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Abstract

In this paper, we generalize the notions of helix and slant helix in dual space in a more general case such as the dual 
angle between a fixed dual unit vector and Frenet vectors of a dual curve is not constant. We study the motions of the 
lines corresponding to dual Frenet vectors and dual Frenet instantaneous rotation vector with respect to a fixed line. 
We obtain some characterizations for such dual curves and show that these characterizations include the definitions and 
characterizations of dual helix and dual slant helix in some special cases. 
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1. Introduction

In Euclidean space, the special curves are an important 
subject of curve theory. Generally such curves are thought 
as the curves whose curvatures satisfy some conditions. 
The well-known of such curves are helices and slant 
helices. A helix is defined by the property that the tangent 
line of the curve makes a constant angle with a fixed 
straight line (the axis of the general helix) (Blaschke, 
1945; Struik, 1988). Therefore, a general helix can be 
equivalently defined as one whose tangent indicatrix is a 
planar curve. Of course, there exist more special curves 
in the space. One of them is slant helix, which was first 
introduced by Izumiya & Takeuchi (2004) by the property 
that the principal normal lines of curve make a constant 
angle with a fixed direction in the Euclidean 3-space E 3. 
Later, Zıplar et al. (2012) introduced the Darboux helix, 
which is defined by the property that the Darboux vector 
of a space curve makes a constant angle with a fixed 
direction and they gave the characterizations of this new 
special curve. 

On the other hand, the dual space is a more general 
space than Euclidean space and contains it. So, the 
concepts of helix, slant helix and Darboux helix can be 
considered in dual space. Dual helix and dual slant helix 
have been defined by Lee et al. (2011). They have defined 
these dual curves by a similar way as given in Euclidean 
case and obtained the characterizations of these curves in 
dual space. Moreover, dual vector analysis has important 
applications to differential geometry and kinematics 
(Çöken et al., 2009; Kabadayı & Yaylı, 2011; Karadağ et 
al, 2014; Önder & Uğurlu, 2013).  

In this paper, we consider a more general case in dual 
space for special curves. We take a fixed dual unit vector 
and a dual curve. We study the motions of dual Frenet 
vectors and dual Frenet instantaneous rotation vector 
with respect to a fixed dual unit vector. These motions 
correspond to the motions of lines determinate by these dual 
unit vectors. We obtain the relations between these dual 
vectors. Moreover, we obtain some new characterizations 
for dual helix, dual slant helix and dual Darboux helix in 
some special cases.  

2. Preliminaries

A dual number, as introduced by W. Clifford, can be 
defined as an ordered pair of real numbers ( , )a a∗ , where 
a is called the real part and a∗ is called the dual part of the 
dual number. Dual numbers may be formally expressed as 

 where  is the dual unit which is subjected to 
the following rules (Veldkamp, 1976):

We denote the set of dual numbers by ID, i.e.,

.

Two inner operations and equality on ID are defined as 
follows (Blaschke, 1945; Hacısalihoğlu, 1983):

(i) Addition : 

( , ) ( , ) ( , )a a b b a b a b∗ ∗ ∗ ∗+ = + +

(ii) Multiplication : 

( , ) ( , ) ( , )a a b b ab ab a b∗ ∗ ∗ ∗= +
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(iii) Equality : 

( , ) ( , ) ,a a b b a b a b∗ ∗ ∗ ∗= ⇔ = =

Since division by pure dual numbers is not defined, the 
set ID of dual numbers with the above operations is a 
commutative ring, not a field. 

A dual number  divided by a dual number 
, with 0b ≠ , can be defined as (Blaschke, 

1945).

We can define the function ( )f a  of a dual number a  
by expanding it formally in a Maclaurin series with  as 
variable. Since  for 1n > , we obtain 

where ( )f a′  is derivative of ( )f a  with respect to a 
(Bottema & Roth, 1979; Dimentberg, 1965). 

In analogy with dual numbers, a dual vector referred to 
an arbitrarily chosen origin can be defined as an ordered 
pair of vectors ( , )∗a a , where 3, IR∗ ∈a a . Also dual vectors 
can be expressed as ε ∗a = a + a , where 3, IR∗ ∈a a  and 

. We denote the set of dual vectors by 3ID , i.e.,

{ }3
1 2 3( , , ) : , 1, 2,3iID a a a a ID i= = ∈ =a

3ID  is a module over the ring ID and it is called dual 
space or ID-module. For any dual vectors ε ∗a = a + a  
and ε ∗b = b + b  in 3ID , the scalar product and the vector 
product are defined by

( ), , , ,ε ∗ ∗= + +a b a b a b a b

and

( )ε ∗ ∗× = × + × + ×a b a b a b a b ,

respectively (Veldkamp, 1976; Hacısalihoğlu, 1983).

The norm of a dual vector a is given by 

,
ε

∗

= +
a a

a a
a

,

(Veldkamp, 1976; Hacısalihoğlu, 1983). A dual vector a  
with norm  is called dual unit vector. The set of dual 
unit vectors is denoted by

{ }2 3
1 2 3( , , ) : , (1,0)S a a a ID= = ∈ =a a a

and called dual unit sphere (Blaschke, 1945; Hacısalihoğlu, 
1983). It is well known that the points of 2S  (dual unit 
vectors) correspond to the lines of 3IR . This correspondence 
is known as E. Study mapping. A dual angle, subtended 
by two oriented lines in space as introduced by Study in 
1903, is defined as , where  is the projected 
angle and  is the shortest distance between the two lines 
(Blaschke, 1945).

 is a curve in dual space 3ID  and is 
called dual space curve where  
and  are real valued curves 
in the real space 3IR . If the functions  and , 
(1 3)i≤ ≤  are differentiable then the dual space curve

is differentiable in 3ID . The real part  of the dual space 
curve  is called indicatrix. The dual arc-length of 
the dual space curve  from 1t  to t is defined by 

where T  is unit tangent vector of the indicatrix  
(Yücesan et al., 2007). 

Let  be a dual space curve with dual arc length 
parameter s . The dual unit tangent vector of  is defined 
by

Differentiating T  with respect to dual arc length parameter 
s  we have 

where  is called dual curvature. We restrict that 
 is never a pure dual number. The dual unit vector 

 is called dual unit principal normal vector 
of α . The dual unit vector B defined by = ×B T N  is 
called dual unit binormal vector of . The dual frame 

 is called moving dual Frenet frame 
along the dual space curve  in 3ID . For the curve , 
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the dual Frenet derivative formulae can be given in matrix 
form as

where  is called the dual torsion of  (Yücesan 
et al., 2007). Then the dual Frenet instantaneous rotation 
vector (or dual Darboux vector) of  is defined by 

 which gives the derivative formulae as 
follows

, ,′ ′ ′= × = × = ×T W T N W N B W B ,

where d
ds

′ TT = . The unit dual Frenet instantaneous 

rotation vector of  is defined by

.

Let  be a unit speed dual curve. We can write 
this curve in another parametric representation  
where , and we have new dual Frenet 
equations as follows:

where  

3. Relations between a unit dual vector and the 
tangent vector of a dual curve

In the dual space, a unit speed dual curve  with 
curvature  and torsion  is called a general dual 
helix if there is some constant dual unit vectors d , so that 

 is constant along the curve where  
is dual constant angle between dual unit vectors ,T d  (Lee 
et al., 2011). From this definition it is clear that both  
and  are real constants. In this section, we will consider 
some more general cases such as one of the real numbers 
 and  is not constant, i.e.,  is not constant. 

Let  be a dual curve with Frenet frame 
 and d  be a constant unit dual vector. 

If  is the dual angle between unit dual vector d  
and unit dual tangent vector T , we can write 

            (3.1)

where . The unit dual vector d  can be expressed 
as the linear combination of the elements of the dual 
Frenet trihedron as follows

1 2 3a a a+ +d = T N B                      (3.2)

where ( ), ( 1, 2,3)i ia a s i= =  are differentiable functions. 
Separating (3.2) into real and dual parts, we have 

1 2 3a a a+ +d = T N B                      (3.3)

and

        (3.4)

Additionally, since d  is a dual unit vector, we have

   2 2 2
1 2 3 1a a a+ + =                           (3.5)

and

         1 1 2 2 3 3 0a a a a a a∗ ∗ ∗+ + = .                    (3.6)

Of course it is more complicated to study this subject 
under the assumption that both  and  are not constants. 
Then, we consider a simpler way and study two cases as 
follows:

Case 1. Let  be a non-zero constant while  is not 
constant. From E. Study mapping, it means that the lines 
corresponding to the vector T  make a spatial motion 
in the space such that the angle  between the lines 
corresponding to the dual unit vectors d  and T  is constant 
while the distance  between these lines is not a constant. 
Differentiating (3.1) with respect to  and considering 
(2.6), we have

                                (3.7)

Separating (3.7) into real and dual parts, following two 
equations are found as

respectively. With the aid of (3.3) and (3.4), we have

                    (3.8)

Differentiating (3.7), we have

                 (3.9)

Separating (3.9) into real and dual parts, we have
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, , 0f− + =T d B d                    (3.10)

and   

respectively. With the aid of (3.3) and (3.4), following 
two equations are found as 

     1 3a f a=                              (3.11)

and

            (3.12)

respectively. Substituting (3.11) into (3.5), we find

 
2
2

3 2

1
1

a
a

f
−

= ±
+

.                       (3.13)

Differentiating (3.10) and substituting (3.13) into the 
result, we have

       2
2 3 2 2

2
(1 ) 1

af
f a

′
= ±

+ −
.                 (3.14)

Integrating (3.14), we get

where c0 is a constant and 2

2
21

am
a

=
−

. Since 2 0a = , we 
have

            f c= .                               (3.15)

where c is a constant. Substituting (3.15) in (3.13) gives 

       3 2

1
1

a
c

=
+

.                         (3.16)

By substituting (3.16) and (3.15) into (3.11), we get

 1 21
ca

c
=

+
.                         (3.17)

From (3.1), we know that

                                     (3.18)

and 

                          (3.19)

By using (3.17) and (3.18), we have

                         (3.20)

Substituting (3.17), (3.20), (3.8) and (3.16) into (3.6) 
gives

                           (3.21)

By substituting (3.19), (3.21), (3.15) and (3.16) into 
(3.12), we find

So we have

Now we can give the following theorem.

Theorem 3.1. Let  be a dual curve, d  be a constant 
unit dual vector and  be the dual angle between 
the unit dual vectors d  and  T . If  is constant then

holds, where  

It is known that the dual curve  is a dual helix if 

and only if  is constant. Then from Theorem 3.1, we can 

give the following corollary.

Corollary 3.1. Let  be a dual curve, d  be a constant 
unit dual vector,  be the dual angle between d  
and T , and  be a constant. Then  is a dual helix if 
and only if the following differential equation holds

Case 2. Let  be a non-zero constant while  is not 
constant. From E. Study mapping it means that the lines 
corresponding to the vector T  make a spatial motion 
in the space such that the angle  between the lines 
corresponding to the dual unit vectors d  and T  is not 
a constant while the distance  between these lines is 
constant. By differentiating (3.1), we have

            (3.22)

By separating (3.22) into real and dual parts and using 
(3.3) and (3.4), we have

                            (3.23)

and
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                        (3.24)

By substituting (3.18) and (3.23) into (3.5), we find

             (3.25)

Substituting (3.18), (3.19), (3.23), (3.24) and (3.25) into 
(3.6), we find

        
   (3.26)

Differentiating (3.22), we have 

         

(3.27)

By separating (3.27) into real and dual parts and using 
(3.3) and (3.4), we have

           (3.28)

and

   (3.29)

From (3.28), we find

           
   (3.30)

where 1a  and 3a  are defined as given in (3.18) and (3.25), 
respectively. Substituting (3.19), (3.25), (3.26) and (3.30) 
into (3.29), we have

            (3.31)

From (3.30) and (3.31), we find

Now we can give the following theorem.

Theorem 3.2. Let  be a dual curve, d  be a constant 
unit dual vector and  be the dual angle 
between the unit dual vectors d  and T . If  is a 
constant then

holds, where  

From Theorem 3.2, we can give the following 
corollary.

Corollary 3.2. Let   be a dual curve, d  be a constant 
unit dual vector,  be the dual angle between d  
and T , and  be constant. Then   is a dual helix if 
and only if

and 

4. Relations between a unit dual vector and the 
principal normal vector of a dual curve

In dual space, a unit speed curve  is called a dual slant 
helix, if its unit dual principal normal vector N  makes 
a constant angle  with a fixed direction in a unit dual 
vector d ; that is,  is constant along the 
curve (Lee et al, 2011). From this definition it is clear that 
both  and   are real constants. In this section, we will 
consider some more general cases such as one of the real 
numbers  and  is not constant, i.e.,  is not constant. 

Let  be a dual curve, d  be a constant unit dual 
vector and  be the dual Frenet trihedron 
of . If  is the dual angle between the unit 
dual vector d  and the unit dual principal normal vector 
N , we can write 

           (4.1)

where . Of course it is more complicated to 
study this subject under the assumption that both  and 

 are not constants. Then, we consider a simpler way and 
study two cases as follows:

Case 1. Let  be a non-zero constant while  is not 
constant. From E. Study mapping, it means that the 
lines corresponding to the vector N  make a spatial 
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motion in the space such that the angle  between the 
lines corresponding to the dual unit vectors d  and N  is 
constant while the distance  between these lines is not a 
constant. Differentiating (4.1), we have

                 (4.2)

Separating (4.2) into real and dual parts and using (3.3) 
and (3.4), we have

  1 3 0a f a− + =                            (4.3)

and

               (4.4)

Since (4.3) and (3.11) are the same, we find the following 
equation which we have found in Section 3 as

2 3 2(1 )
f m
f
′

= ±
+

.

where 2

2
21

am
a

=
−

. 

Integrating the above equation, we have 

where 1c  is an integration constant. The integration 
constant can be disappeared with a parameter change 

. So we get 

                          (4.5)

where 2

2
21

am
a

=
−

. From (4.1), we have known that

                  (4.6)

Substituting (4.3) and (4.6) into (3.5), we have

                             (4.7)

and

                           (4.8)

where f  is defined as (4.5). From (4.4), we find 

                (4.9)

where 1a  and 3a  are defined as (4.8) and (4.7), respectively. 
From (4.5) and (4.9), we get

Now we can give the following theorem.

Theorem 4.1. Let  be a dual curve, d  be a constant 
unit dual vector and  be the dual angle between 
the unit dual vector d  and the unit dual principal normal 
vector N . If  is a constant then

where  

From Theorem 4.1 and definitions of dual helix and 
dual slant helix, we can give the following corollaries.

Corollary 4.1. Let  be a dual curve, d  be a constant  unit 
dual vector,  be the dual angle between d  and 
N , and  be a constant.  is a dual helix if and only if

and

Corollary 4.2. Let  be a dual curve, d  be a constant 
unit dual vector,  be the dual angle between d  
and N , and  be a constant.  is a dual slant helix if 
and only if

Case 2. Let  be a non-zero constant while  is not 
constant. From E. Study mapping, it means that the lines 
corresponding to the vector N  make a spatial motion 
in the space such that the distance  between the lines 
corresponding to the dual unit vectors d  and N  is constant 
while the angle  between these lines is not a constant. 
Differentiating (4.1), we have



Relations between a dual unit vector and Frenet vectors of a dual curve65

          (4.10)

Separating (4.10) into real and dual parts and using (3.3) 
and (3.4), we get

                     (4.11)

and

           (4.12)

From (4.11) and (4.12), we get, respectively,

and 

Now we can give the following theorem.

Theorem 4.2. Let  be a dual curve, d  be a constant 
unit dual vector and  be the dual angle 
between the unit dual vector d  and the unit dual normal 
vector N . If  is a constant then

where  

From Theorem 4.2 and definitions of dual helix and 
dual slant helix, we can give the following corollaries.

Corollary 4.3. Let  be a dual curve, d  be a constant unit 
dual vector,  be the dual angle between d  and 
N , and  be a constant.  is a dual helix if and only if

and

Corollary 4.4. Let  be a dual curve, d  be a constant 
unit dual vector,  be the dual angle between d  
and N , and  be a constant.  is a dual slant helix if 
and only if

5. Relations between a unit dual vector and the 
binormal vector of a dual curve

In the dual space a unit speed curve  is called dual 
B -slant helix, if its unit dual binormal vector B makes a 
constant angle  with a fixed unit dual direction d ; that 
is,  is constant along the curve (Lee et al., 
2011). From this definition it is clear that both  and  
are real constants. In this section, we will consider the 
relation between the unit dual vector d  and unit dual 
binormal vector B , in the case that the dual angle between 
them is not constant.

Let  be a dual curve, d  be a constant unit dual 
vector and  be the dual Frenet trihedron 
of . If  is the dual angle between the unit 
dual vectors d  and B , we can write 

            (5.1)

where  

Case 1. Let  be a non-zero constant while  is not 
constant. From E. Study mapping, it means that the 
lines corresponding to the vector B  make a spatial 
motion in the space such that the angle  between the 
lines corresponding to the dual unit vectors d  and B  is 
constant while the distance  between these lines is not a 
constant. Differentiating (5.1), we have

                    (5.2)

Separating (5.2) into real and dual parts and using (3.3) 
and (3.4), we get

           (5.3)

Assuming that f  is not equal to zero, from (5.3), we 
have

  2 0a = .                                 (5.4)

Differentiating (5.2) and separating the result into real and 
dual parts, we have

  2
2 1 3 0f a fa f a′ − + =                       (5.5)

and

  (5.6)

By substituting (5.4) into (5.5), we get

  1 3a fa=                                 (5.7)
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Since (5.7) equals to (3.11) and 2 0a = , we get

  f c=                                   (5.8)

where c  is a constant. Using (3.13), we find

  3 2

1
1

a
c

=
+

.                           (5.9)

Substituting (5.8) and (5.9) into (5.7), we get

  1 21
ca

c
=

+
.                         (5.10)

From (5.1), we have known

             (5.11)

Using (5.9) and (5.11), we find

                          (5.12)

Substituting (5.4), (5.9), (5.10) and (5.12) into (3.6), we 
have

                           (5.13)

Substituting (5.4), (5.8), (5.9), (5.10), (5.12) and (5.13) 
into (5.6) and considering that 0f ′ = , we find

                     (5.14)

From (5.8) and (5.14), we get

  

Now we can give the following theorem.

Theorem 5.1. Let  be a dual curve, d  be a constant 
unit dual vector and  be the dual angle between 
unit dual vector d  and unit dual binormal vector B . If  
is a constant then

 

holds, where  

From Theorem 5.1, we can give the following 
corollary.

Corollary 5.1. Let  be a dual curve, d  be a constant 
unit dual vector,  be the dual angle between d  
and B , and  be a constant. Then  is a dual helix if 
and only if the following differential equation holds

Case 2. Let  be a non-zero constant while  is not 
constant. From E. Study mapping, it means that the lines 
corresponding to the vector B make a spatial motion 
in the space such that the distance  between the lines 
corresponding to the dual unit vectors d  and B  is constant 
while the angle  between these lines is not a constant. By 
differentiating (5.1), we have

        (5.15)

Separating (5.15) into real and dual parts and using (3.3) 
and (3.4), we get

                         (5.16)

and

                   (5.17)

From (5.16), we find

                             (5.18)

By substituting (5.18) into (5.17), we have

           (5.19)

From (5.18) and (5.19), we find

Now we can give the following theorem.

Theorem 5.2. Let  be a dual curve, d  be a constant 
unit dual vector and  be the dual angle between 
the unit dual vector d  and the unit dual binormal vector 
B . If  is a constant then

where  

From Theorem 5.1, we can give the following 
corollary.

Corollary 5.2. Let  be a dual curve, d  be a constant unit 
dual vector,  be the dual angle between d  and 
B , and   be a constant.  is a dual helix if and only if
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and

6. Relations between a unit dual vector and the 
dual Frenet instantaneous rotation vector of a dual 
curve

In this section, we will consider the relation between a 
fixed unit dual vector d  and dual unit Frenet instantaneous 
rotation vector 0W . First, we give the following 
definition.

Definition 6.1. In the dual space a unit speed curve  is 
called a dual Darboux-slant helix if its unit dual Darboux 
vector (dual Frenet instantaneous rotation vector) 0W  
makes a constant dual angle  with a fixed unit 
dual direction d ; that is,  is constant along 
the curve. Then we have

where  are constants. 

From this definition it is clear that both  and  are 
real constants. Now, we will consider a more general case 
that the dual angle between these dual unit vectors is not 
constant. Then

          (6.1)

is not a constant. Separating (6.1) into real and dual parts, 
we have

                            (6.2)

and

                 (6.3)

From (6.2) and (6.3), we find

and

Thus, we get

Theorem 6.1. Let  be a dual curve, d  be a constant 
unit dual vector and  be non-constant dual 
angle between unit dual vector d  and the unit dual Frenet 
instantaneous rotation vector 0W , then

holds, where  

From Theorem 6.1, we can give the following 
corollary.

Corollary 6.1. Let  be a dual curve, d  be a constant 
unit dual vector and  be dual angle between 
d  and 0W . Then,  is a dual helix if and only if

and

Let now consider the special case that  is a constant. 
Differentiating (6.2), we have

1 0f a′ = .

Since f ∗ can not be found in the case of 1 0a = , we will 
assume that 0f ′ = . So, we get

  f c=                                   (6.4)

where c  is a constant. By substituting (6.4) into (6.3), 
we find

  
             

     (6.5)

From (6.4) and (6.5), we have

Now we can give the following theorem.

Theorem 6.2. Let  be a dual curve, d  be a constant 
unit dual vector and  be dual angle between 
unit dual vectors d  and 0W . If  is a constant then

holds, where c  is a constant. 

From Theorem 6.2, we can give the following 
corollary.
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Corollary 6.2. Let  be a dual curve, d  be a constant 
unit dual vector,  be dual angle between d  
and 0W  and  be a constant. Then,  is a dual helix 
if and only if

where c  is a constant.

Furthermore, if  is constant in Theorem 6.2, we have 
that  is a dual Darboux slant helix. Then we have the 
following corollary.

Corollary 6.3. If  is a dual Darboux slant helix, then 

holds, where  is a real constant. 

7. Conclusions

The study of motion of a line in space is an important 
research area in kinematics. This study can be achieved 
more efficiently by using dual vector algebra and obtained 
results can be interpreted. This paper is an example of 
such studies of special motions. In this paper, the motions 
of two lines corresponding to a fixed unit dual vector and 
dual Frenet vectors of a dual curve are studied in detail. 
A general case of this motion such that the dual angle 
between dual unit vectors is not constant is studied. Later, 
some special cases are considered and characterizations 
for dual helix, dual slant helix and dual Darboux slant 
helix are obtained.   
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