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Abstract

In this study, a Galerkin-like approach is applied to numerically solve high-order 
integro-differential equations having weakly singular kernel. The method includes 
taking inner product of a set of monomials with a vector obtained from the equation 
in question. The resulting linear system is then solved, yielding a polynomial as the 
approximate solution. Additionally, the technique of residual correction, which aims 
to increase the accuracy of the approximate solution, is discussed briefly. Lastly, the 
method and the residual correction technique are illustrated with several examples. 
The results are also compared with numerous existing methods from the literature.
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1. Introduction

Integral and integro-differential equations arise rather naturally and frequently in 
science and engineering problems. Furthermore, many problems in which boundary 
and initial value problems are relevant can be stated in an equivalent setting that 
includes integral and integro-differential equations. This fact has made the emergence 
of a huge literature on the topic inevitable. Subjects which make heavy use of integral 
and integro-differential equations include electromagnetics (Volakis & Sertel, 2012), 
potential theory (Jaswon, 1963), optics (Pritchett & Trubatch,  2004), population 
dynamics (Lotka, 1939), heat transfer (Kulish & Novozhilov, 2004) and astrophysics 
(Huang, 1955). More on the applications and sources of integral equations can be 
found in Lonseth (1977). Readers interested in texts of historical import can refer to 
Bôcher (1914). Modern treatises on the field of integral equations include Wazwaz 
(2011) and Kress (1999). For a monograph on the history of Fredholm equations see 
Atkinson (2008).

Depending on the limits of the involved integrals, Fredholm, Volterra and 
Fredholm-Volterra are the basic types of integral and integro-differential equations 
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encountered in the field. Their complicated nature implies that analytic solutions for 
integral and integro-differential equations are not available in all but exceptional 
cases. In this respect, the type of the equation as well as the characteristics of the 
application makes the usage of certain numerical methods more appropriate for the 
problem under discussion. Among such numerical methods are the Taylor expansion 
method (Huang & Li, 2010), operational matrix method (Singh & Postnikov, 2013), 
Legendre pseudospectral method (El-Kady & Biomy, 2010), differential transform 
method (Tari et al., 2009), homotopy perturbation method (Ghasemi et al., 2007; Roul 
& Meyer, 2011; Yusufoğlu, 2009), Bessel matrix method (Yüzbaşı  et al., 2011) and 
Legendre polynomial method (Yalçınbaş et al., 2009).

Integral and integro-differential equations having singularities in one of their 
kernel functions are of special import, since they are encountered in a wide variety 
of applications. In this case, the complex behavior of the singular kernel makes it 
difficult to obtain a high-order solution to the problem. Therefore, the volume of work 
done in the area of singular equations is relatively small. Nevertheless, some authors 
have contributed to the topic by presenting several numerical schemes, especially in 
recent years. These schemes include collocation methods based on Bessel polynomials 
(Yüzbaşı & Sezer, 2012) and Bernstein polynomials (Işık et al., 2011), Discrete 
Galerkin method (Pedas & Tamme, 2008), a method based on Legendre multiwavelets 
(Lakestani et al., 2011), reproducing kernel method (Du et al., 2014) and the method 
proposed in Bougoffa et al. (2011).

In this study, our aim is to find an approximate solution to the linear Fredholm-
Volterra integro-differential equation with weakly singular kernel and having the 
form

         (1)

under the mixed conditions

    (2)

Here superscripts in parantheses denote the order of differentiation,  
is the unknown function to be found, a and b are real numbers,  and 

 are known continuous functions defined on the interval [0,b], 
are real or complex constants.
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The organization of the paper is as follows: The solution method is explained in 
Section 2. The subject of Section 3 is the technique of residual correction, which 
aims to derive better approximations from a known one. Section 4 contains numerical 
examples, where comparisons with other methods are also made. Finally, the conclusion 
of the paper is given in Section 5.

2. Method of solution

In this section, the procedure we will use to solve Equation 1 is outlined. The same 
method was employed in Türkyılmazoğlu (2014) to obtain approximate solutions 
of high-order Fredholm integro-differential equations with possibly singular kernel 
functions.

Firstly, we make the assumption that the unique solution  of Equation 1 can be 
expressed as a power series of the form

We then truncate this power series after the (N +1)st term so that

                                          (3)

where

Here, the coefficients  are to be determined as the output of the method. The 
derivatives of  can be expressed as a product of matrices with the help of a 
special matrix. Namely, if we define B to be the  matrix such that 

 for  and  elsewhere, then the following equality holds:

     (4)

Next, substituting the matricial expressions for  and  into Equation 1 
gives us the equation

                                                   (5)
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where

 

and

In order to simplify the computation of , we use the following equality for the 
first integral in its expression (Yusufoğlu, 2009):

In this case, the first integral in the expression of  becomes

Now, in order to convert Equation 5 into a system of linear equations in the 
unknowns , we take inner product of Equation 5 with the elements of the set 

 where the inner product of two functions  f, g from the Hilbert 
space  is defined by

Each inner product will result in a linear equation in the unknown coefficients . 
Finally, we are left with a linear system  where the  matrix W 
and the column matrix G of length  are given by

More explicitly, W and G are given by
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     (6)

Since the solution function should satisfy the initial conditions, we must feed them 
into the above system. For this purpose, we first express the initial conditions in matrix 
form. As a preparation, we define  as the row vector of length  formed by 
substituting x by a in X, or more explicitly as

Then, the initial conditions (2) can be written as

               (7)

Although this is enough, there is a more compact way of forming the row 
vectors that will represent the initial conditions. Simply define the two polynomials 

 and . Then (7) can be arranged as

            (8)

In order to include the inital conditions in the discussion, we just replace the i-th 
row of W by  and the i-th entry of G by . This will yield the modified system 

 explicitly given by

   (9)
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Finally, we compute the matrix of unknown coefficients as  and the 
approximate solution is given by

3. Error estimation and residual correction

In this section, the error estimation of our method is performed based on the residual 
function of the integro-differential equation given by Equation 1. Then, starting with 
an approximate solution of Equation 1, the way of obtaining a better approximation 
from the original one is described.

Let us consider the residual function

  (10)

of Equation 1. Substituting the approximate solution  in place of  we get

  (11)

Subtracting Equation 10 from Equation 11 and rearranging yields

   (12)

which is the same as Equation 1 with  replaced by  and  
is the error function. In addition, since  and  both satisfy the initial conditions 
(2),

   (13)

are the initial conditions for Equation 12. Next, the method of Section 2 is applied 
to solve it for  with some choice of the parameter value M and the approximate 
solution  is obtained as a result. Consequently, this new approximation is used 
to obtain a corrected solution
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                                      (14)

of Equation 1. In what follows,  will denote the actual error of  given 
by 

4. Numerical examples

In this section, the method of Section 2 is applied to several examples.

Example 1: Our first example is the following linear Volterra integro-differential 
equation with weakly singular kernel taken from (Yüzbaşı & Sezer, 2012):

  (15)

The exact solution is . The parameters for this example are given 

by          

 .  Applying the method outlined in Section 2 for 

any  gives the exact solution .  Thus, this is an example where the 
method yields the exact solution in case the exact solution is a polynomial.

Example 2: Next, we consider the following Bagley-Torvik equation examined also in 
Işık et al. (2011); Yüzbaşı & Sezer (2012) and Huang & Li (2010):

        (16)

with the initial conditions , where the Gaussian error function is given 
by

                                          (17)

The exact solution of this problem is . This is a special case of Equation 1 
with . Table 1 and Figure 1 compare the absolute errors for several values 
of N with the values resulting from the methods in Huang & Li (2010) and Işık et al. 
(2011). In addition, Table 1 shows the implementation time of the present method for 
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 when implemented in MATLAB on a system with dual core 2.20 GHZ 
processor. It is seen that the present method is slightly outperformed by the Bernstein 
series solution of (Işık et al., 2011) for . However, we obtain solidly decreasing 
absolute error values when we increase N. Another advantage of the present method 
is that the absolute error values is more evenly distributed between the interval [0,1], 
compared to the other methods. As for the implementation time, the values in the last 
row are completely acceptable. The improvement in accuracy provided by residual 
correction is exhibited in the following examples.

Example 3: Our third example is the linear weakly singular Volterra integral equation 
considered in (Saberi & Heidari, 2014):

                         (18)

Table 1. Absolute errors at some points and implementation time related to some parameters for 
Example 2.

x Bernstein coll. with Taylor expansion with Present method

N=4 (Işık et al. 2011) N=4  (Huang & Li 2010) N=4 N=5 N=6 N=7

0.2 0.1452E-4 0.1372E-3 0.5205E-3 0.4194E-4 0.2433E-5 0.1141E-6

0.4 0.3665E-4 0.0015 0.0013 0.8662E-4 0.4469E-5 0.3071E-6

0.6 0.3186E-4 0.0063 0.0018 0.1164E-3 0.6189E-5 0.8882E-6

0.8 0.3220E-3 0.0172 0.0022 0.1452E-3 0.7623E-5 0.2339E-5

1 0.0021 0.0369 0.0025 0.1663E-3 0.8682E-5 0.5349E-5

CPU Time (in seconds) 0.5782 0.6900 0.9581 1.0163
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Fig. 1. Graphics of the absolute errors of Bernstein collocation method, Taylor expansion method and the 
present method for different values of N in Example 2.

Table 2. Absolute errors at some points and implementation time related to some parameters for 
Example 3.

x Trapezoid modified 
quadrature method  
(Saberi & Heidari, 2014)

Present method

N = 5 N = 6 N = 7 N = 5, M=6 N = 5, M=8

0.2 0.345E-3 0.0125 0.0125 0.0073 0.0125 0.0017

0.4 0.0021 0.0045 0.0018 0.4124E-3 0.0018 0.0018

0.6 0.003 0.0015 0.0027 0.0015 0.0027 0.365E-3

0.8 0.0036 0.0037 0.2737E-3 0.1948E-3 0.273E-3 0.778E-3

1 0.0039 0.2486E-13 0.4192E-12 0.2387E-11 0.355E-13 0.227E-11

CPU Time (in seconds) 0.5699 0.6099 0.7540 1.3515 1.7033

We have  as in the previous example and the exact solution is  
Using the method discussed in Section 2, we numerically solved this problem for 

 and 7. Table 2 compares the results of the trapezoid modified quadrature 
method employed in Saberi & Heidari (2014) with the results of the present method for 
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these N values. It can be inferred that the present method gives better results especially 
for increasing values of  x. It is also seen that increasing the parameter N gives rise to 
slightly more accurate results in general. In order to illustrate the method of residual 
correction, we attempt to make the approximate solution for  more accurate and 
it is seen that the absolute error values are in general reduced as a result. The estimated 
and real absolute error values for  and 8 are shown in Figure 2 and in the last 
two columns of Table 2. One can also observe that  is smaller when  
and  are close and it is greater when they are not. This is true since we have 

Example 4: Our last example is the following nonsingular Fredholm integro-differential 
equation taken from Huang & Li (2010):

           (19)

subject to the conditions  The exact solution is  Table 3 
contains the results in terms of the absolute error function of the Taylor expansion 
method (Huang & Li 2010) for two different n values and the present method for four 
different N values. Looking at the table, the tendency of the absolute error function to 
grow as x moves away from zero is seen at first. This is because the initial conditions 
are given at  It can also be commented that applying the two methods with the 
same parameter values gives rise to close results. As for the present method, improving 
the solutions by increasing N is possible, which is apparent from the table; but greater 
N does not necessarily mean improved accuracy. An example of this is given by the 
fact that the results of  are not better than those of  although  If we 
proceed with , the results get worse rather quickly.

We applied the residual error correction technique to this problem for 
 and  Figure 3 depicts the absolute error 

values before and after the residual correction. It is seen that the technique provides 
a significant improvement for this problem. Interestingly,  turns out to be 
almost equal to  The same holds also for  and  The second 
part of Table 3 compares the error values related to the method of (Huang & Li 2010) 
with the error values of the corrected solutions. While the error values of the present 
method before residual correction was slightly worse, it is apparent from the table that 
this sitation is no longer valid after residual correction. Especially the error values 
related to  have become considerably better than the method of Huang 
& Li (2010) with 
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Fig. 2. Graphics of the estimated and real absolute error functions after applying residual correction for 
(N,M) = (5,6) and (5,8) in Example 3.
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Table 3. Absolute errors at some points for Example 4.

x Taylor expansion method Present method

N = 3 N = 4 N = 3 N = 4 N = 6 N = 7

-1 0.0044 0.0011 0.0574 0.0103 0.1273E-3 0.0012

-0.8 0.0019 0.4215E-3 0.0486 0.0076 0.1096E-3 0.6240E-3

-0.6 0.6283E-3 0.1229E-3 0.0333 0.0043 0.7257E-4 0.2226E-3

-0.4 0.1450E-3 0.2098E-4 0.017 0.0017 0.3088E-4 0.4395E-4

-0.2 0.1746E-4 0.4569E-6 0.0047 0.3265E-3 0.5677E-5 0.1038E-5

0 0.1107E-15 0.1107E-15 0 0 0 0

0.2 0.4986E-4 0.8151E-5 0.0053 0.5785E-4 0.1131E-5 0.1266E-6

0.4 0.7995E-3 0.1418E-3 0.0213 0.3260E-3 0.1600E-4 0.3867E-4

0.6 0.0052 0.9190E-3 0.0468 0.0018 0.4855E-4 0.2295E-3

0.8 0.0232 0.0039 0.0783 0.0043 0.8200E-4 0.7330E-3

1 0.0825 0.013 0.1092 0.0069 0.1013E-3 0.0017

x Taylor expansion method Present method

N = 3 N = 4 N = 3, M = 4 N = 3, M = 5 N = 4, M = 5 N = 4, M = 6

-1 0.0044 0.0011 0.0103 0.0014 0.0014 0.1279E-3

-0.8 0.0019 0.4215E-3 0.0076 0.0013 0.0013 0.1099E-3

-0.6 0.6283E-3 0.1229E-3 0.0043 0.0010 0.0010 0.7270E-4

-0.4 0.1450E-3 0.2098E-4 0.017 0.5738E-3 0.5738E-3 0.3092E-4

-0.2 0.1746E-4 0.4569E-6 0.3265E-3 0.1674E-3 0.1674E-3 0.5684E-5

0 0.1107E-15 0.1107E-15 0 0 0 0

0.2 0.4986E-4 0.8151E-5 0.0053 0.5785E-4 0.5785E-4 0.1266E-6

0.4 0.7995E-3 0.1418E-3 0.5785E-4 0.1818E-3 0.1818E-3 0.1134E-5

0.6 0.0052 0.9190E-3 0.0018 0.0013 0.0013 0.4873E-4

0.8 0.0232 0.0039 0.0043 0.0020 0.0020 0.8251E-4

1 0.0825 0.013 0.0069 0.0025 0.0025 0.1025E-3

5. Conclusion

In this paper, we have presented a Galerkin-like approach for the approximate solution 
of weakly singular integro-differential equations. The method comprises taking inner 
product of a basis set of monomials with an expression obtained from the equation in 
question. It turns out that this approach yields the exact solution in case the solution 
is a polynomial. It is also revealed that our approach gives better or close results 
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compared to several popular methods present in the literature. Residual error correction 
technique to improve the accuracy of approximate solutions has also been discussed. 
Simulation results show that great improvements in the approximate solutions can be 
achieved as a result of employing this technique.
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