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Abstract

The fractional Camassa-Holm equation is generally used as a powerful tool in computer simulations of water waves in 
shallow water, coastal and harbor models. In this paper, new wave solutions of this equation are obtained by using a new 
extended direct algebraic method. Thirty-six completely new solutions are obtained and are graphically represented. 
These solutions may motivate future research on the topic.
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1. Introduction

On the evaluation of many events taking place in the 
universe, certain approaches called idealization are used. 
Idealization brings a deterministic perspective to our 
perception of physical events. From the physical point of 
view, in terms of predicting an event’s pattern, idealization 
is quite successful in reflecting the main frame of the 
physical event, although it neglects some aspects of the 
event. This method works very well in systems where 
interactions are linear. However, it is impossible to use 
this method in systems where interactions are nonlinear, 
such as in oceans having large water waves. The results 
obtained by using linearization (ignoring nonlinear 
interactions) to idealize such systems, solitons, are 
unpredictable from the results obtained by linearization. 
On the other hand, solitons are of great importance not 
only for studying oceans, but also for modeling nonlinear 
wave interactions in nuclear physics (Birse, 1990), solid 
state physics (Ovid’ko, 1987) and fiber optics (Mitschke 
et  al., 2017).

In nature, most of the systems have nonlinear 
interactions, and this nonlinearity drives the system into 
a “chaotic” state, a phenomenon that is quite difficult to 
study. In physics, such systems are often referred to as 
dynamical systems. Water waves are especially the most 
common dynamical system in nature. In recent years, 
many researchers have focused on water waves (Qin et 

al., 2018) due to their very rich mathematical structure. 
The use of unique nonlinear differential equations is 
inevitable for solving problems involving such systems 
(Marathe & Govindarajan, 2014). Equations such as 
Korteweg-de Vries (KdV) (Pelinovsky & Stepanyants, 
2018), Kadomtsev-Petviashvili (Guo & Tian, 2018), 
Nonlinear  Schrodinger  (Huang  et  al,  2018)  and 
Camassa-Holm (CH) (Crisan & Holm, 2018) are 
commonly used in particular nonlinear differential 
equations for the evaluation of water waves. 

The fully nonlinear and generalized CH equation 
considered in Tian and Yin (2004) is as follows:

,

where  are arbitrary real constants. Taking 
, , , , , , the 

above equation becomes a new shallow water wave 
equation called the CH equation.

The CH equation is a nonlinear dispersive wave 
equation (Crisan & Holm, 2018):

 ,         (1)

which represents the gravitational propagation of 
unidirectional irrotational shallow water waves over a 
flatbed (Constantin & Holm, 2009) and water waves 
moving over an underlying shear flow (Constantin & 
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Ivanov, 2008), and where  is the velocity of the 
fluid,  is the coefficient related to the critical shallow 
water wave speed. Due to its complete integrability and 
solvability via inverse scattering transform (Eckhardt, 
2017) and Lax pair formulation (Chang & Szmigielski, 
2018), the CH equation has attracted a lot of attention 
in recent years (Wang & Li, 2019; Matsuno, 2017; Luo, 
2018). From a physical viewpoint, the integrability 
property makes it possible to accurately solve the initial 
value problem (Zhang & Li, 2003). The ordinary collision 
feature of the solitons on the real plane arises due to the 
integrability of the CH equation (Parker, 2008). One of 
the most important features of the CH equation is that it 
has a bi-Hamiltonian structure (Fokas & Fuchssteiner, 
1980), which leads to solutions of breaking waves. This 
can be described as the transformation of wave energy 
into turbulent kinetic energy at a critical amplitude value 
of the wave (Kazolea & Ricchiuto, 2018). Because group 
velocity is lower at shallow waters, the occurrence of 
breaking waves is quite possible at the coastlines (Xiao et 
al., 2010). Because of these properties, the solution of the 
CH equation can help ocean engineers. Boyd (1997) found 
that if the solitary wave slowly varies with  then 
the extra terms on the right hand side of Eq. (1) will be 
small, and the soliton is given to the lowest order by the 
solutions of following: 

Wazwaz (2005) investigated a modified form of above-
mentioned equation as

In this paper, we consider , so the equation 
reduces to a simplified and modified CH equation (Ali 
et al., 2016). Also considering  and  

yields modified a simplified CH equation (Ali et al., 
2016).

Fractional calculus, which corresponds to arbitrary 
order differentiation and integration, has been a research 
focal point for the past decades. Many scientists believe 
that fractional models are the best way to explain 
the complexity and nonlinearity of nature (Garg & 
Manohar, 2013; Ghany & Hyder, 2014). In this regard, 
many definitions are used for fractional derivatives 
which are named after Caputo, Riemann-Liouville, 
Grünwald-Letnikov (Miller & Ross, 1993; Kilbas et 
al., 2006; Podlubny, 1998). However, it is seen that 
these definitions fall short in relation to satisfying basic 
properties of integer order differentiation and integration 

(Khalil et al., 2014). Some of these derivative definitions 
do not satisfy basic essential rules of pure mathematics 
such as the product, quotient, and chain rules, and the 
derivative of a constant. Recently a well-behaved, 
applicable, understandable, and effective fractional order 
derivative called the conformable fractional derivative 
was proposed by Khalil et al., (2014). This new fractional 
derivative definition overcomes the deficiencies of the 
above-mentioned definitions. By using this new derivative 
definition, exact solutions of many models arising in ocean 
engineering, physics, social sciences can be elegantly 
obtained (Hosseini et. al., 2017a; Hosseini et. al., 2017b; 
Hosseini et. al., 2018c; Hosseini et. al., 2017d; Hosseini 
et. al., 2017e). 

In this study, new wave solutions of a time-fractional 
CH equation are obtained by using a new extended direct 
algebraic method. This method is applied to the time 
fractional CH equation for the first time and, to the best of 
our knowledge, the solutions derived in this paper are new 
and have never appeared in the literature.

2. Basics of conformable fractional calculus

In this section, the basic definitions and properties of 
conformable fractional calculus are expressed.

Definition 1. Let  be a function. Then   
order conformable fractional derivative of f is defined as 
(Khalil et al., 2014): 

 

for all 

Definition 2. Suppose  that    and  .  Also  let  f 
be   a   function   defined   on      and   .   Then   
the fractional integral of f is defined by

when the Riemann improper integral exists (Khalil et 
al., 2014).

Some basic properties of the conformable fractional 
derivative are given below (Khalil et al., 2014; 
Abdeljawad, 2015).

1. , 

2. ,
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3. ,

where . 

3. A brief description of the new extended direct 
algebraic method

Let us give the description of the new extended direct 
algebraic method (Rezazadeh et al., 2017). Consider the 
following nonlinear time fractional partial differential 
equation of the form

                                (2)

Here,  is an unknown function,  is a polynomial of  
and  means the sequential conformable fractional 
derivative of order  of the function . Define the 
wave transformation as:

                                   
(3)

where k and w are arbitrary constants to be determined 
later. Using the chain rule (Abdeljawad, 2015) and 
wave transform (3) in Equation (2) we get the following 
nonlinear ordinary differential equation

                                                       (4)

where prime denotes the integer order derivative of 
function U with respect to ξ . Suppose that Eq. (4) has a 
formal solution of the form

                                           
(5)

where 
 

are constant coefficients to be 
determined later, N is a positive integer which is found by 
balancing procedure in Equation (4) and  satisfies the 
ODE in the form

           (6)

where  and  are constants. The solution set of 
Equation (6) is given as follows:

1) When  and ,

2) When  and , 
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3) When  and , 

4) When  and , 

5) When  and 

6) When  and 

7) When , 

8) When  and 

9) When , 

10) When , 
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11) When  and ,

12) When  and 

Here, x is an independent variable, p and q are arbitrary 
constants greater than zero that are called deformation 
parameters. Substituting Equations (5) and (6) into 
Equation (4) and equating the coefficients of  
to zero, one gets the nonlinear algebraic system in 

 and k and w. Then putting the obtained 
values of constants and solution set of Equation (6) into 
Equation (5) using the wave transform (3), we get the 
exact wave solutions for Equation (2).

Remark 1. The generalized hyperbolic and trigonometric 
functions are defined as

4. Wave solutions of time fractional CH equation 
with considered method

The time fractional simplified modified CH equation 
which is integrable shallow water wave equation (Kurt, 
2019) is given by:

,                            (7)

where  is the velocity of the fluid,  is the coefficient 
related to the critical shallow water wave speed and  is 
a nonzero constant. Applying the chain rule (Abdeljawad, 
2015) with the help of wave transform (3) and integrating 
once we have

                                 
(8)

where prime indicates the derivative of function U with 
respect to ξ . Suppose that Equation (8) has the solution in 
the following form:

Employing the balancing procedure in Equation (8) we 
have , so the solution can be considered

                                                        (9)

Substituting Equations (9) and (6) into Equation (8), 
gathering the coefficients of , and setting them 
equal to zero yields the following system of algebraic 
equations for  and w:

Solving above the equation system with the aid of 
Mathematica, we have:
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                      (10)
    
 

 

The solutions of (7) can be expressed for different cases 
as follows: 

When  and ,

where  and

When  and , 

where  and

When  and , 
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where  and 

When  and , 

where  and

When  and 



Ali Tozar, Ali Kurt, Orkun Tasbozan 30

where  and

When  and 

where  and

When , we get

where 

For the case 

 

where 

When  and ,

where 

When ,  , 

where  and  

5. Graphical Illustrations

In this section graphical representations of some 
remarkable solutions are given. Figures 1 and 3 show 
the traveling wave solutions of  and , 
respectively. Figures 2, 4 and 5 represent the soliton 
solutions of  and , respectively. 
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Fig. 1. The 3D (a) and 2D (b) graphs of the solution 
 for 

 

Fig. 2. The 3D (a) and 2D (b) graphs of the solution 
 for  
  

Fig. 3. The 3D (a) and 2D (b) graphs of the solution 
 for 

 

Fig. 4.  The 3D (a) and 2D (b) graphs of the solution 
 for  
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Fig. 5. The 3D (a) and 2D (b) graphs of the solution 
 for 

6. Conclusions

In this paper, a new direct algebraic method was used 
to obtain new wave solutions of the time fractional 
Camassa-Holm equation with a conformable derivative. 
This method depends on an auxiliary differential equation. 
The obtained solutions include the solutions that found 
by other analytical methods for the changing values of A. 
Also 3D and 2D graphical representations are given for 
different types of wave solutions. All the solutions were 
verified with the aid of Mathematica. The obtained results 
show that the considered method is a reliable, applicable, 
and efficient tool for evaluating waves which arise in 
shallow oceans water. The new wave solutions can be 
utilized in computer simulations of coastal and harbor 
modeling. These results can be useful for further research 
on ocean science and modelling. 
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