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Abstract

In this paper, we classify the finite simple groups with an abelian sylow subgroup.
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1. Introduction

Sylow subgroups are very important subgroups of finite groups. Some well-known 
theorems on the structure of groups link their Sylow subgroups. In particular, groups 
with some abelian Sylow subgroups have been widely researched. At the same time, 
some problems related to abelian Sylow subgroups are put forward. Since the condition 
of abelian Sylow subgroups inherits to subgroups and quotient groups, some problem 
will reduce to simple having some abelian Sylow subgroups.

Walter (1969) classified finite non-abelian simple groups with abelian Sylow 
2-subgroups, which are L2(q), where  or  (mod 8), J1 or , 
where  and . Also the structure of Sylow subgroups is studied by Weir 
(1955). He proved that the Sylow r-subgroups of the classical groups over GF(q) with 
q prime to r and r odd are expressible as direct products of groups defined inductively 
by , where G0 is an abelian p-subgroup of the classical group and Cp 
a cyclic group of order p.

In this paper, we use Artin (1959) invariant of the cyclotomic factorization (see 
Artin (1959)) to classify the finite simple groups with an abelian Sylow subgroup.

Theorem. Let S be a finite non-abelian simple group. Suppose that S has an abelian 
Sylow r-subgroup and r an odd prime. Then S is one of the following groups:

(1) an alternating group An with n < r 2,

(2) a linear simple group PSL2 (q) with r | q,
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(3) PSL3 (q),  (mod 9) with r = 3,

(4) PSU3 (q2),  (mod 9) with r = 3,

(5) a simple group of Lie type over the Galois field GF(q) and  except the 
above groups of (3) and (4), where  is a primitive prime of , the function 
eL (x)  is defined in Table 1 and Table 2,

(6) a sporadic simple groups listed in Table 4.

From above theorem, we can get the following result.

Corollary. Let S be a finite simple group. Suppose that S has an abelian Sylow 
r-subgroup R. Then R is isomorphic to some direct products of copies of a cyclic 
r-group.

Afterwards we consider the classification of finite simple groups having an 
elementary abelian Sylow subgroup. In the following, all considered groups are finite. 
Recall that a section of a group G is a quotient of a subgroup of G. Denote by G k the 
group of  with k  times. The notations G.K and G : K mean an extension and 
a split extension of the group G by K, respectively. We denote  if  but  
not divide n for a prime p and natural number n.

2. Alternating groups

Theorem 2.1. Let r be an odd prime. Then the alternating group An has a Sylow abelian 
r-subgroup if and only if .

Proof. Since r is an odd prime, Sylow r-subgroups of An are ones of the symmetric 
group Sym(n). We use the well known structure of Sylow subgroups of symmetric 

groups. Now let r s be the largest number such that . If 
 
and , then 

there exists a subgroup , which is not abelian. So Sylow r-subgroups of An are 

not abelian. Next we assume that  and . Then Sylow r-subgroups of An 

is , which is an elementary abelian group.

Next we give a result on the alternating groups having a Sylow r-subgroup 
isomorphic to Cr  Cr .

Corollary 2.2.  Let r be an odd prime. Then the alternating group  has a Sylow 
r-subgroup Cr  Cr if and only if . 

3. Simple groups of Lie type

In this section, we will discuss simple groups of Lie type over the Galois field GF(q). 
For any natural number m let  denote the mth cyclotomic polynomial. So the 
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degree of  is the Euler function  and  by the book of 
Ribenboin (1989). Recall that a primitive prime divisor (or Zsigmondy prime) rm of 

 is a prime such that  but  for . A well-known 
theorem by Zsigmondy(1892) asserts that primitive primes of  exist except if 

 or  and . 

Lemma 3.1. Let q and m be natural numbers. Then  (mod q) and 
(mod q) for . 

Proof. Clearly the result is true for  and 2. Next we prove the remaining 
case by induction on m . Since , we have 

 (mod q) by induction, and hence 
(mod q) whenever .

Lemma 3.2 (Ribenboin (1989)). Let q, m be positive integers with  and rm a 
primitive prime of  qm  1. Then rm divides .

Lemma 3.3 (Malle et al. (2006)). Let rm be an odd primitive prime of qm  1. Then 
 if and only if  for some . 

Lemma 3.4. Let rm be an odd primitive prime of qm  1 and . Then  
and  for m≠2.  

Proof. The proof of the case  is given by Lemma 2.1 of Feit (1988) or Lemma 1 
of  Artin (1959). Next we prove the cases  and 2. 

First, we consider the case . Now we set  (mod ) with  
Since , we have , and let . Then  (mod ) where 

 Moreover

so that 
 
(mod ), and then . 

We next discuss the case . Similarly, we let  (mod ) with 
. Since , we have , and let . Then  (mod 

) where . Since , it follows that

and thus .
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In the following, let L(q) be a simple group of Lie type of charactersic p. The order 
of L(q) has the cyclotomic factorization in terms of q:

      
                     

                  (1)

where d is the denominator and h the exponent given for L(q) in Table 1 and Table 2, 
where  is the cyclotomic polynomial for the primitive mth roots of unity, and 
where the  are the exponents deducible from the factors. The function  is 
defined in Table 1 and Table 2 by Kimmerle et al. (1990). 

Table 1. Cyclotomic factorisation: classical groups of Lie type

L  d h  eL(x) where x is an integer

gcd(n,q–1)

gcd(n,q+1)

gcd(2,q–1)

gcd(4,qn–1)
  if  or x  2n

  if x  n and 

gcd(4,qn+1)

  if 

  if x  n  
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Table 2. Cyclotomic factorisation: exceptional groups of Lie type

m 2B2 
3D4 G2

2G2 F4
2F4 E6

2E6 E7 E8

1 1 2 2 1 4 2 6 4 7 8

2 2 2 1 4 2 4 6 7 8

3 2 1 2 3 2 3 4

4 1 2 2 2 2 2 4

5 1 1 2

6 2 1 1 2 1 2 3 3 4

7 1 1

8 1 1 1 1 2

9 1 1 1

10 1 1 2

12 1 1 1 1 1 1 2

14 1 1

15 1

18 1 1 1

20 1

24 1

30 1

d 1 1 1 1 1 1 gcd(3, q – 1) gcd (3, q + 1) gcd (2, q – 1) 1

h 2 12 6 3 24 12 36 36 63 120

Note that for Table 2, the numbers in the row headings are those integers m for 
which a cyclotomic polynomial  enters into the cyclotomic factorisation in 
terms of q of one of the exceptional groups L(q) of Lie type according to the formula 
(1). The types L are the headings, and the entry in the m-row and the L-column is 
eL(m) if non-zero and blank otherwise. 

Moreover, let Rm be the set of all primitive primes of qm  1. Denote by 
, where 

 
means the rm’s maximum prime power 

divisor of . Then we have
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                                                           (2)

where  is the number of divisor rm of all possible  such that . Note 
that we define  and , where r is a Mersenne prime.

Lemma 3.5. Keep the above notations. Suppose that rm is an odd prime. Then 
, if  or ; , if  for the simple 

groups of Lie type, where the function  is given by Table 1 and Table 2. 

Proof.  We consider the general term  to give a proof. By Lemma 3.3 and 

Lemma 3.4, it follows that the rm-part of  is rm whenever , and  for . 

So we have  if , and equals  if 

. Thus  for , and , for .

We compute directly in term of Lemma 3.1 and the formulas of Lemma 3.5, the 
following result can be obtained. 

Lemma 3.6.  Keep the above notations. Suppose that rm is an odd primitive prime of 
qm  1. Then  for the exceptional simple groups of Lie type except the cases 
listed in Table 3.

Table 3. The function  for exceptional groups of Lie type

rm
3D4 G2 F4

2F4 E6
2E6 E7 E8

2 1 2 4 2 4 5

1 1 2

1 1

2 2 1 2 4 4 5

1 1 2

1 1

1

Next we classify the simple groups of Lie type of characteristic p which have an 
abelian Sylow p-subgroup. 
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Theorem 3.7. Let L be a simple group of Lie type over the finite field GF(q) of 
characteristic p. Then S has an abelian Sylow p-group if and only if L is isomorphic 
to PSL2 (q).

Proof.  It is known that the Sylow p -subgroup of L is a maximal unipotent subgroup. 
We use the notations of Vdovin (2001), let  be the maximum of orders of 
abelian p -subsets of the root system  by Mal’tsev (1945). By hypothesis, the Sylow 
p -subgroup is abelian, so we have  for classical simple groups (where 

 is listed in Mal’tsev (1945)), and  for exceptional simple groups 
(where  in Table 4 of Vdovin (2001)). Therefore, L has an abelian Sylow p -group 
if and only if L is isomorphic to PSL2 (q).

Next we give a necessary and sufficient condition for a simple group of Lie type to 
have an abelian Sylow r-subgroups and r is prime to the characteristic. 

Theorem 3.8. Let L be a simple group of Lie type over the Galois field GF(q) and rm an 
odd primitive prime of qm  1. Then L has an abelian Sylow rm-subgroup if and only if 

 except the following two cases: 

(1) ,  and  (mod 9); 

(2) ,  and  (mod 9). 

Proof.  We use Propositions 7-10 of Carter (1972,1981)’s results on maximal tori of 
simple groups of Lie type to prove. We divide into several cases. 

Case 1:  with . Then every maximal torus T of PSLn(q) has order 

 
for appropriate partition  

We first suppose the . Then there exists a maximal torus has the order 

, in the terms of partition , where

 so that the largest order of abelian rm-subgroups is the rm-part of . Thus 
Sylow rm-subgroups are abelian if and only if , which is equivalent to the 
condition  in terms of Lemma 3.5. Next we assume , that is . 
We split it into two cases, r1 does not divide n, and then r1 divides n, as well. 

Subcase 1: r1 does not divide n. Then there exists a maximal torus of order 

 
whose r1-part is the maximum order of the abelian r1-subgroup. 

Thus Sylow r1-subgroups are abelian if and only if .

Subcase 2: r1 divide n. Let  and . We first consider the group 
GLn(q). The Sylow r1-subgroup of GLn(q) is isomorphic to one of the group M of 
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monomial matrices which have one nonzero entry in each row and column, so they 
are the product of a permutation matrix and a diagonal matrix, that is , 
where D is the group of the set diagonal matrices. Thus a Sylow r1-subgroup of SLn(q) 
is a Sylow subgroup of , where D1 is the set all diagonal matrices of 
determinant 1. Therefore, a Sylow r1-subgroup of  is a Sylow r1-subgroup 
of PSLn(q). Moreover, we note that  

Obviously,  is an abelian group of order , so that the Sylow 

r1-subgroup of PSLn(q) is abelian if and only if the r1-parts of 
and n! equals 1 and , or r1 and r1 respectively. Then ,  and . 
Thus the group PSL3 (q) and , that is PSL3 (q) and  (mod 9).

Case 2:  with . Then every maximal torus T of  has the 

order  for appropriate partition 

. Now we first assume that , if m is an odd number, then there 

exists a maximal torus whose order is  by the partition 

, where . Furthermore, the rm-part of this order is 

one of the largest order of abelian rm-subgroup. Since , it follows 

that Sylow rm-subgroups are abelian if and only if , that is the condition 

. If , we choose the partition  and  

then the order of corresponding torus is . If  

(mod 4), then there is the order of a torus  by the partition 

, where . So the largest order of abelian 
rm-subgroup is , and then the Sylow rm-subgroups are abelian if and only if 

.

Next we let . If r2 does not divide n, then there exists a maximal torus has 

order  by the partition . Since , it follows 

that Sylow r2-subgroups are abelian if and only if , that is . When 
, since Sylow r2-subgroup of  is one of , the Sylow r2-subgroup 

of  is one of the group , where  is a abelian group of order 

. Assume that . Then Sylow r1 subgroups are abelian if and only 
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if  and , that is the group  and  (mod 9).

Case 3: , , . Every maximal torus has order 

 for appropriate partition 

. Now we choose the partition  
if m is odd and  if m is even, where . So 

the largest order of abelian rm-subgroup is a divisor of , and then the Sylow 
rm-subgroups are abelian if and only if .

Case 4: , . Then every maximal torus has the order 

 
for appropriate partition 

 of n, where t is even if , and t is odd if . 
So whenever , it see that Sylow rm-subgroup is abelian if and only if  
by the previous method.

Case 5: , . Since there exist cyclic subgroups of order 
 and  (see Theorem 4.2 of Wilson (2009)), we have 

Sylow r-subgroup are cyclic except . On the other hand,  by Lemma 
3.6.

Case 6: , By Theorem 4.1 of Wilson (2009), the simple group  has 
subgroups    and . Let . If  and . then there is abelian subgroup 

 of , and so Sylow r1-subgroup of  is abelian. When , the 
Sylow r1-subgroup is not abelian. If  and , then Sylow 3-subgroup is not 
abelian by listed subgroups. If , then Sylow subgroups are  
and , respectively. These are all abelian. Thus the Sylow rm-subgroup is abelian if 
and only if .

Case 7: , By the section 4.2.6 of Wilson (2009) there exist subgroups 
 and  of , and then if , then Sylow r-subgroup 

is abelian. Now if , then Sylow 3-subgroup of  is not abelian. So Sylow 
rm-subgroup is abelian if and only if . 

Case 8:  and . In terms of Table 3, we know that  for 
any m. Moreover, Sylow rm-subgroups are cyclic by Theorem 4.3 of Wilson (2009), 
and so Sylow rm-subgroup is abelian if and only if .

Case 9: . Since 3D4 (q) is a subgroup of F4(q) (see Section 4.8 of Wilson 
(2009)), we have Sylow r6 and r12-subgroup of F4(q) are ones of 3D4 (q) (see Table 
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1 and Table 2), which are abelian by the above Case 6. Furthermore, F4(q) has a 
subgroup  (see Section 4.8 of Wilson  (2009)), then Sylow r4 and r8-
subgroups of  are ones of F4(q), which are abelian by the above Case 4. 
Since F4(q) has the maximal torus  and  (also see Section 4.8 of Wilson 
(2009)), Sylow rm-subgroup is abelian if and only if  for .

Case 10:  and .  Since there exists a subgroup SU3(q) (see Theorem 
4.4, Wilson (2009)) and Sylow r2, r6-subgroups are ones of 2F4(q) (see Table 1 and 
Table 2), by the discussion of Case 2, we have these Sylow subgroups are abelian if 
and only if . Moreover, 2F4(q) has subgroups  and 

 
(also see Theorem 4.4, Wilson (2009)), let , and then the 

Sylow ri-subgroup is  for , and Sylow r12-subgroup is cyclic. So Sylow rm-
subgroup is abelian if and only if .

Case 11: . Since F4(q) is a subgroup of E6(q) (see Section 4.6.4, Wilson  
(2009)), we have Sylow ri-subgroups of E6(q) are ones of F4(q) for  
(see Table 1 and Table 2).  By the proof of Case 9, it follows that the Sylow rm-
subgroup is abelian if and only if  for . Also the group E6(q) 
has subgroups  if  and PSL3(q)3 (also see Section 
4.6.4, Wilson (2009)). So in this case there exist abelian subgroups  and  
provided  for , but the order of the maximal torus whose r1 , r3 
and r5-part are the largest are  and , respectively. Then the 
Sylow  and r3-subgroup is abelian if and only if . Also there exists 
a cyclic subgroup of order ,  so Sylow r9-subgroups are cyclic. If , 
since E6(q) has the subgroup  whose Sylow 5-subgroups are non-abelian (see 
Case 4), then the Sylow -subgroup is abelian if and only if . Next we 
consider , and use the same notation of the section 4.6.1 of Wilson (2009) to 
denote by GE6(q) the group of matrices which multiply the determinant by a scalar, so 
that . Then Sylow 3-subgroup of E6(q) is not abelian. 

Case 12: . Since F4(q) is a subgroup of 2E6 (q) (see Section 4.11 of Wilson  
(2009)), we have Sylow ri-subgroups of 2E6 (q) is ones of F4(q) for . 
Similarly, by the proof of Case 9, it follows that the Sylow rm-subgroup is abelian if 
and only if  for . It is known that , we have 
Sylow r10-subgroups are cyclic. Obviously, Sylow r18-subgroups are also cyclic. Since 
there is a maximal torus , we have Sylow r6 -subgroups are abelian. Next if 

, then the order of a maximal torus whose r2-part is the largest is , and so 
that Sylow r2-subgroups are not abelian. If , similar to the case E6(q), then Sylow 
3-subgroup is not abelian. 
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Case 13: . Since E6(q) is a subgroup of  E7(q) (see Section 4.12 of Wilson 
(2009)), Sylow rm-subgroups of E6(q) are ones of E7(q) for  (see 
Table 1 and Table 2). So by Case 11, it follows that the Sylow rm-subgroup is abelian 
if and only if  for . Also there is a section of subgroups 
of E7(q) which is isomorphic to 2E6(q) (also see Section 4.12 of Wilson (2009)), but 
Sylow rm-subgroups for  of 2E6(q) are ones of E7(q), and then the Sylow rm-
subgroup is abelian if and only if  for . Since there exist sections  
PSU8(q) and PSL7(q) of subgroups of E7(q), so the Sylow rm-subgroup is abelian if 
and only if  for . Next we consider . Since , by the 
structure of maximal torus we have the largest r1 and r2-part of abelian subgroups are 
ones of  and , and so Sylow r1 and r2-subgroups are abelian if and only 
if . 

Case 14: . Since E7(q) and  are subgroups of E8(q) (see Section 4.12 of 
Wilson (2009)), the Sylow rm-subgroup of E8(q) is abelian if and only if  
for . Also  is a subgroup of E8(q) (also see Section 
4.12 of Wilson (2009)), then the result is true for . By the structure 
of maximal torus we have Sylow rm-subgroups for  are cyclic, and 
Sylow r5, r10-subgroups are ones of  and  respectively. So Sylow 
r5, r10-subgroups of E8(q) are ablelian. For remaining cases of , we use the 
maximal torus. Since a maximal torus whose m-part is the largest for  are the 
groups  and , so Sylow rm-subgroups are abelian if and only if .

From the above proof, we can get the following corollary. 

Corollary 3.9. Let L be a simple group of Lie type over the Galois field GF(q) and rm 
an odd primitive prime of qm  1 and . Suppose that L has an abelian Sylow 
rm-subgroup R. Then , except the following cases:

(1)   and  (mod 9);

(2)   and  (mod 9).

Next we discuss simple groups of Lie type which have an elementary abelian 
Sylow subgroup.  In terms of Corollary 3.9, it is sufficient to satisfy with the condition 

. First, we give a lemma. 

Lemma 3.10. Let rm be a primitive prime of qm  1 and e a primitive root of rm. Let  

 (mod rm), where ,  and . Then 

(1)  if and only if  (mod );
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(2) for ,  if and only if  (mod ).

Proof. Let  (mod ) so that . Then we have  (mod ). Hence 

 if and only if the order of the element x in the cyclic group  is 

m. But the set of elements x of order m in  is  (mod rm), , 
, , and then , if . For the 

case of , clearly, , and if  (mod ), then it contradicts . So 

 (mod ).

Theorem 3.11. Let L be a simple group of Lie type over the Galois field GF(q), rm an 

odd primitive prime of qm  1 and e a primitive root of rm . Set  (mod rm), 
where ,  and . We have the following conditions: 

(1) if , then L has an elementary abelian Sylow r1-subgroup if and 
only if  (mod ), and 

(2) for , if , then L has an elementary abelian Sylow 
rm-subgroup if and only if  (mod ).

Finally, we give an example of classification on simple groups having a Sylow 
subgroup . 

Example 3.12. Let L be a simple group of Lie type over finite field GF(q). Suppose 
that S has a Sylow subgroup . Then L is one of following groups:

 (1) PSL2(25);

 (2)  where  (mod 25);

 (3)  where  (mod 25);

 (4) 

, where  (mod 25).

4. Sporadic simple groups 

Next we give Table 4 to list the information of Sylow subgroups of sporadic simple 
groups. Note that we denote by “+” the simple group S having abelian Sylow 
r-subgroup if “+” in the position of S-row and r-column, the blank otherwise. By the 
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Atlas of finite groups written by Conway et al. (1985), we know that if  and 
, then , and so Sylow r-subgroups are cyclic. We omit the prime divisors 

which are greater than or equal to 17 in Table 4. 

Table 4. The abelian Sylow r-subgroup of Sporadic Simple Groups

3 5 7 11 13

M11 + + +

M12 + +

J1 + + + +

M22 + + + +

J2 + +

M23 + + + +

HS + + +

J3 +

M24 + + +

McL + +

He +

Ru + +

Suz + + +

O N + +

Co3 + +

Co2 + +

Fi22 + + +

HN + +

Ly + +

Th + +

Fi23 + + +

Co1 + + +

J4 + +

Fi 24 + + +

B + + +

M +

Moreover, we can know that the abelian Sylow subgroups must be an elementary 
abelian group for 26 sporadic simple groups. 
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