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Abstract

In literature, there are several works on the theory and applications of integral 
transforms of Boehmian spaces, but fractional integral transforms of Boehmians have 
not yet been reported. In this paper, we investigate a fractional Sumudu transform of 
an arbitrary order on some space of integrable Boehmians. The fractional Sumudu 
transform of an integrable Boehmian is well-defined, linear and sequentially complete 
in the space of continuous functions. Two types of convergence are also discussed in 
details.
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1. Introduction

The Sumudu transform of a one variable function  was proposed originally by 
Watugala (1993) as a new integral transform given by

                         (1.1)

where  is a function of power series form and is a member of the 
set , where

 (1.2)

For a given function  in the set , the constant  must be finite, while  and  
need not simultaneously exist.
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While we are in agreement with most of the claims expounded by Watugala, the 
transform is not so new as proclaimed; the Sumudu transform is connected to the 
s-multiplied Laplace transform. But, this, however, in no way diminishes its importance 
or usefulness; Belgasem et al. (2003).

Let  and  be integrable functions and  is their usual convolution product

then the Sumudu transform of the product  is given by Al-Omari & Kilicman (2013)

                     (1.3)

Some properties of Sumudu transforms and their applications are given in 
Weerakoon (1994, 1998); Kadem (2005); Watugala (1993, 1998, 2002); Belgacem 
& Karaballi (2006); Asiru (2002); Zhang (2007); Eltayeb & Kilicman (to appear) and 
many others. The Sumudu transform was applied to distributions in Eltayeb et al. 
(2010) and to Boehmians by Al-Omari & Kilicman (2013):

The purpose of the present contribution is exactly to provide a possible generalization 
of the fractional Sumudu transform. For the convenience of the reader, this work is 
organized as follows: In Section 2, we firstly give a brief background on the fractional 
calculus and establish the convolution theorem of the fractional Sumudu transform 
by aid of a certain convolution product of fractional order. In Section 3, we recall 
the abstract contruction of Boehmians. In Section 4, we shall define the generalized 
Sumudu transform of fractional order in the context of Boehmians and derive some of 
its main basic properties.

2. Sumudu transform of of fractional order

The term fractional calculus; fractional derivatives, fractional integrals, and fractional 
differential equation, is as old as the calculus of differentiation and goes back to 
times when Leibnitz, Gauss, and Newton invented this kind of calculation. Fractional 
calculus is a generalization of the ordinary differentiation and integration to non-
integer order.

Fractional transforms play an important role in information processing, computing 
technology, optical fibers, electronic computing, paraxial diffraction in free space, 
quadratic refractive index medium and resolution of the non-stationary Schrödinger 
equation in quantum mechanics, phase retrieval, and so forth. Number of known 
fractional integral transforms were studied by different mathematicians. Among those 
we invoke here are the fractional linear and radial canonical transform; Torre (2003); 
the fractional Fourier transform; Cai & Lin (2003); Ozaktas et al. (2001); the fractional 
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of Hankel transform; Namias (1980); the fractional Hilbert transform Daviset et al. 
(1998); the fractional cosine, sine, and Hartley transforms Pei & Ding (2002), and 
many others to mention but a few.

Advantages of fractional integral transforms comes over the ordinary ones because 
they naturally arise under the consideration of different problems and, because 
fractionalization gives us a new degree of freedom, which can be used for more 
complete characterization of an object or as an additional encoding parameter.

Let  be the parameter of fractionalization. Then, the fractional integral transform 
operator  is defined by Alieva et al. (2005)

                        
 (2.1)

where  is the transform kernel.

Fractional integral transforms are additive with respect to the real parameter ,

                                   (2.2)

and produce the ordinary transform and powers of it for integer values of .

The integral of a continuous function  with respect to  is defined as the 
solution of the fractional differential equation (Gupta et al. (2010))

                              (2.3)

and given as

                   
(2.4)

Definition 2.1. (Gupta et al. (2010), (2.1)). Let  denote a function that vanishes 
for negative values of . Then, the Sumudu transform of  of order  is defined by

 
 (2.5)

where  and  is the Mittag-Leffler function of one variable

                                           
 (2.6)

The fractional Laplace-Sumudu transform duality of order  is given as
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                               (2.7)

where ,  is the fractional Laplace transform of order .

Some properties of the fractional Sumudu transform  are given as given by 
(Gupta et al. (2010), (2.7))

(i) ,

(ii)  ,

(iii) .

The fractional Sumudu transform was also given by (Gupta et al. (2010), (3.5))

which by change of variables can be written as

                   
 (2.8)

where .

The inversion formula is then recovered from (2.8), by aid of (Gupta et al. (2010), 
(3.6)), giving

 
            

(2.9)

where  is the period of the Mittag-Leffler function (2.6).

Definition 2.2. The convolution product of fractional order of two functions  and  
is defined by

                      
(2.10)

We establish now the convolution theorem in the fractional sense.

Theorem 2.3. Let  and  be functions that vanish for negative values of , then 
we have

            (2.11)

Proof By applying (2.8) for (2.10) we get
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By the fact (Jumarie (2009), (3.10))

we write that

                    

                                              

By change of variables, we get

                                                          

                              

                                                          

Hence, the theorem has been completely proved.

For the convenience of the reader we usually recall the abstract construction of 
Boehmian spaces.
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3. Abstract construction of Boehmians and essential results

Boehmians are used for all objects defined by an algebraic construction similar to that 
of field of quotients. A minimal structure necessary for the construction of Boehmians 
consists of the following elements :

(1) A nonempty set ;

(2) A commutative semigroup ( , );

(3) An operation  such that for each  and , ,  
= ;

(4) A collection  such that :

(i) If  for all , then ;

(ii) If  then  .

Elements of  are called delta sequences.

Consider

If ,  , , , , then we say 
. The relation  is an equivalence relation in . The space of equivalence 

clases in  is denoted by . Elements of  are called Boehmians.

Between  and  there is a canonical embedding expressed as

The operation  can be extended to  by

The relationship between the notion of convergence and the product  is given by:

(i) If  as  in  and,  is any fixed element, then  
in  (as );

(ii) If  as  in  and , then  in  (as ).

The operation  is extended to  as follows: If  and , then
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Convergence in  is defined as follows:

(1) A sequence  in  is said to be  convergent to  in , , if there exists 
 such that ,  , , , and

as , in , for every .

(2) A sequence  in  is said to be  convergent to  in , , if there exists 
a  such that  , , and

as  in .

More about the abstract construction of Boehmians we refer to Mikusinski (1987, 
1995). For integral transforms of Boehmians we refer to Al-Omari et al. (2008); 
Al-Omari & Kilicman (2012a, 2013, 2012b, 2014); Al-Omari (2015); Rajendran 
& Roopkumar (2014). Let  denote the space of Lebesgue integrable functions 
defined on . Following Al-Omari & Kilicman (2012a), the space of 
Lebesgue integrable Boehmians restricted to  is denoted by .

Definition 3.1. By  we denote the Schwartz’ space of test functions of bounded 
supports over  and by  the subset of  of those delta sequences  that 
satisfy

                                   
 (3.1)

 
  

(3.2)

  
                       

 (3.3)

The integrable space  with  is denoted by  which is a convolution 
algebra with the pointwise operations

                     (i)  

(ii)  
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Convergence in  is defined as:

(i) A sequence  is said to be  convergent to , , if there 
exists  such that ,  , , , and

as , in , for every .

(ii) A sequence  is said to be  convergent to , , if there 
exists a  such that , , and

as  in .

Lemma 3.2. Let , then  as .

Proof By considering the fractional Sumudu transform (2.8) and using (2.6) we get 
that

This completes the proof of the theorem.

Theorem 3.3. Let  . Then, the sequence

converges uniformly on every compact subset of .

Proof Let  be a compact subset of , then, by Lemma 3.2, we get that

By (2.4) we have

By the concept of quotionts of sequences of  we from the above equation 
obtain
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Hence, Lemma 3.2 gives

as  on compact subsets of .

This completes the proof of the theorem.

4. Sumudu transform of Boehmians of fractional order

We start this section by the definition of the fractional Sumudu transform in the context 
of the space  then we obtain some general properties.

Definition 4.1. Let  be a Boehmians in the Lebesgue space  defined by 

.

Then, by aid of Theorem 6, we define the fractional Sumudu transform of  as the 
limit of the sequence  in the space of continuous functions, where the limit 
ranges over all compact subsets of .

In notations, this definition is interpreted to mean

                             
 (4.1)

on compact subsets of .

We claim that our definition is well-defined. For, let ,  , , 

where 
 
; 

then by the concept of equivalence classes of  we write

                      (4.2)

and, in particular, for , we have

                         (4.3)
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Applying the fractional Sumudu transform on both sides of (4.3) gives

Therefore, considering the limit, as , on compact subsets of  and using 
Lemma 3.2 yield

Hence, from (4.1), we obtain

This completes the proof of our claim.

Theorem 4.2. The operator  is linear .

Proof Let ,   such that  ,  . Then, addition of 

Boehmians and Equation 4.1 imply

                                                 
Applying the limit for the left hand side of the above equation and using Lemma 

3.2 yield

That is,

Over and above, we have

This completes the proof of the theorem.

Theorem 4.3. If  and ; then .

Proof of this theorem is straightforward. Details are thus avoided.
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Theorem 4.4.  is sequentially complete.

Proof Let  as , in , then, indeed,  as  on 
compact subsets of .

Hence the theorem is proved.

Theorem 4.5. The operator  is continuous with respect to the convergence of type 
. Proof Given  in  as . Then, we can find  and ,  such 

that

Hence, applying  gives  as . That is,

as . This leads to

as .

The proof is, therefore, completed.

Theorem 4.6. The fractional Sumudu transform  is continuous with respect to 
convergence of type .

Proof Let  as , then we can find  such that  

   .

Therefore, by (4.1) and Lemma 3.2, we get
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as , since  as .

Hence the theorem is completely proved.

Theorem 4.7. Let  and  ; then

Proof Assume the requirements of the theorem are satisfied for some  and  
 ; then the operation  of Boehmians gives

By Equation 4.1, we write

By Theorem 2.3, we obtain

Therefore, Equation 4.1, gives

This completes the proof of the theorem.

5. Conclusion

Prior to this work, no approach of extending fractional integral transforms to spaces 
of Boehmians has yet been given. In this paper, the fractional Sumudu transform has 
been extended to a context of Boehmians and some of its properties are also obtained. 
The technique we follow in this paper can be applied to various fractional integral 
transforms of Boehmians and, hence, to distributions and ultra distributions as well.
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