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An optimization problem for some nonlinear elliptic equation
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Abstract  

In this paper we prove existence and uniqueness of the optimal solution for an 
optimization problem related to a nonlinear elliptic equation. We use the concept  
tangent cones to derive the optimality condition satisfied by optimal solution. 
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1. Introduction

Let  be a bounded domain in R n with a smooth boundary . For  and 
, we consider the following boundary value problem, which appears as a steady 

state in a model of chemical reaction phenomenon, see (Pao, 1997): 

                                 
(1)

Here  and . In the next section, we show that the 
boundary value problem (1) has a unique nonnegative solution. The reader can see the 

well known paper by Brézis & Nirenberg (1983), which deals  
. They explain what happens when  and the loss of solutions 

if .

It is well known that  is a weak solution of (1) whenever uf is a critical 
point of the functional  defined by 

We define the functional  by 

                                     (2)
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We are interested in the following optimization problem  

                                                       
(3)

where 

We’ll prove that there exists a unique function (optimal solution)  such that 
. Also, we derive the optimality condition satisfied by optimal 

solution. The main mathematical tool that we will use in the last section, is the notion 
of  tangent cones.

In Emamizadeh & Zivari-Rezapour (2007), we have investigated the optimization 
problem (3) when A be a rearrangement class of a fixed function in . In Kurata  
et al. (2004), the authors have investigated the minimization problem (3) when 

, D is a measurable subset of , in (1),  and  
Here  denotes the n-dimensional Lebesgue measure of . They proved that 

 for some .

Finally, we mention that this paper is motivated by a very interesting paper authored 
by Henrot & Maillot (2001). They used the concept tangent of cones to formulate the 
optimality conditions satisfied by optimal solutions. 

2. Existence and uniqueness

First we show that the boundary value problem (1) has a unique nonnegative 
solution.

Since the function , , is strictly convex, we deduce  is strictly 
convex. By Hölder and Poincaré inequalities we have 

for some positive constants C and C'. Here and henceforth  and 

 are the standard norms on  and  respectively. Thus 

 is coercive. As the functional is coercive, convex and continuous, it has a 
global minimum point, which is a critical point. Since  is strictly convex, the 
critical point is unique. Therefore, for every  the boundary value problem 
(1) has a unique (weak) solution denoted by uf . Moreover, when f  is nonnegative, by 
the weak maximum principle, see Theorem 1.1 of (Damascelli, 1998), we have  
in .
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We know that uf satisfies the following integral equation  

         (4)

Now we prove some auxiliary lemmas: 

Lemma 1.  The functional  is bounded. 

Proof. By (4) we infer that 

So,  is nonnegative. From Hölder’s inequality we infer that 

 Now for any , by Young’s inequality we have 

By Poincaré’s inequality, there exists a constant  such that 

Thus 

 Therefore, By setting , we obtain 

Lemma 2. The functional  is continuous with respect to the weak* topology 
in . 

Proof. Let  is a sequence that  in . For simplicity set .
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We have 

Therefore 

  (5)

Since  in , we infer that  

                                          
(6)

We now prove that  

                                           
(7)

From (4), for  we have 

By Hölder’s inequality and then Poincaré’s inequality for some positive constant 
C we deduce 

Thus, since , we infer that 
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Therefore  is a bounded sequence in . So there exists a subsequence of it, 
still denoted by , that converges weakly in  and strongly in  to some 
function  (note that ). Thus we deduce that  
tends to zero as . Therefore from (5), (6) and (7) we obtain that  is continuous 
with respect to the weak* topology in . 

Remark 1. We claim that, the function  that mentioned in Lemma 2 is equal to uf 
almost every where in . We know that 

Also 

and 

Thus 

                 

By the uniqueness of the maximizer of  we yield  almost every where 
in . 

Lemma 3.  The functional  have the following properties:  

1.  The functional  is strictly convex. 

2.  The functional  is Gâteaux differentiable with derivative 

for all . 
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Proof.  Let  and . We have 

Thus 

Hence 

Therefore  is convex. Now we prove strict convexity. Assume there exists 
 such that 

Thus 

where . So 

By uniqueness of the maximizer we infer that  almost every where in 
. From this fact and the equation (4), for all  we obtain 

and 

Therefore  almost every where in , so  is strictly convex.

 Let  be a sequence of positive numbers that tends to zero. Let  and 
, . By (5) we have 
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By  and  Remark 1 we deduce that  tends to uf in  as . 
Therefore 

Thus the proof of the part  follows. 

We are now ready to prove the main result; 

Theorem 4. The optimization problem (3) has a unique solution. 

Proof. A is closed for the weak* topology in , see Henrot & Pierre (2005), and 
convex. Hence A is weak* compact, see Hille & Phillips (1957). Since  is bounded 
below, see Lemma 1, and weak* continuous we infer that (3) is solvable. The solution 
is unique since  is strictly convex. 

3. The first order optimality condition

We begin with the definition of tangent cones; 

Definition 1. Let X be a normed linear space and a	  be an element of the closure of a 
nonempty subset C of X. The  inner tangent cone of C at a	 is denoted by ( )CT a′ 	 ; moreover, 

( )Cv T a′∈ 	  whenever for each sequence  of positive real numbers converging to zero, 
there is a sequence  in X satisfying  and i ia t v C+ ∈	  for all . 

In the following lemma we state the first order optimality condition satisfied by 
optimal solution. 

Lemma 5. The function  is the minimizer of  in A if and only if 

Proof. Assume  is the minimizer of  in A. Let  and  be a sequence of 
positive real numbers that tends to zero. Thus there exists a sequence  in  
such that  as  and  for all . Hence 

because  is minimizer of  in A.

Conversely, assume  and  for all . We show that 
 for all . To derive a contradiction we assume there is  such 

that . Since A is convex we observe that . Let  be a 
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sequence of real numbers in  converging to zero. We set  for all . 
It’s clear that  and . Hence 

                           

                           

which is a contradiction. Therefore  minimizes . 

Definition 2.  For any function , we define  

1.   

2.   

3.   

Let . The following lemma characterize the elements of . 

Lemma 6. If , then the tangent cone  is the set of every function  
such that  

1.   

2.   

3.   

where  (resp. ) is the positive (resp. negative) part of h,  
and . 

Proof. See Proposition 2.1 in Bednarczuk  et al. (2000) and Proposition 4.5 in Cominetti 
& Penot (1997). 

Corollary 7. Let . If , then 

Proof. Since  and  for all , the assertion readily 
follows from Lemma 6. 

We are now ready to state the main result of this section; 
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Theorem 8. The function  minimizes  on A if and only if  

1.  is constant on  (as soon as ); 

2. ,  . 

Proof. Let  minimizes  on A. Set * ˆ ˆ( ) = { :1/ 1 1/ }i f x i f iΩ ∈Ω ≤ ≤ − . Since 
* *

=1
ˆ ˆ( ) = ( )ii
f f∞

Ω Ω∪ , it is enough to prove that  is constant on  for all i . To 
derive a contradiction, suppose  is not constant on  for some i. Thus, there exist 
two measurable sets  and  in  such that 

We define 

By Lemma 6 we infer that . Therefore 

This inequality is a contradiction by Lemma 5. Thus  is constant on .

The second point is proved in a similar way. To derive a contradiction, suppose 
there exist two measurable sets  and  such that 

We define 

which belongs to . Thus 

This is a contradiction. Hence . We prove in the same way that 
.
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Conversely, let us assume that  and  satisfy  and . Let  and 
. According to Corollary 7, h is nonnegative on  and nonpositive on 

. Thus 

Therefore, by Lemma 5 we infer that  minimizes . 
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