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ABSTRACT

In this paper, we consider a new subclass of p-valent analytic functions in the open unit
disk involving a fractional g-differeintegral operator. For this subclass of functions,
we derive the coefficient inequality and some distortion theorems. Special cases of the
main results are also mentioned.
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INTRODUCTION

The theory of g-analysis has been applied in many areas of applied mathematics, see
the various references cited in Purohit & Raina (2011). Recently, authors in Purohit
& Raina (2011), Purohit & Raina (2013), Purohit & Raina (2014) have used the
fractional g-calculus operators in investigating certain classes of functions which are
analytic in the open unit disk. Purohit (2012) also studied similar work and considered
new classes of multivalently analytic functions in the open unit disk.

In the present paper, we consider a new subclass of functions defined by applying
the fractional g-calculus operators which are p-valent and analytic in the open unit
disk. Among the results derived include, the coefficient inequalities and distortion
theorems for the subclasses defined and introduced below. Special cases of the results
are also pointed out in the concluding section of this paper.

PRELIMINARIES AND DEFINITIONS

To make this paper reasonably self-contained, we give here some basic definitions and
related details of the g-calculus.

The g-shifted factorial (see Gasper & Rahman, 1990) is defined for @.¢g €C as a
product of n factors by
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q) = 1 5 n=0
(@9), (1-a)(1-aq)--(1-aq"™") ; neN, ()

and in terms of the basic analogue of the gamma function by

_L@rmi-gr o

@"39), (@) @)

where the g-gamma function is defined by (Gasper & Rahman, 1990 [p. 16, Equation
(1.10.1)]

; 1_ I-x

r, ()= (¢ q)wx( 9) 0<qg<1). 3)
@ :9).

If |q| <1, the definition (1) remains meaningful for o0, as a convergent

infinite product given by
(;q), =] [(0-aq’).
j=0
We recall here the following g-analogue definitions given by Gasper & Rahman
(1990).
The recurrence relation for g-gamma function is given by

(I-g")T,(x)
l—¢q

L,(x+1)= (4)

and the g-binomial expansion is given by

v v - 1_(y/x)qn
-y), =x"(=yxq), =x"[[| ——= |
(x=y), =x" (-yx;q), = x n_o[l— (y/x)q”"} (5)

It may be noted that the g-Gauss hypergeometric function (Gasper &
Rahman, 1990 [p.3, Equation (1.2.14)]) is defined by

alesras St

and as a special case of the above series for ¥ = f, we have

(g I<1,]z [<1), (6)

Dy eimigz] =S EDe o (g<Lz <. @)
o (q:9),

Also, the Jackson’s g-derivative and g-integral of a function f'defined on a subset
of C are, respectively, given by (Gasper & Rahman, 1990 [pp. 19, 22])

Dq,zf (Z):f(z)_f (Zq)

(z #0,q #1) (®)
z(1-q)
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and

i 0=z -0 "), ©

By noting the relation that
(¢ q)n _
D (@),
we observe that the g-shifted factorial (1) reduces to the familiar Pochhammer symbol
(a),, where (), =1 and (), =a(a+1)---(a+n—1) (neN).

L'

The fractional g-calculus operators of a complex-valued function f(z) (see
Purohit and Raina, 2011) are contained in the following definitions.

Definition 1 (Fractional g-Integral Operator). The fractional g-integral operator
1. f(2) of a function of order  is defined by

1 =D )= s [, Odg @20,

where f(z) is analytic in a simply-connected region of the z-plane containing
the origin. In view of the relation (5), the g-binomial function (z —fg), , can be
expressed as

(Z _tQ)a—l =z o 1q)0[q 7a+1;_;q ,tqa /z ] (12)

The series 1<Do[a;—;q,2] is obviously single-valued when |arg(z)| <
and |Z| <1, (see for details Gasper & Rahman, 1990 [pp. 104-106]), therefore, in
view of the representation of the integral defined by (11), it may be noted that the
function (z —tg),, in (11) is single-valued when |arg(—tq“ /z )| < 7r,|tq" /z )| <1
and |arg Z| < 7. Thus, for suitably selected function f(z) (which ensures its

convergence), the operator (11) is well defined.

Definition 2 (Fractional g-Derivative Operator). The fractional g-derivative operator
Dy . f(z) ofafunction f(z) of order ¢ is defined by

I-a 1 ‘

Dif )70y L ) =5 P [[c-tg)fOdr ©O<a<1), (13)
where f(z) is suitably constramed and the multiplicity of (z —#g)_, is removed as
in Definition 1 above.

Definition 3. (Extended Fractional g-Derivative Operator). Under the hypotheses of
Definition 2, the fractional g-derivative for a function f(z) of order & is defined by



4 S.D. Purohit and R.K. Raina

—-a
D! f(z)=D) 1'"f(z) (m-1<a<mmeN;=NuU{0}), (14
where N denotes the set of natural numbers.

We note for & =1 in (13) that

D!.f(z)=D,.f ). 15)

where the operator Dq’z is given by (8).

In the sequel, we shall be using the following image formulas (Purohit & Raina,
2011 [pp. 58-59]) which are easily derivable, respectively, from the operators (11)
and (14):

« i _ r,a+24)

T ke (g=0,4>—1 16
5 T (14 A+a) ( ) (9

and

r,(1+4)

D;‘,ZZ’1 =—4
rd+i-o

27 (@=0,1>-1). (17)

By adopting the fractional g-integral and fractional g-derivative operators defined,
respectively, by (11) and (13), we first introduce a fractional g-differintegral operator
and use it to construct a class of p-valent analytic functions #; ,(a,b,c) in the open
unit disk U (defined below by (25)). Besides finding the coefficient bound inequality,
we also obtain some distortion inequalities for functions belonging to this class of
functions. Our investigations provide the g-analogues to the classes studied earlier
in Owa & Srivastava (1985), Raina & Nahar (2002) and Shukla & Dashrath (1984).
More precise related details describing the usefulness of investigating such a subclass
of functions are stated briefly in the concluding section of this paper.

A CLASS OF ANALYTIC FUNCTIONS
Let A ,(n) denote the class of functions f(z) of the form:

f@)=z"+ Y az* (n,peN), (18)

k=n+p

which are analytic and p-valent in the open unit disc U = {

}.Also,
let ,’4;,(") denote the subclass of A, (n) consisting of p-valent analytic functions
given by

f(z)=z"* Zak ¥ (a, 20,n,p eN). (19)

k=n+p

For the purpose of this paper, we define a fractional g-differintegral operator QZ,’Z‘”
of a function f(z) by
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rp+l-a

QIYf (z)= T (D) 29" DSf(2) (20)

(a<p+l;peN;0<g<l;z €l),

where D;_f(z) in (20) represents, respectively, a fractional g-integral of f(2) of
order @ when —oo < <0, and a fractional g-derivative of f(z) of order &

when o > 0. Thus, in view of (19), the operator (20) has the series representation

given by
Qrf(z)=1- D A(a,p.q)a,z"™" (—o<a<p+l), (@
k=n+
where !
r (1+p—0[)r (1+k) 22
Ak (a,p,Q): 1 . ( )

L (1+p),(1+k —a)

By the application of Cauchy-Hadamard formula, the radius of convergence of the
series in (21) can be calculated by the formula that

1/k

R = le|ak Ha.p.q)| .

As the series (19) is analytic in unit disk, so it implies that

Lim |ak| 21.

k >

Now

" |r (1+p-a), (1+k)|"
Lzm |A (a,p, q)| |r (I+p)T,(1+k - 0!)|

1k

Fq(1+p—a) Fq(1+k)
[, (1+p)) I,(+k-a)

Upon using the familiar asymptotic formula (Ismail & Muldoon, 1994) given by

=Lim

k >

k —o

L,(x)=(1- q)”H(l ") (x > ®,0<g <),

it can be verified that
1k

1
(1-¢)°

1/k

Lim|A (a.p.q)| " = Lim|(1-¢)"[" Lim
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It readily follows that R>1, and hence, the series representation of €7 f'(2)
given by the series (21) is analytic in the unit disk.

Remark. In view of (17), we express (21) as follows:
Lyt (z)=1- Z A (a,p,q)a,z"7? (O<a<p+l1), (23)
k=n+p
where A (a,p,q) is given by the Equation (22).
On the other hand, on using (16), we write
a, _ - k—
M7Tf(z)=1- z A (—a,p,q)a,z7" (a>0), (24)
k=n+p
where A, (e, p,q) is given by the same Equation (22).
Evidently, it follows that

Qf @)=Ly2f (2)OM[Yf (z), z €U

5Z

Let 7{;‘ ,(a,b,0) represent the class of functions f(2) €,(n), which satisty
the condition that

| Qo7 f(2)-1 |
bQ7 f(2) -4l

(—o<a<p+1,-1<a<b<1,0<b<1,0<0<1,0<qg <1,z €),

<o (25)

a,p
g,z

where the operator Q%7 is given by (20).

Further, in view of the relationships in (15) and (4), we find from (20) that
1—
Q7 /(2) =[—qu“’1) @) (26)
5 1 _ qp 9,

(peN;0<qg <l;z €l).

Thus, when ¢ = g =1, the condition (25) reduce to the inequality:

D bD B
Eﬁ{ﬂq]{#—a[mq} <l (27)

Zp—l p-1

(peN,-1<a<b<1,0<b<1,0<qg <1,z €U),
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where the g-natural number is expressed as

n

[n], = 11__q 0<g <), (28)
and we have 4
(@D =g (a,b), (29)

where gq’p(a,b) is a subclass of p-valent analytic functions which satisfy the
condition (27).

We now obtain the following coefficient bounds for functions of the form (19)
belonging to the classes #7, ,(a,b,0) and G, ,(a,b) (defined above).

Theorem 1. A function f of the form (19) belongs to the class #° Z‘p(a,b, o) ifand
only if

2 MA@ p.g)(1+bo)a, <o(b —a), (30)
k=p+n
where A, (@, p,q) is given by (22). The result is sharp.

Proof. Assume that the inequality (30) holds true, and let |Z| =1, then on using (19)
and (21), we obtain

o Z Ak (a, p, Q)ak zr

k=p+n

b—a- z A (a,p,q)a,z"7

k=p+n

Q1) =op Qi f(2)=d=

— O

< 2 A p. gl +bo)a,~o(b-a)
k=p+n
<0,
by our hypothesis. This implies that f(z) eH ,(a,b,0).

To prove the converse, let f(z) defined by (19) be in the class #'; (a,b,0),
then it follows that

| Q7 f()-1 |
Q7 f(2) -4l

o0

- Z Ak(aap: q)ak Zk_p

k=p+n

-1

b—a- z A (a,p,q)a,z""

k=p+n

x <o. (31
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Since |9{(Z)| < |Z| for any z, therefore, choosing values of z on the real axis so that
QZ,’f f(2) is real, and letting z — 1~ through real values, we obtain from (31) the
following inequality:

2 A p.gaob-a)-o Y Aa.p.ga, ()
k=p+n k=p+n
which yields the desired result (30).

Finally, we note that the assertion (30) of Theorem 1 is sharp and the extremal
function is given by

_ ., ob-a)
1= s c@p. "N
Fa)=zf - ob-a)@""":q), _pun (n eN). (33)

(1+bo)(q"":q),

We consider here giving few examples of the functions that belong to the new
subclass of the p-valent functions by suitably choosing the bounded sequence @, , so
that the sum function (19) is convergent. To this end, let us choose

(q%;9),
=12 De (75 0),
¢ (q:9), ( :

then from (19), we have

00

@"59)
z)=z"— -7 A20,n, N),
f@) k=nz+p (q;CI)k ( el

which on changing the summation index: kK —7n— p = j and using (2) yields

I, (A+n+p) Z,H,,i(q 39);(q59),;
L, (I+n+p)  =@"""q9),(q:9),

A+n+p

z/ (120,n,p eN).

fe)=z"-

Now, on making use of (6), we get

L (A+n+p) ., .
f@z)=z"-—41 2" g7 g5 " q,2] (A=0,n,p eN). (34)
Fq(/i)l“q(1+n +p) )
Thus, for the aforementioned sequence a, = %, and by making use of (34)
q:9)

and Theorem 1, we obtain the following result:
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Example 1. A function f of the form (34) belongs to the class #H Zp(a,b, o) if and
only if

0

A (a0, )A+00)a 3 _ )
kgﬁn @39 oo,

(35)

where A, (@, p,q) is given by (22). The result is sharp.

An obvious consequence of Example 1 would be a simple case which occurs when
a, =1 (thatis 4 =1 in Equation (34)), we would readily get the following result for
the function:

f@E)=z"=z"" Dilg:=q.z] (n,peN). (36)

Example 2. The function zP —z"" ,‘DO[C];—;q,Z] belongs to the class
#Hy ,(a,b,0) if and only if
> A(a,p.q)(1+bo)<o(b —a), (37)
k=p+n
where A, (a, p,q) is given by (22). The result is sharp.

Letusset & = o =1 and make use of the relation (29), then Theorem 1 yields the
following coefficient inequality for the class G, ,(a,b).

Corollary 1. A function f of the form (19) belongs to the class Gop (a,b) ifand only if

S [k, (1+b)a, <(b —a) [p],. (38)

k=p+n
The result is sharp with the extremal function given by

_b=a)(=¢") _,.
(1+5)(1=¢"")

f(z)==z" (n eN). (39)

DISTORTION THEOREMS

In this section, we establish certain distortion theorems for the function classes defined
above involving the fractional g-calculus operators.

Theorem 2. Corresponding to the inequalities:
—o<a<p+l,p,neN;-1<a<b<1,0<h<1;0<0<1;0<qg <I,

let the function f(z) defined by (19) be in the class #° Z’ » (a,b,0), then
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l+p-a.
Lob-a) (g™ "9),

I @)l-[ |

z |p+n (z €0). (40)

~ (I+bo)(q"'"39),
Furthermore,
a. ob—-a) +n
H Mot (z )|—|z | < mk " (z e, (41)

where the normalized fractional g-calculus operator M Z”f is given by
r,(p+l-a)
r,(p+1)

Proof. Since f(z)€en Z, » (a,b,0), then in view of Theorem 1, we first show that
the function

Mgz (2)=2"Qi7f (z)= 2Dy f (). (42)

L (k+DI (p+1-a)

P =A@ )= L T v 1-a)

(k>2p+1;peN)

is a non-increasing function of k for —co<a < p+1,0<¢g <1.
Now, we have

otk +1) T (k+2)L (k+1-a) 1-¢*"

o(k) T,(k+D)F,(k+2-a) 1-¢"

(k>2p+1;peN),

and it is sufficient to consider here the value k£ = p +1, so that on using (4), we get

p(p+2) _ 1-¢""

0<g <1).
oD 1-gre 017D
2
The function @(k) is a decreasing function of & if #p+2) <1(p eN), and
this gives +1)
1_qp+2
l_qm <1 (0 < q < 1)

p+2-a

Multiplying the above inequality both sides by 1—¢ (provided that o < p +1),
and we are at once lead to the inequality ¢ < (. Thus, (k) (k 2 p+1;peN) isa

decreasing function of k for —co<a < p+1,0<g <I.

Consequently from (30), we get the following inequality:

A (a,p, a < A (a,p,q)a, < R
pon( pq)k_zp;nk k; (a,p.q)a, +50)

o(b—a)
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which in view of Equation (4) implies that

0 _ p+l-a,
S q < ob—-a)lg _ 3q),
K opin (I+bo)(@" " :q),

b

and this last inequality in conjunction with the inequality (easily obtainable from

(19)):
- Y sl Y 43)

k=p+n k=p+n
yields the assertions (40) of Theorem 2.

Next, on using (21) and (42), we observe that

o2 (22| - Z A, (@ p.gald’

>d7 " S Aen pgda,
which on using Theorem 1 gives
sz @)z -2 D, (4t
Similarly, it follows that
‘M f(z)‘<|| G(b a)| pn 45)

which establishes the assertion (41) of Theorem 2.

In view of Equations (20) and (42), the assertion (41) of Theorem 2 on using (23) gives
the following distortion inequality for the function L7 f (z) =z L;?f (z)e A ,(n)
involving the fractional g-derivative operator DZZ defined by (14).

Corollary 2. Let the function f(z) defined by (19) be in the class #;, (a,b,0),

then

< O-(b —a) - |p+n
I+bo

L2 f (2)]-|z[

where 0<a<p+1,z €U.

’ (46)

Also, in view of (20) and (42), the assertion (41) of Theorem 2 on using (24) gives
the following inequality for the function M7/ (z)=z"M [’/ (z)ea ,(n)
involving the fractional g-integral operator / Zz defined by (11).
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Corollary 3. Let the function f(z) be in the class #;, ,(a,b,0), then

Joazzr |- | < 2222

<TG o

l+bo (47)

|p+n

where >0, - €U .

Next, on setting & = o =1 and making use of relationship (29), Theorem 2
yields the following distortion inequality for the function f(z)€ 4, involving the
g-derivative operator Dq,z :

Corollary 4. Let p,n €N satisfy the inequalities:
-1<a<bh <1,0<b L1;0<qg <1,

and let the function f(z) defined by (19) be in the class G, ,(a,b), then

b_ l_ P +n
pel-kr|s SR cen. @
Furthermore,
4 b— tne
|p,- 1@ -tp), [ | < T e, 49)

CONCLUDING OBSERVATIONS AND REMARKS

We now briefly consider some consequences of the results derived in the preceding
sections. If we let ¢ —> 1, and make use of the limit formula (10), we observe that
the function class #° Z) » (a,b,0), and the inequality (30) of Theorem 1, and also the
inequalities (40) and (41) of Theorem 2 provide, respectively, the g-extensions of the
main class and related inequalities due to Owa & Srivastava (1985) and Shukla &
Dashrath (1984). Similarly, for the function class G, , (a,b) defined by (29), Corollary
1 and the distortion inequalities (48) and (49) of Corollary 4 are also the g-extensions of
the corresponding known function class and related results due to Shukla & Dashrath
(1984). Further, it may be noted that the function class %, ,(@,b,0) is the g-extension
of the known class due to Raina & Nahar (2002).

We also observe that if we set a =25 —-1(0<6 <1), p=1 and replace o by
[, then the condition (25) reduces to the inequality:

| omrre-1 |
QU7 f(2)-20+1]

B (50)

(x<p+1,0£6<1,0<p<1,0<g <1,z €U),
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and we have

#e (26-1,1,8)=1,,(,5,a), (51)

where 7, ,(0,B,a) is precisely the subclass of analytic and multivalent functions
studied recently by Purohit (2012). Hence, if we set a =20 -1(0<0<1), p=1
and o = [ and use (51), then Theorems 1 and 2 yield (for 7 = 1) the coefficient
inequality and distortion theorems obtained recently by Purohit, 2012 [p. 132,
Theorem 1 and p.134, Theorem 2].

Lastly, we note that if we put p =1, then the operator (20) reduces to

a,l a rq (2 - a) a—1 a
QFf(z)=Q] .f(z)= F—(Z)Z D} f(z), (52)
and the condition (50) reduces to the inequcfality:
Q7 f(z)-1
o |<ﬂ (53)

Q2. f(2)-25+1]

(@<2,0<50<1,0<p<1,0<q <1,z €l).

Thus, we have
I (0, B,0) =946 > (54)

where 7 Z,g is precisely the subclass of analytic and univalent functions studied
recently by Purohit & Raina (2011).
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