as follows:

It is easy to show that

and , then . 

Thus, the spacelike roller coaster surfaces family is 
expressed as

so, if we choose , , , then for  
the corresponding spacelike roller coaster surface is 
shown in Fig. 2(a).

Fig. 2(a). Spacelike roller coaster surface
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for , , , .

Example 2. Suppose we are given a parametric spacelike 
curve

After simple computation, we have

and  which follows  is a constant. 

Thus, the spacelike roller coaster surfaces family is 
expressed as

so, if we choose  and  then for r=1, the 
corresponding spacelike surface is shown in Figure 2(b).

Fig. 2(b). Spacelike roller coaster surface for , , r=1.
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