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ABSTRACT

In the present paper we use generalized differential transform method to derive
analytical solution of linear and non-linear space-time fractional reaction-diffusion
equations on a finite domain. The space and time fractional derivatives are considered in
Caputo sense. Some examples are given and it has been observed that the generalized
differential transform method is very effective and convenient and overcomes the
difficulty of Adomian decomposition method and homotopy perturbation method.
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INTRODUCTION

Fractional calculus is a generalization of ordinary differentiation and
integration to arbitrary non-integer order. The subject is as old as classical
calculus. The idea of fractional calculus has been a subject of interest not only
among mathematicians, but also among physicists and engineers. Fractional
differential equations have gained considerable importance due to their
application in various sciences, such as physics, mechanics, chemistry,
engineering, etc. In recent years, there has been a significant development in
ordinary and partial differential equations involving fractional derivatives
(Samko et al., 1993; Kilbas et al., 2006; Miller & Ross, 1993; Oldham & Spanier,
1974; Podlubny, 1999). Numerous problems in these areas are modeled
mathematically by systems of fractional differential equations. These new
models are more adequate than the previously used integer order models,
because fractional order derivatives and integrals describe the memory and
hereditary properties of different substances (Podlubny, 1999). This is the most
significant advantage of the fractional order models, in comparison with integer
order models, in which such effects are neglected.
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Finding accurate and efficient methods for solving fractional differential
equations has been an active research undertaking. In the last decade, various
analytical and numerical methods have been employed to solve linear and
nonlinear problems. For example, Adomian decomposition method (ADM)
(Bildik & Konuralp, 2006; Bildik et al., 2006; Hassan, 2008; Ray, 2007; Ray
2009; Yu et al., 2008), homotopy-perturbation method (HPM) (Yildirim &
Sezer 2010), homotopy-analysis method (HAM) (Alomari et al., 2008),
variational iteration method (VIM) (Bildik & Konuralp, 2006), generalized
differential transform method (GDTM) (Momani & Odibat 2008; Momani et
al., 2007; Odibat & Momani 2008; Odibat et al., 2008), multi-step differential
transform method (Erturk et al., 2011; Odibat et al., 2010), and matrix method
(Garg & Manohar 2010; Podlubny et al., 2009) have all been applied to solve
fractional equations both ordinary and partial. In the present paper, we use
generalized differential transform method to obtain analytical solution of linear
and non-linear space-time fractional reaction diffusion equations on a finite
domain.

The differential transform method was first introduced by Zhou (1986) who
solved linear and nonlinear initial value problems in electric circuit analysis.
This method constructs an analytical solution in the form of a series. It is
different from the traditional higher order Taylor series method, which requires
symbolic computation of the necessary derivatives of the data functions. The
Taylor series method computationally takes longer time for large orders. The
differential transform is an iterative procedure for obtaining analytic Taylor
series solution of ordinary or partial differential equations.

Recently, Momani & Odibat (2008) ; Momani et al. (2007) ; Odibat &
Momani (2008) and Odibat er al. (2008) have developed the generalized
differential transform method for solving two-dimensional linear and non-linear
partial differential equations of fractional order. The method is based on the
differential transform method given in (Bildik & Konuralp, 2006; Hassan, 2008)
generalized Taylor’s formula (Odibat & Shawagfeh, 2007) and Caputo
fractional derivative (Caputo 1969, 2008).

In the present paper we first consider linear and non-linear space-time
fractional reaction-diffusion equations as

oDu(t, x) = b(x)onu(t, x) — c(x)u(t,x) + £(t, x) (1)

and
oD u(t, x) = b(x)oDJult, x) + g(u) +f1, x) (2)

on a finite domain 0 < x < L,z >0 with 0 < a <1 and 1 < 8 <2 where the
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coefficient of diffusion b(x) > 0, reaction term c¢(x) > 0, g(u) is non-linear
reaction term and the function f{¢, x) represents source or sink. The fractional
derivatives ¢D? and (D? are considered in Caputo sense, as defined by equation
(3). It is assumed that the fractional reaction-diffusion equations under
consideration have unique and sufficiently smooth solutions under suitable
initial conditions.

The fractional reaction-diffusion equations (1) and (2) have been considered
earlier by Yu et al. (2008) and Yildirim & Sezer (2010) who used Adomian
decomposition method and homotopy perturbation method respectively to
obtain numerical solutions of these equations. In both papers, solutions are
obtained in terms of series and truncated series provides numerical solutions of
these equations. In the present paper, we solve these equations by generalized
differential transform method (Momani & Odibat, 2008; Momani et al., 2007;
Odibat & Momani, 2008; Odibat et al., 2008) and show that this method is more
effective and convenient and provides analytical solution without
approximations.

PRELIMINARIES

Caputo fractional derivative of order «, is defined as in (Caputo 1969, 2008):

Q 1 f(m)é m—a nym
T Oﬁ_lmdfafx D"f{am-1<a<mimeN (3

where D" :ﬁ,al‘j stands for the Riemann-Liouville fractional integral
» >

operator of order o > 0 given by (Samko et al., 1993; (Miller & Ross, 1993;
(Kilbas et al., 2006).

olf(x) = %a)/x (x — )" ft)dr. (4)
Clearly

Generalized differential transform (Momani & Odibat, 2008; Momani et al.,
2007; Odibat & Momani, 2008; Odibat ez al., 2008) is as given below:

Consider a function of two variables u(x,y) and suppose that it can be
represented as product of two single-variable functions, i.e. u(x,y) = f(x)g(y). If
function u(x, y) is analytic and differentiable continuously with respect to x and
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y in the domain of interest, then the generalized differential transform of the
function u(x, y) is given by

1 - | h
halle) = e |00 (2 ] @

where 0 < a,( <1, (anj)k = ,Dy.De...DY (k times) and U,g(k,h) is the
transformed function.

The generalized differential transform inverse of U, g(k, ) is given by:

oo X

u(x,y) = 303 sk, ) (x = a) (= ). (7)

k=0 h=0

We now mention a theorem established by the authors (communicated for
publication), which gives the conditions under which the exponent law holds for
Caputo fractional derivatives.

Theorem 1. Suppose that f(x) = (x — a)*h(x), where A > 0 and A(x) has the

no

o¢]
generalized power series expansion /i(x) = Y a,(x — )™ with radius of

n=0
convergence R > 0,0 < o < 1. Then

DD f(x) = oDYPAX), (8)
for all (x — a) € (0, R), the coefficients a, = 0 for n given by na + A\ — § = 0 and

either

(@)  A>p,p=max(8+[v],[B+7])
or

(b) )\Su,ak:0f0rk:0,1,...,[

(67

u—ﬂ

where [x] denotes the greatest integer less than or equal to x.

Theorem 2. (Momani & Odibat 2008, Momani et al., 2007, Odibat & Momani
2008, Odibat et al., 2008) Some fundamental properties for generalized
differential transform are given below.

Let U, p(k,h), Vo ps(k,h) and W, g(k, h) be generalized differential transforms
of functions u(x, y), v(x, y) and w(x, y) respectively, then

(1) Ifu(x,y) =v(x,y) £w(x,p), then U, g(k,h) = Vo gk, h) = W, 3(k, h),
(i) Ifu(x,y) = av(x,y), ais constant, then U, 3(k, h) = aV, 3(k, h),
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k h
(i)  Ifu(x,y) =v(x,y)w(x,p), then Uy s(k,h) = > Y Vag(r,h—s)Wopg(k —r1,5),
r=05=0
(v)  Ifu(x,y) = (x—a)"*(y = b’ n;,ny € N, then U, 5(k, h) = 8(k — m)8(h — m),
where 6 is defined as

§(k) = { 1, when k:0-

0, otherwise

v) If u(x,y)=(DY)"v(x,y) where 0<a<l, meN then

T(alk +m) + 1)
T(ak + 1)
(viy If u(x,y):(bnyv(x,y) where 0<p<1, neN, then

T(B(h+n)+1)
T(Bh+ 1)

U(Jz.ﬂ (k7 h) = V(Jt.ﬂ (k + m7 h)9

U(Jé-ﬂ(ka h) = V(Y7ﬁ(k7 h+ n)-

SOLUTION OF SOME FRACTIONAL
REACTION-DIFFUSION EQUATIONS

Example 1. Consider the linear space-time fractional reaction-diffusion equation

oD ult 1) = (o) (D) ult.2) — elault.2) + .2).0 < < LO<I <1, (0)

with initial condition
u(0,x) = x* — x°, (10)

and
ft,x) =342 +1)x3 + 3237 (3 — %), b(x) =T(1.2)x"* and ¢(x) = 2.

Applying the generalized differential transform (6) with a=0=5,
a =12, 8 =1/5, to both sides of equation (9) and making use of Theorem 2, (9)
transforms to

AT P P PR sk

U, ——— U1
F(UCQLI)H) r=0s=0 F(% + 1) Q’é

9

(k+1,h) = (k—r5+9)

2
5

—2U1 1 (k, h) + 126(k — 4)8(h — 15) + 36(k)6(h — 15) (1)

2’5

32

WV

{6(k — 3)6(h — 10) — 8(k — 3)8(h — 15)}].
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The generalized differential transform of initial condition (10) is given by

Ui1(0,10) = 1, U1 1(0,15) = —1. (12)

11 11
2’5 2’5

Utilizing the recurrence relation (11) and the transformed initial
condition(12), we obtain

Ui1(0,10) =1, Ui1(0,15) = —1, U:1(4,10) =4,U11(4,15) = —4,
2’5 2’5

2’5 2’5 (13)
Uii(k,h) =0 for k# 0,4 and h # 10, 15.
2’5
From (7), we have
u(t,x) = > Uik, i) 2x"5, (14)

wil

k=0 h=0 2

=

Using the values of Uii(k,/) from (13) in (13), the exact solution of linear
2’5
space-time fractional reaction-diffusion equation (9) is obtained as

u(t, x) :4(1—|—t2) (xz—x3). (15)

This may be verified by direct substitution in (9).

Further in view of Theorem 1, we find that (ODL/S)gu(t, x) = oD?u(t, x).
Thus the linear space-time fractional reaction-diffusion equation (9) can be
taken as in (Yildirim & Sezer, 2010; Yu et al., 2008)

oD u(, x) = b(x)oDYu(t, x) — c(x)u(t,x) + f(1,x),0 < x < 1,0< <1, (16)

with solution given by (14).

Example 2. Consider the non-linear space-time fractional reaction-diffusion
equation

11
oD} u(t, ) = (DY) u(t, ) + gu(t, ) +/(1,%),0 < x < 1,1> 0, (17)

with initial condition
u(0,x)=0,0<x <1, (18)

where the non-linear reaction term is g(u) =0.25(1 —u) and
S(t,x) = —0.0104649/°° + 0.00961766x"! —0.0025/9x"! 4-0.000025¢! -8 x>,
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Applying the generalized differential transform (6) with a=0=5,
o= 9/107ﬁ = 1/10, to both the sides of (17) and making use of Theorem 2, (17)

ST AL
U

transforms to

U%vf‘o(k+1’h)zr gk o - h 1 %,ﬁ(k7h+1>+025(]%%<kh)
[wen) | )
Eoh (19)
—02522U91(Th—8)U91(]€ TS)
r=0s=0

—0.01046495(k — 2)6(h)-+0.009617665(k)3(h — 11)
—0.00258(k — 1)6(h — 11) - 0.0000256(k - 2)8(h — 22)].

The generalized differential transform of initial condition (18) is given by

Us 1 (0,) = 0. (20)

10’10

Utilizing the recurrence relation (19) and the transformed initial condition
(20), we obtain

Uy 1(1,11) =0.01 and Uy s (k,h) =0 for k#1 and h#11. (21)

10’10 10’10

From(7), we have

ZZUiL (k, 1) 210310, (22)

k=0 h=0 10°'10

Using the values of Us 1 (k, ) from equation (21) in equation (22), the exact
1010
solution of non-linear space-time fractional reaction-diffusion equation (17) is

obtained as
u(t,x) = 0.01°2x", (23)

This may be verified by direct substitution in the equation (17).

Further in view of Theorem 1, we find that (OD;/IO)”u(t, x) = oD/ 10u(t, x).
Thus the non-linear space-time fractional reaction-diffusion equation (17) can
be taken as in (Yildirim & Sezer, 2010; Yu et al., 2008)
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0D%u(t, x) = oD Ou(t, x) + g(u(t, x)) +£(1,%),0 < x < 1,1 >0 (24)

with solution given by (23).

Example 3. Consider the non-linear space-time fractional reaction-diffusion
equation

0D u(t, x) = (OD;/6)5u<z, X) +g(u(t,x)) +f(x, 0,0 <x < 1,6 >0, (25)

with initial condition
u(0,x) =0,0<x <1, (26)

where the non-linear reaction term g(u) = u* — u? and f{¢,x) = —0.0011018/°%
+0.000931384x"2 4+ 1 x 1076716x24 — 1 x 107724x36.

Applying the generalized differential transform(6), with ¢ = 0 = b,a = 4/5, 8= 1/5,
to both sides of (25) and making use of Theorem 2, (25) transforms to

4k h+6
r(—+1 I—+1

4 h
I'i=(k+1 1 I'i=-+1
k k—rh—s

+2° 2 > Uii(ryh — s = p)Urs(l, s)Usi(k — 7 — 1, p)
=0 =0p=0 °° 55 55

Ugé(kﬁ +1,h) = ) Ué’%(k, h+6)

(27)
k h
+ 20 > Uni(r, b — s)Usy(k — 1, 5)

r=0 s=0 i

—0.00110186(k — 1)6(h) + 0.0009313846(k)6(h — 6)
+(1 x 10_6)5(/€ —2)6(h—12) — (1 x 10_9)5(k: —3)6(h — 18)
The generalized differential transform of initial condition (26) is given by

Us1(0,h) = 0. (28)

1
5’5
Utilizing the recurrence relation (27) and the transformed initial condition
(28), we obtain

Usi(1,6) = 0.001, Usi(k,h) =0 for k#1 and #6 (29)

1 41
s 55

Wl
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From (7), we have

u(t, x) = > Usi(lk, ))* x5, (30)
¢

k=0 h=0

wl

Using the values of Usi(k, /) from equation (28) in equation (30), the exact
5’5
solution of non-linear space-time fractional reaction-diffusion equation (25) is

obtained as
u(t,x) = 0.001/8x"2, (31)

This may be verified by direct substitution in the (25).

Further in view of Theorem 1 we find that (ODVIX_/S)6u(Z, x) = oD%3u(t, x).
Thus the non-linear space-time fractional reaction-diffusion equation (25) can
be taken as in (Yildirim & Sezer 2010, Yu et al. 2008)

0DPu(t, x) = oDy u(t, x) + g(u(t,x)) + flx,1),0 < x < Lr > 0. (32)

CONCLUSION

In this paper we have obtained analytical solutions of some linear and non-
linear reaction-diffusion equations by means of generalized differential
transform method. The same equations have been considered earlier by Yu et al.
(2008) and Yildirim & Sezer (2010). They have used Adomian decomposition
method and homotopy perturbation method respectively, to obtain numerical
solutions of these equations. In both the papers, the solutions were obtained in
terms of series and the truncated series provided numerical solutions of these
equations, whereas the solutions obtained by generalized differential transform
method are in closed form. This shows that generalized differential transform
method is more effective and convenient and overcomes the difficulty of
Adomian decomposition method and homotopy perturbation method.
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