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ABSTRACT

The local search algorithm for the capacitated max-k-cut problem proposed by Gaur et
al. (2008) is not guaranteed to terminate. In this note, we modify the iterative step of
their algorithm to make it terminate in a finite number of steps. The modified algorithm
is pseudo-polynomial, and in a special case it is strongly polynomial. Moreover, we
analyze the worst case bound of the modified algorithm and give some extensions.
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INTRODUCTION

The capacitated max-k-cut problem was introduced by Gaur er al. (2008),
which is to partition the vertices of a graph into k subsets, such that the sum of
the weights of the edges connecting vertices in different subsets is maximized. In
the problem, each subset has a possibly different capacity that imposes an upper
bound on its size. This problem has many applications, e.g., the placement of
containers on a ship with k bays (Avriel et al., 1998), the placement of television
commercials in program breaks (Bollapragada & Garbiras, 2004), and optimal
pooling for genome re-sequencing (Hajirasouliha et al., 2008).

It is well known that the capacitated max-k-cut problem is NP-hard. There are
some approximation results for max-k-cut with given sizes of parts. Ageev ef al.
(2001) presented a l-approximation algorithm for the capacitated max-2-cut
problem. Feige & Langberg (2001) designed a 0.5 + e-approximation algorithm for
max-2-cut with given sizes of parts. Frieze & Jerrum (1997) presented a 0.65-
approximation algorithm for the max-bisection problem, and this was improved to
0.699 by Ye (2001). For the max-k-cut problem, it was shown by Kann et al.
(1997) that, no approximation algorithm can have a performance guarantee better

than 1 — i, unless P = NP. Currently the best known randomized approximation
algorithm by Andersson (1999) for max-k-section, where each part has the same

: 1 1
size, has a performance guarantee of 1 — P H(k—3).
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For the general capacitated max-k-cut problem, very few results have been
obtained. Gaur et al. (2008) announced a first deterministic local search
approximation algorithm for the problem. The algorithm begins with a random
partitioning of the vertices, with each subset size not greater than its capacity,
and then by swapping pairs of vertices that are in different subsets, and that
increases the sum of the weights of the edges connecting vertices in different
subsets. However, Gaur et al. (2011) subsequently proposed a counterexample
to show that the local search algorithm in Gaur et al. (2008) is not guaranteed
to terminate.

For tackling computationally intractable optimization problems, local search
is one practical approach for finding nearly optimal solutions within a
reasonable running time (Gendreau & Potvin, 2005). However, understanding
the worst case performance or smoothed performance guarantees are of
theoretical interest (Angel, 2006; Brunsch et al., 2013). Hence in this note we
reconsider the local search algorithm for the capacitated max-k-cut problem in
Gaur et al. (2008). We modify their algorithm and prove that the modified

algorithm will terminate in a finite number of steps, and the approximation ratio
t(k—1)

2s—1)+1(k—1)

generated subsets respectively. Two interesting corollaries are also derived from

, Where 7 and s are the minimum and maximum sizes of the initially

this result.

LOCAL SEARCH ALGORITHM

All notations are based on those by Gaur et al. (2008). Let G = (V,E) be a
graph with |V]| =n vertices. Let e = [u,v] € E be an edge connecting vertices
u,v € V with a weight w(u,v) € Z". The capacitated max-k-cut problem is to
partition the set V of vertices into k subsets Vi, Vs, ---, Vi such that the i-th
subset V; contains at most S; vertices, and |V] < S} + S+ -+ Sk. The
objective is to find a partition of V, such that the sum of the weights of the edges
connecting vertices in different subsets is as large as possible.

Let w,y, be the sum of the weights of the edges connecting a vertex u to the
vertices in the subset V;. We present the following deterministic local search
algorithm.

Initialization. Partition J into nonempty subsets Vi, V5, - - -, Vi by arbitrarily
assigning |V;| < S; vertices to Vi, i=1,2,--- k.

Iterative step. Determine if there is a pair of vertices u € V;, and v € V), i #£ [
such that

Wy, + Wyy, > W, + Wy, — 2w(u, v). (1)
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If such a pair of vertices exists, reassign vertex u to V;, vertex v to V;, and
repeat this step.

Termination. When
Wy, + Wy, < Wy, + Wy, — 2w(u, v),

forallu € V;, and v € V, the algorithm stops.

Remark 1. In equation (1) of the iterative step, w,y, + w,y, is the sum of the
weights of un-cut edges with u € V; or v € V,, i # [ as one end. After swapping u
and v, w,y, + wyp, — 2w(u, v) is the sum of the weights of un-cut edges with u or v
as one end. Since the edge connecting u# and v remains a cross edge after
swapping, and it is counted twice while calculating w,y, + w,y,, we have to
deduct 2w(u, v) in the right hand side of equation (1).

Remark 2. In Gaur et al. (2008), the iterative step of the local search
algorithm is

[Vilway, + | Vilwyy, > |Vilway, + [ Vilwyy,,

which is different from ours (see equation (1)). For a complete graph with n
vertices and every edge weight w(u,v) = 1, where a bipartition is desired with
capacities of 1 and n — 1 (Gaur et al., 2011), this inequality always holds for
n > 5 at any feasible bipartition of the vertex set, since the left hand side of this
inequality is (n — 1)(n — 2), and the right hand side is 2(n — 1). Note that for
this instance every feasible bipartition of the vertex set is a maximal solution.
Hence the algorithm by Gaur et al. (2008) does not terminate.

However, for our algorithm on every feasible bipartition of this instance, the
left hand side of inequality (1) is n — 2, and the right hand side is also n — 2,
which implies that inequality (1) does not hold and the algorithm will terminate.

Next we prove that our algorithm will terminate in a finite number of steps.
Let W;; be the sum of the weights of the edges with both ends in V;. Let W} be
the sum of the weights of the edges that connect a vertex in V/; to a vertex in V.
Let

k-1 k
ALG = Z Z Wi,
i=1 [=i+1

where ALG denotes the sum of the weights of the cut edges.

Lemma 1. After any iterative step of the local search algorithm, let ALG’ be
the sum of the weights of the cut edges. We have ALG' — ALG > 1.
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Proof. At any iterative step, there exists a pair of vertices u € V; and v € V,
i # [, such that equation (1) holds, and we reassign u to V}, vertex v to V;. Then
it is obvious that

ALG' — ALG = wyy, + wyy, — (Wuy, + wop, — 2w(u, v)).

By equation (1), we have ALG' — ALG > 0. Since all edge weights are
nonnegative integers, it holds that ALG' — ALG > 1.

Theorem 1. The local search algorithm terminates in a finite number of steps.
Its running time is O(n* W), where n is the number of vertices of the graph, and

W= E[MGE w(u, v).

Proof. By Lemma 1, after every iterative step, the weight sum of cut edges will
increase by at least 1. Since the weight sum of all edges of graph G is W, the
local search algorithm will terminate after at most W steps.

For every iterative step, it searches the neighborhood of the current partition
by switching all pairs of vertices that are in different subsets, and compares the
sum of edge weights before and after switching a pair of vertices. This will be
finished in at most O(n?) time.

Hence the running time of the local search algorithm is O(n*W).

According to Theorem 1, our local search algorithm is a pseudo-polynomial
time algorithm for the capacitated max-k-cut problem. However, for a special
case of the problem where the weights of all edges are the same, the time
complexity of the algorithm becomes O(n*), which is strongly polynomial.

WORST CASE BOUND

Let OPT be the optimal value of the max-k-cut problem. The following theorem
shows the worst case bound of our local search algorithm.

Theorem 2. The solution obtained by the local search algorithm has a value
1(k—1)
2s—1)+1(k—1)
s = maxj<;<k | Vi, and V;, i = 1,2, - - k are the subsets of the initial partition.

not smaller than of the optimal value, where 7= min << |V,

Proof. The solution returned by the local search algorithm is locally optimal, i.e.,
W, + Wor, < wup, + wyp, — 2w(u, v),

for all u € V;, and v € V;. We sum both sides of the above expression over all
u € V;and get
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Z(WuV,- + WvV/) S Z(WMV/ + Wyy; — 2W(ua V)),

ue V,‘ ue Vi

which is

Z Wy, + |Vilwyy, < Z Wy, + [Vilwyy, =2 Z w(u,v).

uel; uel; uel;

Next, we sum both sides of the above inequality over all v € V; and get

14 Z wyur, + | Vil Z wyy, <V Z wuy, + Vi Z Wyp, — 2 Z Z w(u,v). (2)

ueV; VeV uev; vev, VeV uev;
By noting that ) v, Wav; = 2Wi, and ) . v, Wey, = 2Wy, equation (2) leads to
2V\Wii + 2\ Vil Wy < [VilWy + Vil Wi — 2W.
Since Wj; = Wy, the above inequality gives
2Vi\ Wi + 2|V Wy < (|Vi| + |Vi| = 2) W (3)

Summing both sides of inequality (3) over all i,/ = 1,2, ..., k, i # [ gives

k k k k
YN (WWa+ W) <0 (Vil+ Vil =2 We (4
i=1 I=1l#i i=1 I=1l#i

Let t = minj<j<x ‘ Vl'l, S = maX|<;<k |Vi|. Since

k k k k
SN (Wt AW = 13 (Wt W),
i=1 I=1,l#i i=1 I=1,l#i

and

L ko k
Z Z (|V/|+\Vi|—2)Wi1§(ZS—Q)Z Z‘Wﬂ’
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For the right-hand side of inequality (5),
ko k
(25 — Z Z 2(25 — 2)ALG = 4(s — 1) ALG. (6)

For the left-hand side of inequality (5),

So
k
Zﬂ/ﬁﬁw- (8)

Since an optimal solution of the max-k-cut problem may contain at most all
of the edges, we have

k
OPTSZW,',-JrALGSM

> =D + ALG.
Therefore
ALG (k1) B 2s — 1)
OPT=2(s— 1) +ik—1) © 26-Dtuk=-1) ®)

The result in equation (9) contains parameters s and ¢, which are dependent
on the initial partition. To make the lower bound as large as possible, we should

make the initial partition such that > is as small as possible. Furthermore, we can
t
derive some results without parameters from equation (9).
Corollary 1. Let S = max{S|, S, ..., Sk}, and without loss of generality, we

suppose that # > 1. For the deterministic local search approximation algorithm,
we have

ALG (k—1)
OPT~2(S— 1)+ (k—1)
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Proof. Since S = max{Si,Ss,...,Sk} > s, the corollary follows directly from
equation (9) under the assumption that ¢ > 1.

Corollary 2. For the max-k-section problem, where each part has the same
size, the deterministic local search approximation algorithm gives

ALG>k—17 2
OPT k+1 k+1°

Proof. For the max-k-section problem, we have s = ¢. Thus by equation (9),
ALG ttk—1) k—1 k—1 2
> =1

OPT= 25— \)+tk—1) ro1_2 k+1 = Kkt

t

Corollaries 1 and 2 are not interesting for the capacitated max-2-cut problem,
but they are interesting for the corresponding capacitated max-k-cut problem,
since our algorithm is deterministic, and at present we have not found
approximation results of deterministic algorithms for the corresponding
capacitated max-k-cut problem.

It must be remarked that our local search algorithm is not polynomial in the
input size. However, since the max-2-cut problem without the capacity
constraints is PLS-complete (Johnson et al., 1988), it is obvious that the
capacitated max-k-cut problem is also PLS-complete, which means that the
problem is unlikely to have a polynomial time local search procedure.

However, a locally optimal approximation scheme with efficiently searchable
neighborhood for every problem in PLS has been presented by Orlin et al.
(2004). Since the neighborhood of our local search algorithm is efficiently
searchable, i.e., we can verify that a solution is locally optimal in polynomial
time, the result in Orlin et al. (2004) and Corollaries 1 and 2 imply that our

(k—1)
2S—1)+(k—1)
polynomial in the input size and E for the capacitated max-k-cut problem, and

local search algorithm can attain approximation ratio (1 —€) in time

can attain approximation ratio (1 — m)(l — ¢€) in time polynomial in the input

. 1 .
size and - for the max-k-section problem.
€
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