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Abstract 
We propose in this paper a new approach for the specification and recognition of service trust behaviors through 
the so-called trust patterns, which denote typical trust behaviors. The trust patterns are defined based on context free 
languages and modeled as pushdown automata. Furthermore, we provide a unified model to capture these patterns and 
prove the correctness of the proposed model. Finally, we conduct a comprehensive experimental study using Weka in 
which we test different classifiers on a dataset of trust sequences and provide a comparative study regarding the accuracy 
of these classifiers. 
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1. Introduction 

Over the past few years, the development pace of services 
has been impressive. Academic and industrial efforts 
have been oriented towards improving the functional 
and non-functional aspects of services (Al-jazzaf, 2015). 
However, despite such tremendous efforts, several 
obstacles and challenges still restrict their widespread use 
in the development of large-scale, loosely-coupled, and 
trustworthy service oriented applications. One of these 
challenges is the lack of a common definition of service 
trust. Several researchers strived to provide a rigourous 
definition of trust. Olmedilla et al. (2005) consider that 
trust of an entity X to another entity Y regarding a service 
as the quantifiable belief of X in Y to act dependably 
during a specified period and within a specified context 
in relation to that service. Huang et al. (2010) perceive 
trust as a mental state comprising expectancy, belief, a 
trustee’s competence and goodwill, and willingness 
to take risk. These informal definitions have helped to 
devise models for the computation of trust. However, 
there is still a lack of a formal definition of trust and 
consequently of service trust behaviors. Such a definition 
paves the way for performing sophisticated analysis such 
as classification, clustering, and verification of service 
behaviors. Accordingly, we propose in this paper a formal 
specification of service trust behaviors that is based on 
context-free languages. 

To clarify, we consider a trust behavior as a sequence 
of observations, which are generated during a certain 

period of time. Sequences which denote typical behaviors 
are  called  trust  patterns  and  are  defined  based  on 
context-free languages. The rationale behind the adoption 
of such language style is to be able to define both regular 
and non-regular trust behaviors. 

The devised framework would have a particularly 
added value on service selection because the services are 
classified into groups based on their trust behaviors. It is 
meant to guide users to deal with trustworthy services and 
detect the malicious ones. Furthermore, our framework 
could be applied to several fields such as e-commerce, 
e-auctions, e-services, etc. 

The contributions of our work are three-fold: 

• The formal specification of trust patterns from a 
language perspective. This specification captures 
regular and non-regular patterns. 

• The elaboration of a deterministic pushdown 
automaton called SPIDER automaton that captures the 
aforementioned trust patterns. 

• A set of experiments in which we test different 
classifiers on a synthetic dataset of trust sequences and 
provide a comparative study regarding the accuracy of 
these classifiers. 

In Section 2, we present some research initiatives 
regarding modeling and computation of service trust. In 
Section 3, we devise context free languages to capture 
trust behaviors. We model the regular trust behaviors 
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using finite automata in Section 4. In Section 5, we model 
the SPIDER automaton that captures the proposed trust 
patterns. Finally, we provide in Section 6 experiments that 
show the adequacy of our modeling for data mining and in 
which we assess the accuracy of different classifiers on a 
synthetic dataset of trust sequences. 

2. Related work 

As the use of services dramatically increases, trust is 
becoming a major concern. Trust should exist between 
service users and service providers. A service provider is 
the entity that supplies the services. A service user is the 
entity that invokes a service. Service users need to know 
the service trust and which provided services meet their 
functional and nonfunctional requirements. Thus, trust 
is essential for providers and users to greatly improve 
service quality and selection. 

Trust models can be classified according to the adopted 
modeling formalism: finite state machines (Carbone et 
al., 2003; Costa et al., 2011; Zhang et al., 2018), logic 
(Ashtiani & Azgomi, 2016; El-Qurna et al., 2017), 
probabilistic networks (Liu et al., 2018; Raj & Babu, 
2017), petri nets (Bidgoly & Ladani, 2011; Guo et al., 
2017), game theoretic models (Muchahari & Sinha, 2018; 
Hamed & Mohammad, 2017), hidden Markov models 
(Singh & Sinha, 2016; Yahyaoui & Zhioua, 2013). We 
review some of these prominent trust models. 

Costa & Matteucci (2011) introduced the gate 
automata for specifying both security and trust policies. 
Gate automata can replace the enforcement mechanism 
that is controlling the behavior of an application. A major 
benefit of this approach is that it allows the optimization 
of the enforcement process based on trust levels. These 
automata work as edit automata for guaranteeing security 
properties and handling the trust levels of applications. 

Carbone et al. (2003) proposed a formal model for 
the assessment of trust degree and trust transition in 
global computing-like environments. It leverages the 
past experiences of trusted certificate providers to assess 
the trust degree of trusted certificates. Trust is classified 
conceptually into six categories: disposition, situation, 
structure, belief, intention, and behavior. They use 
two ordering relations: trust ordering and information 
ordering as a solution for wrong decisions that result from 
confusing trust with knowledge. 

Bidgoly & Ladani (2011) derived a new method 
for modeling and verification of reputation-based trust 

systems using Colored Petri Nets called TCPN. TCPN is 
an extension of Petri Nets, which combines the strengths 
of ordinary Petri nets with the strengths of a high-level 
programming language. The TCPN model is the first 
model that verifies the trust using a model-checking 
approach with temporal logic. It is independent from how 
to compute or represent the trust. 

All the aforementioned research studies focused more 
on the computation of trust rather than the definition 
of the trust itself. Accordingly, the literature includes 
only informal definitions of trust and consequently 
trust behaviors. The formalization of trust behaviors 
is paramount for performing analyses such as logical 
verification, classification, and clustering. It is worth 
mentioning that our trust patterns definitions are based on 
our previous work (El-Qurna et al., 2017). We leverage 
here these definitions to build the aforementioned SPIDER 
model. We also explore data mining possibilities of the 
elaborated unified model rather than model checking trust 
behaviors as in (El-Qurna et al., 2017). The ultimate goal 
of this work is to derive highly accurate classifiers of trust 
behaviors. 

Fig. 1. Typical trust behaviors of services. 

3. Trust patterns 

In this section, we introduce our specification of service 
trust behaviors through the so-called trust patterns. We 
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adopt the informal definition of trust patterns that is 
provided in Yahyaoui and Zhioua (2013), which states 
that a trust pattern is a sequence of trust observations 
from which a clear conclusion about the behavior of 
web service can be drawn. Our idea relies on the ability 
to enumerate all possible trust observations sequences 
that capture both the regular and non-regular trust 
behaviors over . As in Yahyaoui and Zhioua 
(2013), the sequence of observations mainly consists of 
the symbols T, U or both, where T denotes a Trustworthy 
observation while U denotes an Untrustworthy (malicious) 
observation. 

We define the regular and the non-regular trust 
patterns, as: 

• Regular trust patterns are regular languages that can be 
expressed using regular expressions over  and 
can be recognized by finite automata. 

• Non-regular trust patterns are context-free languages 
that can be expressed using context-free grammars 
over  and can be recognized by pushdown 
automata. 

Figure 1 shows all the sets of patterns that can be 
deduced over . The set of sequences of one 
pattern can be encoded as a formal language which has 
properties that distinguish it. Based on Figure 1, we can 
conclude the following: 

• The  possible patterns are: , , , , 
, , , and 

. 

•  and  patterns exhibit constant behaviors. 

•  and  patterns alter their behaviors once 
during the execution time. 

•  , ,  and 
 patterns alter their behaviors 

periodically with specific sequences at each time 
frame. These patterns represent the oscillating patterns 
from which we derive three regular and three non-
regular patterns. 

3.1 Regular patterns

In this section, we define the following regular service 
trust patterns.

Trustworthy • : The Trustworthy Language  is 
.

Untrustworthy pattern • : The Untrustworthy 

Language  is .

Betraying • : The Betraying Language  is 
.

Redemptive • : The Redemptive Language  is 
.

Regular Oscillating pattern • : The Regular 
Oscillating language  is  

.

Oscillating to Betraying pattern • : The Oscillating 
to Betraying language  is .

Oscillating to Redemptive pattern • : The 
Oscillating to Redemptive language  is 

.

3.2 Non-regular patterns

In this section, we provide three non-regular service trust 
patterns. The non-regular patterns are defined using the 
following theorem.

 (Hopcroft, 2007). If  is a context-free 
language and  is a regular language, then  is 
context-free language.

The two regular languages that will be used to define 
the Non-Regular patterns are:

• .

• .

Non-Regular Oscillating pattern • : The 
Non-Regular Oscillating language  is  

 .

Oscillating to Trustworthy pattern • : The 
Oscillating to Trustworthy language  is  

.

Oscillating to Untrustworthy pattern • : The 
Oscillating to Untrustworthy language  is 

.

Fig. 2. NFA accepting the Regular Oscillating pattern 
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4. Finite automata for trust patterns 

A finite automaton consists of states, control moves 
and inputs. The controls can be deterministic or non-
deterministic. We choose the non-deterministic controls 
in our modeling to scale back the number of transitions 
and states. We model our regular trust patterns using 
NFA (Non-deterministic Finite Automata). These are the 
regular patterns: Trustworthy, Untrustworthy, Betraying, 
Redemptive, Regular Oscillating, Oscillating to Betraying 
and Oscillating to Redemptive. 

Figure 2 outlines an NFA model for Regular 
Oscillating. We used the JFLAP tool (Gramond & 
Rodger, 1999) to model these patterns.

5. Pushdown automata for trust patterns 

Pushdown automata are finite automata (Hopcroft, 
2007) with additional capacity of a stack. There are 
two types of Pushdown Automata: Deterministic and 
Non-deterministic PDA. For accepting any input string 
utilizing PDA, there exist two models (Hopcroft, 2007): 
PDA that accept by final state and PDA that accept by 
empty stack. Our modeling uses DPDA which accept 
by final state. Our formal definition for the Pushdown 
automata follows the definition of Aho et al., 1968 by 
adding a right end marker to get a deterministic model. 
This reduces the complexity for each model and removes 
the guessing between transitions that may happen while 
moving. 

To illustrate our non regular trust patterns 
formalization, we model the Non-Regular Oscillating 
pattern as a DPDA that is accepting by final state. Figure 
3 outlines the DPDA for the Non-Regular Oscillating 
pattern.

Fig. 3. A DPDA that accepts the Non-Regular Oscillating 
pattern 

5.1 A unified SPIDER model 

In this section, we introduce a unified model called 
“SPIDER automaton” that captures the aforementioned 
trust patterns. The main motivation to design the SPIDER 
automaton is to speed-up the recognition step instead of 
having one automaton per trust pattern. 

The SPIDER automaton (DPDA that captures all the 
proposed trust patterns in this paper) is shown in Figure 
4. The steps that should be followed to build the SPIDER 
automaton are detailed in (El-Qurna, 2016). 

5.2 Correctness of the SPIDER automaton 

The correctness of pushdown automata can be proved 
using either a mathematical induction or inductive 
assertion method of Floyd (Gopalakrishnan, 2006). Our 
correctness proof is carried out based on the mathematical 
induction. We proved the correctness of the SPIDER 
automaton but due to space limitations we omit the proof. 
The proof details can be found in El-Qurna, 2016. 

6. Experimental results 

Despite being well-defined, the space complexity of 
building a model that accepts only the input trust sequences. 
This is because it is exponential with the size of the input 
training sequences as proved in our previous work on 
trust sequence verification in El-Qurna et al., 2017. This 
creates challenges at the scalability level of our model. 
We demonstrate in this section that with less accuracy 
(but still high), data mining algorithms can classify these 
sequences even when the size is important. Of course, 
with few sequences, the ground truth can be generated 
with the SPIDER model. Our aim here is to achieve a 
good tradeoff between accuracy and complexity. 

The objectives of the experiments are to: 

Show that there are no overlaps between the trust  1. 
patterns. This means that each sequence in the set of 
the input sequences belongs to one and only one trust 
pattern. 

Test if our formal specification of trust patterns is good 2. 
enough to be used to train classifiers to correctly label 
the trust sequences. 

Establish a tradeoff between space complexity and 3. 
accuracy by finding a good classifier for trust sequences 
and hence overcoming the space complexity issue 
that comes with the SPIDER model. 
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Fig. 4. SPIDER automaton 

6.1 Dataset 

In our experiments, we use a synthetic dataset that 
contains all the possible sequences over . Our 
dataset consists of files called “ ”, where  denotes 
the length of sequences in the file. Each file contains 
sequences. 

6.2 Simulating the SPIDER automaton 

The SPIDER automaton was tested with our synthetic 
dataset using a C++ program that simulates it. A key 
characteristic of simulating the SPIDER automaton is to 
achieve the first objective that is mentioned above. To 
address this, we ensure that when the program terminates, 
it saves all the trust patterns that the sequence could 
reach. The program takes as input the files , where 

 Then it goes through each sequence in 
deciding its patterns. The outputs of this simulation process 
are files called “ ” one for each corresponding 

  contains the sequences of , and each is 
followed by its trust pattern. 

 Fig. 5. The distribution results of trust patterns 

6.3 Distributions of the trust patterns 

We investigate the distribution of the sequences for each 
trust pattern with respect to , where  
(see Figure 5). It turns out that there are four dominant 
trust patterns. The dominant patterns are Oscillating to 
Trustworthy, Oscillating to Untrustworthy, Oscillating to 
Betraying and Oscillating to Redemptive. 
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(a) J48 classifier 

 
(b) Naive Bayes classifier 

 

(c) Logistic classifier 

 
(d) SMO classifier

Fig. 6. Recall, Precision and F1 of Weka classifiers.

Table 1. F1 values for J48, NaiveBayes, Logistic and 
SMO classifiers based on . 

Sequence length Trees-J48 Bayes-NaiveBayes Function-Logistic Function-SMO

3 .17 .17 .43 .08
4 .37 .25 .20 .19
5 .60 .60 .48 .60
6 .40 .60 .76 .47
7 .74 .75 .83 .83
8 .64 .71 .91 .91
9 .76 .84 .95 .95
10 .72 .77 .97 .97
11 .80 .89 .98 .98
12 .74 .79 .99 .99
13 .83 .91 .99 1
14 .76 .80 1 1
15 .83 .92 1 1
16 .78 .81 1 1
17 .84 .92 1 1

Table 2. Accuracy results for J48, NaiveBayes, Logistic 
and SMO classifiers based on . 

Sequence length Trees-J48 Bayes-NaiveBayes Function-Logistic Function-SMO

3 25% 12.50% 37.50% 12.50%
4 43.75% 37.50% 18.75% 25%
5 62.50% 62.50% 43.75% 62.50%
6 40.63% 65.63% 70.31% 51.56%
7 78.13% 79.69% 80.47% 87.50%
8 68.36% 76.56% 90.63% 93.75%
9 77.15% 85.74% 95.31% 96.48%
10 74.71% 80.76% 97.07% 98.05%
11 80.62% 89.75% 98.44% 98.93%
12 76.17% 83.30% 99.24% 99.41%
13 82.73% 91.21% 99.57% 99.68%
14 77.92% 83.85% 99.81% 99.83%
15 83.40% 91.91% 99.86% 99.91%
16 79.48% 84.05% 99.95% 99.95%
17 84.47% 91.98% 99.97% 99.97%

6.4 Data mining of trust sequences based on SPIDER 
automaton 

In this part, our intent is to train the classifiers based on 
the files . We use the Weka tool for the 
classification of trust sequences. 

Three measures are important for classification: 
precision, recall and , where  
is the number of true positives, and  is the number of 
false positive.  where  is the number of 
false negatives. Finally,  The 

 values that we obtain from our classification process 
are provided in Table 1. We use a 10-fold cross-validation 
to assess the accuracy of the classifiers. 

In Figure 6, we compare precision, recall and  
values for J48, NaiveBayes and Functions-Classifier. 
The results show that J48 and NaiveBayes have irregular 
results unlike the Function-based classifiers which show 
good and stable results. 

The Function-based classifiers in Weka give empirical 
evidence that our trust patterns are correctly specified. 
Table 2 shows the accuracy of all our experiments. 
Accuracy is measured by counting the proportion of 
correctly predicted examples in an unseen test dataset. 
From Table 2, we can conclude that: 

The results obtained for J48 and NaiveBayes are • 
weak. 

The highest accuracy is 99.97% which is obtained • 
using logistic-Classifier. Logistic-Classifier is a type of 
probabilistic statistical model that uses a multinominal 
regression. 
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7. Conclusion and future work 

We presented in this paper a new approach for the 
specification of service trust behaviors. Typical trust 
behaviors are defined as patterns, which are specified 
using context-free languages. We also devised a common 
trust model called SPIDER, which is a deterministic push 
down automaton that captures all the trust patterns, and 
we proved its correctness. The experimental analysis 
shows that: (1) There are no overlaps between our trust 
pattern definitions, (2) The distribution of the patterns is 
balanced, and (3) The function-based classifiers provide 
good results based on SPIDER automaton specification. 

Our work paves the way for sophisticated analysis 
such as model checking of service behaviors from a trust 
perspective, clustering and classification of services based 
on their trust behaviors, and forecasting service behaviors. 
As a future work, we plan to elaborate an algorithm that 
takes into consideration the probability in assessing the 
trust and which builds a probabilistic trust model for a 
service from trust observation sequences. Thereafter, 
we would formally verify if a probabilistic service trust 
model and satisfy specific trust properties. We also plan 
to extend our work to establish connections with Turing 
machines and include time properties to assess service 
trust behaviors. 
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