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ABSTRACT 

In this paper, we consider a new subclass of  p-valent analytic functions in the open unit 
disk involving a fractional q-differeintegral operator. For this subclass of functions, 
we derive the coefficient inequality and some distortion theorems. Special cases of the 
main results are also mentioned.
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INTRODUCTION 
The theory of q-analysis has been applied in many areas of applied mathematics, see 
the various references cited in Purohit & Raina (2011). Recently, authors in Purohit 
& Raina (2011), Purohit & Raina (2013), Purohit & Raina (2014) have used the 
fractional q-calculus operators in investigating certain classes of functions which are 
analytic in the open unit disk. Purohit (2012) also studied similar work and considered 
new classes of multivalently analytic functions in the open unit disk.

In the present paper, we consider a new subclass of functions defined by applying 
the fractional q-calculus operators which are p-valent and analytic in the open unit 
disk. Among the results derived include, the coefficient inequalities and distortion 
theorems for the subclasses defined and introduced below. Special cases of the results 
are also pointed out in the concluding section of this paper.

PRELIMINARIES AND DEFINITIONS 

To make this paper reasonably self-contained, we give here some basic definitions and 
related details of the q-calculus.

The q-shifted factorial (see Gasper & Rahman, 1990) is defined for ,qα ∈C as a 
product of n factors by
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where the q-gamma function is defined by (Gasper & Rahman, 1990 [p. 16, Equation 
(1.10.1)]) 
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We recall here the following q-analogue definitions given by Gasper & Rahman 
(1990).

The recurrence relation for q-gamma function is given by 
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 and the q-binomial expansion is given by 
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It may be noted that the q-Gauss hypergeometric function  (Gasper & 
Rahman, 1990 [p.3, Equation (1.2.14)]) is defined by 
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and as a special case of the above series for βγ = , we have 
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Also, the Jackson’s q-derivative and q-integral of a function f defined on a subset 

of C  are, respectively, given by (Gasper & Rahman, 1990 [pp. 19, 22]) 
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By noting the relation that 
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we observe that the q-shifted factorial (1) reduces to the familiar Pochhammer symbol 

,)( nα  where 1=)( 0α  and ( ) = ( 1) ( 1)  ( )n n nα α α α+ + − ∈N .

The fractional q-calculus operators of a complex-valued function )(zf  (see 
Purohit and Raina, 2011) are contained in the following definitions. 

 Definition 1 (Fractional q-Integral Operator). The fractional q-integral operator 
)(, zfI zq

α  of a function  of order  is defined by 
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where )(zf  is analytic in a simply-connected region of the z-plane containing 
the origin. In view of the relation (5), the q-binomial function 1( )z tq α−−  can be 
expressed as 
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The series ],;;[01 zq−Φ α  is obviously single-valued when π<)(arg z  
and 1<z , (see for details Gasper & Rahman, 1990 [pp. 104-106]), therefore, in 
view of the representation of the integral defined by (11), it may be noted that the 
function 1( )z tq α−−  in (11) is single-valued when arg( / ) < , / ) < 1tq z tq zα απ−  
and .<arg πz  Thus, for suitably selected function )(zf  (which ensures its 
convergence), the operator (11) is well defined. 

 Definition 2 (Fractional q-Derivative Operator). The fractional q-derivative operator 
)(, zfD zq

α  of a function )(zf  of order α  is defined by 

1
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where )(zf  is suitably constrained and the multiplicity of ( )z tq α−−  is removed as 
in Definition 1 above.

Definition 3. (Extended Fractional q-Derivative Operator). Under the hypotheses of 
Definition 2, the fractional q-derivative for a function )(zf  of order α  is defined by 
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where N  denotes the set of natural numbers.

We note for 1=α  in (13) that 
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, ,( ) = ( ),q z q zD f z D f z            (15)

where the operator zqD ,  is given by (8).

In the sequel, we shall be using the following image formulas (Purohit & Raina, 
2011 [pp. 58-59]) which are easily derivable, respectively, from the operators (11) 
and (14):
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By adopting the fractional q-integral and fractional q-derivative operators defined, 
respectively, by (11) and (13), we first introduce a fractional q-differintegral operator 
and use it to construct a class of p-valent analytic functions H ),,(, σα bapqH  in the open 
unit disk U  (defined below by (25)). Besides finding the coefficient bound inequality, 
we also obtain some distortion inequalities for functions belonging to this class of 
functions. Our investigations provide the q-analogues to the classes studied earlier 
in Owa & Srivastava (1985), Raina & Nahar (2002) and Shukla & Dashrath (1984). 
More precise related details describing the usefulness of investigating such a subclass 
of functions are stated briefly in the concluding section of this paper.

 A CLASS OF ANALYTIC FUNCTIONS 

Let A )(np  denote the class of functions )(zf  of the form: 
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which are analytic and p-valent in the open unit disc {= : ,z z ∈U C  }< 1 .z Also, 
let A )(np

−A  denote the subclass of A )(np  consisting of p-valent analytic functions 
given by 
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For the purpose of this paper, we define a fractional q-differintegral operator p
zq
,
,

αΩ  
of a function )(zf  by 
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where )(, zfD zq

α  in (20) represents, respectively, a fractional q-integral of )(zf  of 
order α  when 0<<α∞− , and a fractional q-derivative of )(zf  of order α  
when 0≥α . Thus, in view of (19), the operator (20) has the series representation 
given by 
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By the application of Cauchy-Hadamard formula, the radius of convergence of the 
series in (21) can be calculated by the formula that
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It readily follows that R 1≥ , and hence, the series representation of )(,
, zfp
zq

αΩ  
given by the series (21) is analytic in the unit disk.

Remark. In view of (17), we express (21) as follows: 
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where ),,( qpk α∆  is given by the Equation (22).
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where the q-natural number is expressed as 
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and we have 
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where G ),(, bapq  is a subclass of p-valent analytic functions which satisfy the 
condition (27).

We now obtain the following coefficient bounds for functions of the form (19) 
belonging to the classes H ),,(, σα bapq  and G ),(, bapq  (defined above).

 Theorem 1. A function f of the form (19) belongs to the class H ),,(, σα bapq  if and 
only if
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where ),,( qpk α∆  is given by (22). The result is sharp.

Proof. Assume that the inequality (30) holds true, and let 1=z , then on using (19) 
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Since zz ≤ℜ )(  for any z, therefore, choosing values of z on the real axis so that 
)(,

, zfp
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αΩ  is real, and letting −→1z  through real values, we obtain from (31) the 
following inequality: 
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which yields the desired result (30).

Finally, we note that the assertion (30) of Theorem 1 is sharp and the extremal 
function is given by 
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We consider here giving few examples of the functions that belong to the new 
subclass of the p-valent functions by suitably choosing the bounded sequence ka , so 
that the sum function (19) is convergent. To this end, let us choose 
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Thus, for the aforementioned sequence 
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and Theorem 1, we obtain the following result:
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 Example 1. A function f of the form (34) belongs to the class H ),,(, σα bapq  if and 
only if 
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where ),,( qpk α∆  is given by (22). The result is sharp.

An obvious consequence of Example 1 would be a simple case which occurs when 
1=ka  (that is 1=λ  in Equation (34)), we would readily get the following result for 

the function: 
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 Example 2. The function ],;;[ 01 zqqzz pnp −Φ− +  belongs to the class 

H ),,(, σα bapq  if and only if

       
=

( , , )(1 ) ( ),k
k p n

p q b b aα σ σ
∞

+

∆ + ≤ −∑            (37)

where ),,( qpk α∆  is given by (22). The result is sharp.

Let us set 1==σα  and make use of the relation (29), then Theorem 1 yields the 
following coefficient inequality for the class G ),(, bapq .

 Corollary 1. A function f of the form (19) belongs to the class G ),(, bapq  if and only if
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The result is sharp with the extremal function given by
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DISTORTION THEOREMS 

In this section, we establish certain distortion theorems for the function classes defined 
above involving the fractional q-calculus operators.

 Theorem 2. Corresponding to the inequalities: 
< < 1, , ; 1 < 1,0 < 1;0 < 1;0 < < 1,p p n a b b qα σ−∞ + ∈ − ≤ ≤ ≤ ≤N

let the function )(zf  defined by (19) be in the class H ),,(, σα bapq , then
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and we are at once lead to the inequality 0≤α . Thus, ( ) ( 1; )k k p pϕ ≥ + ∈N  is a 
decreasing function of k for 1<<1,0<< qp +∞− α .

Consequently from (30), we get the following inequality: 

,
)1
)(),,(),,(

== σ
σαα

b
abaqpaqp kk

npk
k

npk
np +

−
≤∆≤∆ ∑∑

∞

+

∞

+
+



On a subclass of p-valent analytic functions involving fractional q-calculus operators 11

which in view of Equation (4) implies that 
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In view of  Equations (20) and (42), the assertion (41) of Theorem 2 on using (23) gives 
the following distortion inequality for the function , ,

, ,( ) = ( )p p p
q z q zf z z L f zα α ∈L  A ( )p n−

involving the fractional q-derivative operator α
zqD ,  defined by (14).

Corollary 2. Let the function )(zf  defined by (19) be in the class H ),,(, σα bapq , 
then 

       
,
,

( )( )  ,
1

p p np
q z

b af z z z
b

α σ
σ

+−
− ≤

+
L        (46)

where 1<0 +≤ pα , z ∈U .

Also, in view of (20) and (42), the assertion (41) of Theorem 2 on using (24) gives 

the following inequality for the function , ,
, ,( ) = ( )p p p

q z q zf z z M f zα α ∈M A ( )p n−  

involving the fractional q-integral operator α
zqI ,  defined by (11).
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Corollary 3. Let the function )(zf  be in the class H ),,(, σα bapq , then 

      

,
,

( )( )  ,
1

p p np
q z

b af z z z
b

α σ
σ

+−
− ≤

+
M

            (47)

where 0>α , z ∈U .

Next, on setting 1==σα  and making use of relationship (29), Theorem 2 
yields the following distortion inequality for the function ∈zf )( A 

−
p  involving the 

q-derivative operator zqD , :

 Corollary 4. Let ,p n ∈N  satisfy the inequalities: 

1 < 1,0 < 1;0 < < 1,a b b q− ≤ ≤ ≤

and let the function )(zf  defined by (19) be in the class G ),(, bapq , then

   ( ) (1 )( )          ( ).
(1 ) (1 )

p
p p n

p n

b a qf z z z z
b q

+

+

− −
− ≤ ∈

+ −
U    (48)

Furthermore, 

    . ][ 
1

  ][)( 11
,

−+−

+
−

≤− np
q

p
qzq zp

b
abzpzfD    (49)

CONCLUDING OBSERVATIONS AND REMARKS 

We now briefly consider some consequences of the results derived in the preceding 
sections. If we let ,1−→q  and make use of the limit formula (10), we observe that 
the function class H ),,(, σα bapq , and the inequality (30) of Theorem 1, and also the 
inequalities (40) and (41) of Theorem 2 provide, respectively, the q-extensions of the 
main class and related inequalities due to Owa & Srivastava (1985) and Shukla & 
Dashrath (1984). Similarly, for the function class G ),(, bapq  defined by (29), Corollary 
1 and the distortion inequalities (48) and (49) of Corollary 4 are also the q-extensions of 
the corresponding known function class and related results due to Shukla & Dashrath 
(1984). Further, it may be noted that the function class H ),,(, σα bapq  is the q-extension 
of the known class due to Raina & Nahar (2002).

We also observe that if we set = 2 1 (0 < 1)a δ δ− ≤ , 1=b  and replace σ  by 
β , then the condition (25) reduces to the inequality: 

        <
12)(

1)(
,
,

,
, β

δα

α

+−Ω

−Ω

zf
zf

p
zq

p
zq

     (50)

( < 1,0 < 1,0 < 1,0 < < 1, ),p q zα δ β+ ≤ ≤ ∈U
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and we have 

      H , (2 1,1, ) =q p
α δ β− J , ( , , ) ,q p δ β α             (51)

where J ),,(, αβδpq  is precisely the subclass of analytic and multivalent functions 
studied recently by Purohit (2012). Hence, if we set = 2 1 (0 < 1)a δ δ− ≤ , 1=b  
and βσ =  and use (51), then Theorems 1 and 2 yield (for 1=n ) the coefficient 
inequality and distortion theorems obtained recently by Purohit, 2012 [p. 132, 
Theorem 1 and p.134, Theorem 2].

Lastly, we note that if we put 1=p , then the operator (20) reduces to 

  ,1 1
, , ,

(2 )
( )  ( ) = ( ), 

(2)
q

q z q z q z
q

f z f z z D f zα α α αα −Γ −
Ω ≡Ω

Γ
            (52)

and the condition (50) reduces to the inequality: 

        <
12)(

1)(

,

, β
δα

α

+−Ω

−Ω

zf
zf

zq

zq
             (53)

( < 2,0 < 1,0 < 1,0 < < 1, ).q zα δ β≤ ≤ ∈U
Thus, we have 

          J =),,(,1 αβδq J , ,
α
δq         (54)

where J 
α
δ,q  is precisely the subclass of analytic and univalent functions studied 

recently by Purohit & Raina (2011).
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حول صنف جزئي لدوال تحليلية لها مؤثرات كسرية حسبانية
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خلاصة
الوحدة  قرص  على  قيم   q لها  تحليلية  لدوال  جديد  جزئي  صنف  البحث  هذا  في  ندرس 
معاملات  الدوال  من  الصنف  لهذا  ونحسب  تكاملي.  حسبا  مؤثر  على  وتشتمل  المفتوح، 
لنتائجنا  الخاصة  الحالات  بعض  بدراسة  كذلك  نقوم  التحريف.  مبرهنات  وبعض  المتباينة 

الأساسية.
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