
Kuwait J. Sci. 47 (1) pp. 33-41, 2020

Specification and recognition of service trust behaviors

Hamdi Yahyaoui*, Jumana El-Qurna, Mohamed Almulla

Dept. of Computer Science, Kuwait University, Kuwait
*Corresponding author: hamdi@cs.ku.edu.kw

Abstract
We propose in this paper a new approach for the specification and recognition of service trust behaviors through
the so-called trust patterns, which denote typical trust behaviors. The trust patterns are defined based on context free
languages and modeled as pushdown automata. Furthermore, we provide a unified model to capture these patterns and
prove the correctness of the proposed model. Finally, we conduct a comprehensive experimental study using Weka in
which we test different classifiers on a dataset of trust sequences and provide a comparative study regarding the accuracy
of these classifiers.

Keywords: Data mining; pattern; pushdown automata; service; trust.

1. Introduction

Over the past few years, the development pace of services
has been impressive. Academic and industrial efforts
have been oriented towards improving the functional
and non-functional aspects of services (Al-jazzaf, 2015).
However, despite such tremendous efforts, several
obstacles and challenges still restrict their widespread use
in the development of large-scale, loosely-coupled, and
trustworthy service oriented applications. One of these
challenges is the lack of a common definition of service
trust. Several researchers strived to provide a rigourous
definition of trust. Olmedilla et al. (2005) consider that
trust of an entity X to another entity Y regarding a service
as the quantifiable belief of X in Y to act dependably
during a specified period and within a specified context
in relation to that service. Huang et al. (2010) perceive
trust as a mental state comprising expectancy, belief, a
trustee’s competence and goodwill, and willingness
to take risk. These informal definitions have helped to
devise models for the computation of trust. However,
there is still a lack of a formal definition of trust and
consequently of service trust behaviors. Such a definition
paves the way for performing sophisticated analysis such
as classification, clustering, and verification of service
behaviors. Accordingly, we propose in this paper a formal
specification of service trust behaviors that is based on
context-free languages.

To clarify, we consider a trust behavior as a sequence
of observations, which are generated during a certain

period of time. Sequences which denote typical behaviors
are called trust patterns and are defined based on
context-free languages. The rationale behind the adoption
of such language style is to be able to define both regular
and non-regular trust behaviors.

The devised framework would have a particularly
added value on service selection because the services are
classified into groups based on their trust behaviors. It is
meant to guide users to deal with trustworthy services and
detect the malicious ones. Furthermore, our framework
could be applied to several fields such as e-commerce,
e-auctions, e-services, etc.

The contributions of our work are three-fold:

• The formal specification of trust patterns from a
language perspective. This specification captures
regular and non-regular patterns.

• The elaboration of a deterministic pushdown
automaton called SPIDER automaton that captures the
aforementioned trust patterns.

• A set of experiments in which we test different
classifiers on a synthetic dataset of trust sequences and
provide a comparative study regarding the accuracy of
these classifiers.

In Section 2, we present some research initiatives
regarding modeling and computation of service trust. In
Section 3, we devise context free languages to capture
trust behaviors. We model the regular trust behaviors

Hamdi Yahyaoui, Jumana El-Qurna, Mohamed Almulla 34

using finite automata in Section 4. In Section 5, we model
the SPIDER automaton that captures the proposed trust
patterns. Finally, we provide in Section 6 experiments that
show the adequacy of our modeling for data mining and in
which we assess the accuracy of different classifiers on a
synthetic dataset of trust sequences.

2. Related work

As the use of services dramatically increases, trust is
becoming a major concern. Trust should exist between
service users and service providers. A service provider is
the entity that supplies the services. A service user is the
entity that invokes a service. Service users need to know
the service trust and which provided services meet their
functional and nonfunctional requirements. Thus, trust
is essential for providers and users to greatly improve
service quality and selection.

Trust models can be classified according to the adopted
modeling formalism: finite state machines (Carbone et
al., 2003; Costa et al., 2011; Zhang et al., 2018), logic
(Ashtiani & Azgomi, 2016; El-Qurna et al., 2017),
probabilistic networks (Liu et al., 2018; Raj & Babu,
2017), petri nets (Bidgoly & Ladani, 2011; Guo et al.,
2017), game theoretic models (Muchahari & Sinha, 2018;
Hamed & Mohammad, 2017), hidden Markov models
(Singh & Sinha, 2016; Yahyaoui & Zhioua, 2013). We
review some of these prominent trust models.

Costa & Matteucci (2011) introduced the gate
automata for specifying both security and trust policies.
Gate automata can replace the enforcement mechanism
that is controlling the behavior of an application. A major
benefit of this approach is that it allows the optimization
of the enforcement process based on trust levels. These
automata work as edit automata for guaranteeing security
properties and handling the trust levels of applications.

Carbone et al. (2003) proposed a formal model for
the assessment of trust degree and trust transition in
global computing-like environments. It leverages the
past experiences of trusted certificate providers to assess
the trust degree of trusted certificates. Trust is classified
conceptually into six categories: disposition, situation,
structure, belief, intention, and behavior. They use
two ordering relations: trust ordering and information
ordering as a solution for wrong decisions that result from
confusing trust with knowledge.

Bidgoly & Ladani (2011) derived a new method
for modeling and verification of reputation-based trust

systems using Colored Petri Nets called TCPN. TCPN is
an extension of Petri Nets, which combines the strengths
of ordinary Petri nets with the strengths of a high-level
programming language. The TCPN model is the first
model that verifies the trust using a model-checking
approach with temporal logic. It is independent from how
to compute or represent the trust.

All the aforementioned research studies focused more
on the computation of trust rather than the definition
of the trust itself. Accordingly, the literature includes
only informal definitions of trust and consequently
trust behaviors. The formalization of trust behaviors
is paramount for performing analyses such as logical
verification, classification, and clustering. It is worth
mentioning that our trust patterns definitions are based on
our previous work (El-Qurna et al., 2017). We leverage
here these definitions to build the aforementioned SPIDER
model. We also explore data mining possibilities of the
elaborated unified model rather than model checking trust
behaviors as in (El-Qurna et al., 2017). The ultimate goal
of this work is to derive highly accurate classifiers of trust
behaviors.

Fig. 1. Typical trust behaviors of services.

3. Trust patterns

In this section, we introduce our specification of service
trust behaviors through the so-called trust patterns. We

Specification and recognition of service trust behaviors35

adopt the informal definition of trust patterns that is
provided in Yahyaoui and Zhioua (2013), which states
that a trust pattern is a sequence of trust observations
from which a clear conclusion about the behavior of
web service can be drawn. Our idea relies on the ability
to enumerate all possible trust observations sequences
that capture both the regular and non-regular trust
behaviors over . As in Yahyaoui and Zhioua
(2013), the sequence of observations mainly consists of
the symbols T, U or both, where T denotes a Trustworthy
observation while U denotes an Untrustworthy (malicious)
observation.

We define the regular and the non-regular trust
patterns, as:

• Regular trust patterns are regular languages that can be
expressed using regular expressions over and
can be recognized by finite automata.

• Non-regular trust patterns are context-free languages
that can be expressed using context-free grammars
over and can be recognized by pushdown
automata.

Figure 1 shows all the sets of patterns that can be
deduced over . The set of sequences of one
pattern can be encoded as a formal language which has
properties that distinguish it. Based on Figure 1, we can
conclude the following:

• The possible patterns are: , , , ,
, , , and

.

• and patterns exhibit constant behaviors.

• and patterns alter their behaviors once
during the execution time.

• , , and
 patterns alter their behaviors

periodically with specific sequences at each time
frame. These patterns represent the oscillating patterns
from which we derive three regular and three non-
regular patterns.

3.1 Regular patterns

In this section, we define the following regular service
trust patterns.

Trustworthy • : The Trustworthy Language is
.

Untrustworthy pattern • : The Untrustworthy

Language is .

Betraying • : The Betraying Language is
.

Redemptive • : The Redemptive Language is
.

Regular Oscillating pattern • : The Regular
Oscillating language is

.

Oscillating to Betraying pattern • : The Oscillating
to Betraying language is .

Oscillating to Redemptive pattern • : The
Oscillating to Redemptive language is

.

3.2 Non-regular patterns

In this section, we provide three non-regular service trust
patterns. The non-regular patterns are defined using the
following theorem.

 (Hopcroft, 2007). If is a context-free
language and is a regular language, then is
context-free language.

The two regular languages that will be used to define
the Non-Regular patterns are:

• .

• .

Non-Regular Oscillating pattern • : The
Non-Regular Oscillating language is

 .

Oscillating to Trustworthy pattern • : The
Oscillating to Trustworthy language is

.

Oscillating to Untrustworthy pattern • : The
Oscillating to Untrustworthy language is

.

Fig. 2. NFA accepting the Regular Oscillating pattern

Hamdi Yahyaoui, Jumana El-Qurna, Mohamed Almulla 36

4. Finite automata for trust patterns

A finite automaton consists of states, control moves
and inputs. The controls can be deterministic or non-
deterministic. We choose the non-deterministic controls
in our modeling to scale back the number of transitions
and states. We model our regular trust patterns using
NFA (Non-deterministic Finite Automata). These are the
regular patterns: Trustworthy, Untrustworthy, Betraying,
Redemptive, Regular Oscillating, Oscillating to Betraying
and Oscillating to Redemptive.

Figure 2 outlines an NFA model for Regular
Oscillating. We used the JFLAP tool (Gramond &
Rodger, 1999) to model these patterns.

5. Pushdown automata for trust patterns

Pushdown automata are finite automata (Hopcroft,
2007) with additional capacity of a stack. There are
two types of Pushdown Automata: Deterministic and
Non-deterministic PDA. For accepting any input string
utilizing PDA, there exist two models (Hopcroft, 2007):
PDA that accept by final state and PDA that accept by
empty stack. Our modeling uses DPDA which accept
by final state. Our formal definition for the Pushdown
automata follows the definition of Aho et al., 1968 by
adding a right end marker to get a deterministic model.
This reduces the complexity for each model and removes
the guessing between transitions that may happen while
moving.

To illustrate our non regular trust patterns
formalization, we model the Non-Regular Oscillating
pattern as a DPDA that is accepting by final state. Figure
3 outlines the DPDA for the Non-Regular Oscillating
pattern.

Fig. 3. A DPDA that accepts the Non-Regular Oscillating
pattern

5.1 A unified SPIDER model

In this section, we introduce a unified model called
“SPIDER automaton” that captures the aforementioned
trust patterns. The main motivation to design the SPIDER
automaton is to speed-up the recognition step instead of
having one automaton per trust pattern.

The SPIDER automaton (DPDA that captures all the
proposed trust patterns in this paper) is shown in Figure
4. The steps that should be followed to build the SPIDER
automaton are detailed in (El-Qurna, 2016).

5.2 Correctness of the SPIDER automaton

The correctness of pushdown automata can be proved
using either a mathematical induction or inductive
assertion method of Floyd (Gopalakrishnan, 2006). Our
correctness proof is carried out based on the mathematical
induction. We proved the correctness of the SPIDER
automaton but due to space limitations we omit the proof.
The proof details can be found in El-Qurna, 2016.

6. Experimental results

Despite being well-defined, the space complexity of
building a model that accepts only the input trust sequences.
This is because it is exponential with the size of the input
training sequences as proved in our previous work on
trust sequence verification in El-Qurna et al., 2017. This
creates challenges at the scalability level of our model.
We demonstrate in this section that with less accuracy
(but still high), data mining algorithms can classify these
sequences even when the size is important. Of course,
with few sequences, the ground truth can be generated
with the SPIDER model. Our aim here is to achieve a
good tradeoff between accuracy and complexity.

The objectives of the experiments are to:

Show that there are no overlaps between the trust 1.
patterns. This means that each sequence in the set of
the input sequences belongs to one and only one trust
pattern.

Test if our formal specification of trust patterns is good 2.
enough to be used to train classifiers to correctly label
the trust sequences.

Establish a tradeoff between space complexity and 3.
accuracy by finding a good classifier for trust sequences
and hence overcoming the space complexity issue
that comes with the SPIDER model.

Specification and recognition of service trust behaviors37

Fig. 4. SPIDER automaton

6.1 Dataset

In our experiments, we use a synthetic dataset that
contains all the possible sequences over . Our
dataset consists of files called “ ”, where denotes
the length of sequences in the file. Each file contains
sequences.

6.2 Simulating the SPIDER automaton

The SPIDER automaton was tested with our synthetic
dataset using a C++ program that simulates it. A key
characteristic of simulating the SPIDER automaton is to
achieve the first objective that is mentioned above. To
address this, we ensure that when the program terminates,
it saves all the trust patterns that the sequence could
reach. The program takes as input the files , where

 Then it goes through each sequence in
deciding its patterns. The outputs of this simulation process
are files called “ ” one for each corresponding

 contains the sequences of , and each is
followed by its trust pattern.

 Fig. 5. The distribution results of trust patterns

6.3 Distributions of the trust patterns

We investigate the distribution of the sequences for each
trust pattern with respect to , where
(see Figure 5). It turns out that there are four dominant
trust patterns. The dominant patterns are Oscillating to
Trustworthy, Oscillating to Untrustworthy, Oscillating to
Betraying and Oscillating to Redemptive.

Hamdi Yahyaoui, Jumana El-Qurna, Mohamed Almulla 38

(a) J48 classifier

(b) Naive Bayes classifier

(c) Logistic classifier

(d) SMO classifier

Fig. 6. Recall, Precision and F1 of Weka classifiers.

Table 1. F1 values for J48, NaiveBayes, Logistic and
SMO classifiers based on .

Sequence length Trees-J48 Bayes-NaiveBayes Function-Logistic Function-SMO

3 .17 .17 .43 .08
4 .37 .25 .20 .19
5 .60 .60 .48 .60
6 .40 .60 .76 .47
7 .74 .75 .83 .83
8 .64 .71 .91 .91
9 .76 .84 .95 .95
10 .72 .77 .97 .97
11 .80 .89 .98 .98
12 .74 .79 .99 .99
13 .83 .91 .99 1
14 .76 .80 1 1
15 .83 .92 1 1
16 .78 .81 1 1
17 .84 .92 1 1

Table 2. Accuracy results for J48, NaiveBayes, Logistic
and SMO classifiers based on .

Sequence length Trees-J48 Bayes-NaiveBayes Function-Logistic Function-SMO

3 25% 12.50% 37.50% 12.50%
4 43.75% 37.50% 18.75% 25%
5 62.50% 62.50% 43.75% 62.50%
6 40.63% 65.63% 70.31% 51.56%
7 78.13% 79.69% 80.47% 87.50%
8 68.36% 76.56% 90.63% 93.75%
9 77.15% 85.74% 95.31% 96.48%
10 74.71% 80.76% 97.07% 98.05%
11 80.62% 89.75% 98.44% 98.93%
12 76.17% 83.30% 99.24% 99.41%
13 82.73% 91.21% 99.57% 99.68%
14 77.92% 83.85% 99.81% 99.83%
15 83.40% 91.91% 99.86% 99.91%
16 79.48% 84.05% 99.95% 99.95%
17 84.47% 91.98% 99.97% 99.97%

6.4 Data mining of trust sequences based on SPIDER
automaton

In this part, our intent is to train the classifiers based on
the files . We use the Weka tool for the
classification of trust sequences.

Three measures are important for classification:
precision, recall and , where
is the number of true positives, and is the number of
false positive. where is the number of
false negatives. Finally, The

 values that we obtain from our classification process
are provided in Table 1. We use a 10-fold cross-validation
to assess the accuracy of the classifiers.

In Figure 6, we compare precision, recall and
values for J48, NaiveBayes and Functions-Classifier.
The results show that J48 and NaiveBayes have irregular
results unlike the Function-based classifiers which show
good and stable results.

The Function-based classifiers in Weka give empirical
evidence that our trust patterns are correctly specified.
Table 2 shows the accuracy of all our experiments.
Accuracy is measured by counting the proportion of
correctly predicted examples in an unseen test dataset.
From Table 2, we can conclude that:

The results obtained for J48 and NaiveBayes are •
weak.

The highest accuracy is 99.97% which is obtained •
using logistic-Classifier. Logistic-Classifier is a type of
probabilistic statistical model that uses a multinominal
regression.

Specification and recognition of service trust behaviors39

7. Conclusion and future work

We presented in this paper a new approach for the
specification of service trust behaviors. Typical trust
behaviors are defined as patterns, which are specified
using context-free languages. We also devised a common
trust model called SPIDER, which is a deterministic push
down automaton that captures all the trust patterns, and
we proved its correctness. The experimental analysis
shows that: (1) There are no overlaps between our trust
pattern definitions, (2) The distribution of the patterns is
balanced, and (3) The function-based classifiers provide
good results based on SPIDER automaton specification.

Our work paves the way for sophisticated analysis
such as model checking of service behaviors from a trust
perspective, clustering and classification of services based
on their trust behaviors, and forecasting service behaviors.
As a future work, we plan to elaborate an algorithm that
takes into consideration the probability in assessing the
trust and which builds a probabilistic trust model for a
service from trust observation sequences. Thereafter,
we would formally verify if a probabilistic service trust
model and satisfy specific trust properties. We also plan
to extend our work to establish connections with Turing
machines and include time properties to assess service
trust behaviors.

References

Aho, A. and Corasick, M. (1975). Efficient string
matching: An aid to bibliographic search. Communications
of the ACM, 18(6):333-340.

Aho, A., Hopcroft, J. and Ullman, J. (1968). Time and
Tape Complexity of Pushdown Automaton Languages.
Information and Control, 13(3):186-206.

Aljazzaf, Z. (2015). Modelling and Measuring the Quality
of Online Services. Kuwait Journal of Science, 42(3).

Ashtiani, M. and Azgomi, M. (2016). Trust Modeling
based on a Combination of Fuzzy Analytic Hierarchy
Process and Fuzzy VIKOR. Computing, 20(1):399-421.

Bidgoly, A. and Ladani, B. (2011). Trust Modeling and
Verification Using Colored Petri Nets. In Proceedings of
the eighth International ISC Conference on Information
Security and Cryptology (ISCISC’2011), pages 1-8. IEEE
Computer Society.

Carbone, M., Nielsen, M. and Sassone, V. (2003).
A Formal Model for Trust in Dynamic Networks. In
Proceedings of the International Conference on Software

Engineering and Formal Methods (SEFM’2003), pages
54-61. IEEE Computer Society.

Costa, G. and Matteucci, I. (2011). Trust-driven Policy
Enforcement Through Gate Automata. In Proceedings of
the Fifth International Conference on Innovative Mobile
and Internet Services in Ubiquitous Computing (IMIS),
pages 208-215. IEEE.

El-Qurna, J., Yahyaoui, H. and Almulla, M. (2017).
A New Framework for the Verification of Service Trust
Behaviors. Knowledge-Based Systems, 121:7-22.

Gopalakrishnan, G. (2006). Introduction to Automata
Theory, Languages, and Computation Engineering:
Applied Automata Theory and Logic. Springer.

Gramond, E. and Rodger, S. (1999). Using JFLAP to
Interact with Theorems in Automata Theory. In Proceedings
of the Thirtieth SIGCSE Technical Symposium on
Computer Science Education, pages 336-340.

Guo, J., Ma, J. and Wan, T. (2017). A Mutual Evaluation
Based Trust Management Method for Wireless Sensor
Networks. Chinese Journal of Electronics, 26(2):407-
415.

Hamed O. and Mohammad A. (2017). A Game-
theoretic Approach to Model and Quantify the Security
of Cyber-physical Systems. Computers in Industry,
88:44–57.

Hopcroft, J. (2007). Introduction to Automata Theory,
Languages, and Computation. Addison Wesley.

Huang, J. and Nicol, D. (2010). A Formal Semantics
based Calculus of Trust. IEEE Internet Computing,
14(5):38–46.

Jumana El-Qurna (2016). A model checking
framework for the verification of service trust behaviors.
Master’s thesis, Computer Science Department, Kuwait
University.

Liu, G., Liu, Y., Liu, A., Li, Z., Zheng, K., Wang, Y. and
Zhou, X. (2018). Context-aware Trust Network Extraction
in Large-Scale Trust-Oriented Social Networks. World
Wide Web, 21(3):713–738.

Muchahari, M. and Sinha, S. (2018). Game-Theoretic
Method for Selection of Trustworthy Cloud Service
Providers. In Proceedings of the First International
Conference on Smart System, Innovations and Computing,
pages 545-553. Springer.

Olmedilla, D., Rana, O., Matthews, B. and Nejdl, W.
(2005). Security and Trust Issues in Semantic Grids. In

Hamdi Yahyaoui, Jumana El-Qurna, Mohamed Almulla 40

Semantic grid, volume 5271, pages 191-200.

Raj, E. and Babu, L. (2017). An Enhanced Trust
Prediction Strategy for Online Social Networks using
Probabilistic Reputation Features. Neurocomputing,
219:412-421.

Singh, S. and Sinha, S. (2016). A Trust Model based
on Markov Model Driven Gaussian Process Prediction.
International Journal of Computer Applications, 146(14).

Yahyaoui, H. and Zhioua, S. (2013). Bootstrapping
Trust of Web Services based on Trust Patterns and Hidden
Markov Models. Knowledge and Information Systems,
37(2):389-416.

Zhang, T., Zheng, L., Wang, Y., Shen, Y., Xi, N., Ma, J.
and Yong, J. (2018). Trustworthy Service Composition
with Secure Data Transmission in Sensor Networks.
World Wide Web, 21(1):185-200.

Submitted : 23/04/2019
Revised : 28/05/2019
Accepted : 24/06/2019

Specification and recognition of service trust behaviors41

W�b)U� WI��« ÈUO�uK� vK
 ·dF��«Ë nO�u��«

ö*« bL�� ¨W�dI�« W�UL� ¨ÍËUO�� ÍbL�

X�uJ�« ¨X�uJ�« WF�U� ¨»u�U(« ÂuK
 r��

h�K*«

 v�≈ e�d� w��«Ë ¨WI��« ◊U/Q� vL�� U� ‰ö� s� UNOK
 ·dF��«Ë W�b)U� WI��« ÈUO�uK� nO�u�� …b�b� WI�d
 Y���« «c� w� Õd�I�

 ÆW�b�M� U�U�u�Ë√ `�B�� UNK�bF� l� ‚UO��« vK
 bM��� ô w��« ÈUGK�« vK
 Î«œUL�
« WI��« ◊U/√ n�dF� - ÆW�œUO�
ô« WI��« ÈUO�uK�

 WO��d& W�«—œ Íd Ô$ ¨Î«d�¬ fO�Ë Î«dO�√Ë ÆÕd�IÔ*« Ã–uLM�« W�� ÈU��≈Ë ◊U/_« Ác� ¡«u��ô Î«b�u� ÎU�–u/ ÂbI� ¨p�– vK
 …Ëö

 Ác� W�œ UNO� Ê—UI� W�«—œ ÂbI� UL� WI��« ÈUO�«u�� s� ÈU�UO� W
uL�� d���� ÈUHMB� …b
 UN� h�H� w��«Ë Weka Â«b���U� WK�U	

ÆÈUHMB*«

