Kuwait J. Sci. 41 (3) pp. 81-101, 2014

Generalized pseudo Ricci symmetric manifolds with semi-
symmetric metric connection

SEZGIN ALTAY DEMIRBAG

Department of Mathematics, Faculty of Arts and Sciences, Istanbul Technical
University, Istanbul, Turkey.
E-mail: saltay@itu.edu.tr

ABSTRACT

In this paper, firstly an example of a manifold with almost constant curvature and nearly
quasi constant curvature which is neither quasi Einstein nor nearly quasi Einstein is
given. Later, the existence of a generalized pseudo Ricci symmetric manifold is proven
by a nontrivial concrete example by using Exp-function Method and Differential
Transform Method.
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INTRODUCTION

Semi-symmetric metric connection plays an important role in the study of
Riemannian manifolds. There are various physical problems involving the semi-
symmetric metric connection. For example, if a man is moving on the surface of
the earth always facing one defined point, i.e. the north pole, then this
displacement is semi-symmetric and metric (Schouten, 1954). Mathematicians
invented the ‘“Moscow displacement” during a mathematical congress in
Moscow in 1934. The streets of Moscow are approximately straight lines
through the Kremlin and concentric circles around it. If a person walks in the
streets always facing the Kremlin, then this displacement is semi-symmetric and
metric (Schouten, 1954; Shaikh et al., 2010).

Freidmann & Schouten (1924) introduced the notion of a semi-symmetric
linear connection on a differentiable manifold. Then, Hayden introduced the
idea of metric connection with torsion on a Riemannian manifold (Hayden,
1932). Yano (1970) considered a semi-symmetric metric connection on a
Riemannian manifold. Imai (1972) found some properties of a Riemannien
manifold with a semi-symmetric metric-connection. Nakao (1976) studied
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submanifolds of a Riemannian manifold with a semi-symmetric metric
connection. Binh (1990) considered a semi-symmetric connection and
investigated some of its properties. Manifolds with a semi-symmetric metric
connection satisfying some special conditions were studied by some authors
(Altay & Ozen, 2007: De, 1990; Shaikh es al., 2008; Shaikh & Hui, 2010). The
concept of a semi-symmetric metric connection has been applied to Kenmotsu
manifold (Pathak & De, 2002), almost contact manifold (De & Sengupta, 2000)
and Sasakian manifold (Pujar & De, 2000).

This paper is organized as follows: In the introduction section, the necessary
notions and results which will be used in the next sections are given. In the next
section, some theorems are proven related to G(PRS), manifold admitting semi-
symmetric metric connection. Later, in the following two sections, solution
methods of a special differential equation are introduced. Finally, solution of a
special differential equation belonging to G(PRS), manifold is obtained in the
last section.

By a triple (M, g, T), we mean (M, g) is a Riemannian manifold with a torsion
tensor 7. More generally, on a differentiable manifold equipped with an affine
connection (that is a connection in the tangent bundle 7'M), torsion and
curvature form the two fundamental invariants of the connection.

Let (M,,g) be an n-dimensional differentiable Riemannian manifold of class
C* with the metric tensor g and V* be a linear connection. A smooth linear
connection V* on (M, g) is said to be a semi-symmetric if the torsion tensor 7
of V* satisfies the relation

T(X,Y) =w(V)X —w(X)Y (1)

for any vector fields X and Y on M, and w is a 1-form associated with the
torsion tensor 7" of the connection V* given by g(X, p) = w(X).

If V* further satisfies the condition V*g = 0, then V* is called semi-symmetric
metric connection (Yano, 1970).

The relation between the semi-symmetric metric connection V* and the
Riemannian connection V of (M,, g) is given by Yano (1970)

ViY=VxY+w()X-g(X,Y)p (2)
for any vector field X, Y on M. In particular, if the 1-form w vanishes identically

then a semi-symmetric metric connection reduces to the Riemannian
connection.
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In this section, firstly a brief review will be given for the curvature tensor of
Riemannian manifold with semi-symmetric metric connection. If R*(X, Y)Z and
R(X, Y)Z denote the curvature tensors with respect to the connections V* and
V, respectively, then we have (Yano, 1970)

R'(X,Y)Z=R(X,Y)Z - a(Y,Z)X

+a(X,2)Y — g(Y,Z)LX + g(X, Z)LY e
where « is a tensor field of type (0, 2) defined by
a(X,Y)=g(LX,Y)
= (Vw)(¥) = w(X)w(Y) +w(p)g(X, ¥) @
for any vector fields X and Y. Using (3), we get
SY,Z)=S(Y,Z)— (n—2)a(Y,Z) — 0g(Y,Z) (5)

where S* and S denote respectively the Ricci tensor with respect to V* and V,
0 = g"ay, = tracea.. The tensor a of type (0,2) given in equation (4) is not
symmetric in general and hence it follows from (5) that the Ricci tensor S* is not
symmetric. But if we consider that the 1-form w associated with the torsion
tensor 7'is closed then it can be easily shown that the relation

(Vxw)(Y) = (Vyw)(X) ()

holds for all vector fields X, Y. r* and r denote the scalar curvatures with respect
to the linear connection V* and Levi-Civita connection V, respectively; then,
they are related by the following form:

r=r—2(n-1)%0 (7)

Chaki & Koley (1993) introduced the notion of a generalized pseudo Ricci
symmetric manifold, if its Ricci tensor as of type (0, 2) is not identically zero and
satisfies the condition

ViS(Y,Z) = 24(X)S(Y, Z)
(8)

+B(Y)S(X,Z)+ D(Z)S(X,Y)
for all vector fields X, Y,Z where A, B, D are distinct non-zero 1-forms (not
simultaneously zero). Such a manifold is called a generalized pseudo Ricci
symmetric and n-dimensional manifold of this kind which is denoted by
G(PRS),,. In the study of a G(PRS),,, an important role is played by the 1-form
6 defined by §(X) = B(X) — D(X) for all X such that §(X) # 0.
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Now, we can state the following lemma which will be used in our subsequent
work:

Lemma 1. In a G(PRS), with the defined metric, if 6(x) # 0, then the scalar
curvature r is none-zero and the Ricci tensor is of the form (De & De, 1997)

S Y) = A A, A = 55 )

We will give some definitions and introduce some properties which will be
used in the next section.

Einstein manifolds play an important role in Riemannian geometry as well as
in general theory of relativity. Also Einstein manifolds form a natural subclass
of various classes of semi-Riemannian manifolds by a curvature condition
imposed on their Ricci tensors.

The notion of quasi-constant curvature tensor was introduced by Chen &
Yano (1972) as follows:
+q(g(X, W)A(Y)A(Z) — g(X, Z)A(Y)A(W) (10)
+8(Y, Z)A(X)A(W) — g(Y, W)A(X)A(Z))

where p and g are scalar functions and A4 is non-zero 1-form.

The notion of quasi-Einstein manifold was introduced by Chaki & Maity
(2000). A non-flat Riemannian manifold is called a quasi-Einstein manifold if its
Ricci tensor S(Y, Z) satisfies the following condition

S(Y,Z) = ag(Y, Z) + BUX)U(Y) (11)

where « and 3 (8 # 0) are scalar functions and U is non-zero 1-form such that
g(X, V) = U(X) for all vector fields X; V being a unit vector field. If 3 = 0, then
the manifold reduces to an Einstein manifold.

In De & Gazi (2008), the authors introduced a type of non-flat Riemannian
manifold (M,,g) (n > 2) whose Ricci tensor S of type (0,2) is not identically
zero and satisfies the condition

S(Y,Z) =ag(Y,Z)+bE(X,Y) (12)
where @ and b are non-zero scalar functions and E is non-zero symmetric tensor

type (0,2). A non-flat Riemannian manifold which satisfies equation (12) is
called a nearly quasi-Einstein manifold.
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It is known from De et al. (2008) that the outer product of two covariant
vectors is a covariant tensor of type (0,2), but the converse is not true in general.
Hence, the manifolds which are quasi-Einstein are also nearly quasi-Einstein,
but the converse is not true in general. For this reason, the name nearly quasi-
Einstein was chosen.

A Riemannian manifold is said to be a manifold of nearly quasi-constant
curvature, if the curvature tensor R(X,Y,Z, W) of type (0,4) satisfies the
condition (Gazi & De, 2009)

RX,Y,Z, W) =p(g(Y,Z)g(X, W) — g(X,Z)g(Y, W))
+8(Y,Z2)B(X, W) —g(Y, W)B(X,Z))
where p and ¢ are scalar functions and B is non-zero symmetric tensor of type

(0,2). An n-dimensional Riemannian manifold of nearly quasi-constant
curvature will be denoted by N(QC),.

Chern (1956) studied a type of Riemannian manifold whose curvature tensor
R(X,Y,Z, W) of type (0,4) satisfies the condition
R(X,Y,Z, W)= FX,Z)F(Y,W) — F(Y,Z)F(X, W) (14)

where F is non-zero symmetric tensor of type (0,2). Such an n-dimensional
manifold was called a special manifold with the associated symmetric tensor F
and denoted by ¥(F,). This manifold is important for the following reasons:

A Riemannian manifold (M, g) (n > 3) is called semisymmetric if
RR=0 (15)

holds on M. It is well known that the class of semisymmetric manifolds includes
the set of locally symmetric manifolds (VR =0) as a proper subset. A
fundamental study on Riemannian semisymmetric manifolds was made by
Szabo (1982) and Szabo (1985).

A Riemannian manifold (M,, g) (n > 3) is called Ricci semisymmetric if
RS=0 (16)
holds on M (Mikes, 1980).

The class of Ricci semisymmetric manifolds includes the set of Ricci
symmetric manifolds (VS =0) as a proper subset. Every semisymmetric
manifold is Ricci semisymmetric. The converse statement is not true in general.
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ON A RIEMANNIAN MANIFOLD
HAVING SEMI-SYMMETRIC METRIC CONNECTION

Let M be an n-dimensional Riemannian manifold. For the vector fields X, Y, Z
and Levi-Civita connection V of M, the curvature tensor R and Ricci operator S
of M are defined by

R(X,Y)Z =Vx(VyZ) = Vy(VxZ) = VixyZ (17)
and
S(X,Y) =g(0X.,Y) (18)

respectively. Furthermore, for the vector field W, the Riemann Christoffel
curvature tensor R of M is defined by R(X, Y, Z, W) = g(R(X, Y)Z, W) (Tanno,
1969).

Let II be tangent plane to M at P € M given by X, Y. Then, the sectional
curvature K(II) of II defined by

which is independent of choice of the basis X, Y for 7. A tensor field R of type
(1,2) on M is called algebraic curvature tensor field, if it has symmetric

properties of the curvature tensor field of Riemannian manifolds. The curvature
tensor R satisfies the second Bianchi identity if

(VxR)(Y,Z, W)+ (VyR)(X,Z, W)+ (VLR)(X,Y, W) =0 (20)

The Weyl conformal curvature tensor C of a Riemannian manifold is defined by

C(X,Y,Z,W)=R(X,Y,Z,W) — (;—2) (g(X, W)S(Y, Z2))
—g(X,Z)S(Y,W)+g(Y,Z)S(X, W) (21)
~g(Y, W)S(X. 2)) + s (X, W)e(Y, 2)

—g(X,Z)g(Y, W)

where R(X,Y,Z, W) =g(R(X,Y)Z, W) and r denote the scalar curvature of
Riemannian manifold. If C = 0, then the manifold of dimension > 3 is called
conformally flat.

Let R*(IT) be curvature tensor of (0,4) type by R*(X, Y, Z, W) = g(R*(X, Y, Z, W).
Let II be tangent plane to Riemannian manifold with semi-symmetric metric
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connection M, at P € M, given by X, Y. Then, sectional curvature K*(II) of II
defined by

K*(Xa Y)(g(XaX)g(Ya Y) _gz(Xa Y)) :g(R*(X, Y)Y>X) (22>

which is independent of the choice of the basis X, Y form. The case of a 2-
dimensional Riemannian manifold having semi-symmetric metric connection
need not to be considered, since it has only one plane at each point. Equation
(22) can be rewritten as follows:

R(X,Y)Z = K(m)(g(Y, Z)X — g(X,2)Y) (23)

From the first Bianchi identity, we have

R'(X,Y)Z+ R (Y,Z) X+ R (Z,X)Y =0 (24)

From equation (24), it is clear that the first Bianchi identity with respect to
linear connection is satisfied.

A necessary and sufficient condition that 1-form w of the semi-symmetric
metric connection to be closed is that the first Bianchi identity with respect to
linear connection V* is satisfied (De & De, 1995).

In Yano (1970), it has been shown that "If a Riemannian manifold admitting
a semi-symmetric metric connection is constant sectional curvature and 1-form
w is closed, then the Riemannian manifold is conformally flat".

If a Riemannian manifold admits a semi-symmetric metric connection with
constant sectional curvature, then 1-form w is closed. Thus we have

Copprp =0 (25)
According to Yano (1970), in order that a Riemannian manifold admits a

semi-symmetric metric connection whose curvature tensor vanishes, it is
necessary and sufficient that the Riemannian metric be conformally flat.

Since this manifold is conformally flat, we then have
Rj;ﬂ)\u =0 (26)

Remembering that a Riemannian manifold admitting a semi-symmetric metric
connection with constant sectional curvature is conformally flat, then we get

1
R = Py (gikRin — gixRin + ginRjx — ginRik)

—

(27)

p
a m (gjkgih - gjhgik)
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Thus from (9) and (27), we have

Rijiy = b(—gjiAiAx + g AiA; — g AjA; + guA;jAx) 28)
+a(gugix — giigik)

where

R CESNCERE b:(n—2)

(29)

Smaranda (1989) calls a Riemannian manifold, whose curvature tensor
satisfies equation (28), a space of almost constant curvature.

The notion of “‘almost constant curvature” is the same notion as ‘“‘quasi
constant curvature” introduced by Chen & Yano (1972). Later, Mocanu (1987)
pointed out that both the notions are the same. In addition, Vranceanu (1968)
defined the notion of almost constant curvature by the same equation (28).

We state the first theorem of this section:

Theorem 1. If a G(PRS), admits a semi-symmetric metric connection with
constant sectional curvature, then it is a manifold with quasi-constant
curvature.

From equations (5), (7) and (26), we get

r

Ry =——
T2 —1)

o+ (n = 2)ayp (30)

Applying equation (9) in equation (30) we obtain

o — r ( —88u
= =2)2(n—1)

+ AﬁAu) <3l>

From equation (28), it is clear that the manifold under consideration is also
nearly quasi-constant curvature; but, from Lemma 1., this manifold is neither
quasi-Einstein manifold nor nearly quasi-Einstein manifold.

Thus we have the following theorem:

Theorem 2. A G(PRS), of definite metric admitting semi-symmetric metric
connection with constant sectional curvature can be neither nearly quasi-
Einstein manifold nor quasi-Einstein manifold.

Now, we need the following theorem:

Theorem A. (De & De, 1997): Let (M,g) be conformally flat G(PRS),
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(n > 3), then (M, g) is a subprojective manifold in the sense of Kagan and it can
be expressed as a warped product 1 x e/ M* where M* is an Einstien manifold
and (M, g) has a proper concircular vector field.

Theorem A leads to the following theorem:

Theorem 3. If a G(PRS),, with definite metric manifold (n > 3) admits a semi-
symmetric metric connection with constant sectional curvature, then

(1) this manifold is a subprojective manifold in the sense of Kagan.

(i1) this manifold can be expressed as a warped product 1 x ¢ M* where M* is
an Einstein manifold.

(ii1) this manifold has a proper concircular vector field.
Let us introduce Lemma 2 which will be used in the next theorem:

Lemma 2. It is well known that every simply connected conformally flat
G(PRS), (n > 3) can be isometrically immersed in a Euclidean space E'"! as a
hypersurface, (De & De, 1997).

This gives the assertion of the following theorem:

Theorem 4. Every simply connected G(PRS), with definite metric manifold
(n>3,r>0), a semi-symmetric connection with constant sectional curvature
can be isometrically immersed in a Euclidean space E"*! as a hypersurface.

On the other hand, by equation (28), we have the following relations:
Rijkn = FyFy — FycFy, (32)
where Fj = \/a(g; — (n—1)A4;4;) and a=r/(n—2)(n—1),r > 0. Now, from
the equation (14), we can state easily the following:

Theorem 5. If a G(PRS),, with definite metric ( > 0) admits a semi-symmetric
metric connection whose sectional curvature K*(m) is given by equation (23),
then the manifold is special manifold with associated symmetric tensor F.

Considering a nearly quasi-umbilical hypersurface of a manifold of special
curvature ¥(F), Gazi & De (2009) obtained the following theorem:

Theorem B. (Gazi & De, 2009). A nearly quasi-umbilical hypersurface of a
manifold of special curvature (F), is a manifold nearly quasi-constant
curvature.

So, by virtue of Theorem 5 and Theorem B, we obtain the following theorem:

Theorem 6. A nearly quasi-umbilical hypersurface of a G(PRS), of definite
metric with (r > 0) admitting a semi-symmetric metric connection whose
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constant sectional curvature K*(w) is manifold of nearly quasi-constant
curvature.

Now by virtue of equations (9) and (27) yields,

-
AhRg'k “noD (gAi — gixA)) (33)

We suppose that a G(PRS), admitting a semi-symmetric metric connection
whose sectional curvature K*(7) is given by equation (23) is semisymmetric.
From equation (16), we get

ViuViRj = V,V,,Rjj =0 (34)
By using equations (9) and (34), we find that

r [A_,(Vm V[Al' — V1Vn1Ai)

(35)
+A4:{(VuVi14; — ViV, 4j)] =0
In G(PRS),,, since the scalar curvature is not zero, by using (35) we get
AV Vi1A; = VN Al) + Ai(V V1A — VIV Aj) = 0 (36)

Transvecting equation (36) with 4/ and using Ricci identity property and
equation (33), we get

r(giAr — gwA;) =0 (37)

In G(PRS),, because of both the scalar curvature r and A, are not zero, this
relation does not occur.

Conversly, we suppose that a G(PRS), (definite metric) admitting a semi-
symmetric metric connection whose sectional curvature K*(7) is given by
equation (23) is satisfied in the following condition

ViuVidi — VN, Ai =0 (38)
From equations (33) and (38), we get
r(gidr — gicd;) =0 (39)

From equation (39), since Ay # 0, we have r =0. However, this is not
possible in G(PRS),,. This leads to the following theorem:
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Theorem 7. A G(PRS), with definite metric admitting a semi-symmetric
metric connection with constant sectional curvature is not semisymmetric.
We obtain Corollary 1 and 2 as follows:

Corollary 1. A G(PRS), with definite metric admitting a semi-symmetric
metric connection with constant sectional curvature is not Ricci semisymmetric.

Corollary 2. In G(PRS), with definite metric admitting a semi-symmetric
metric connection with constant sectional curvature, V,,V,T; — V,V,,,Ti # 0.

Considering parallel vector field 4 in G(PRS), results in:

Case 1. We consider a G(PRS), of definite metric with parallel vector field 4
admitting a semi-symmetric metric connection whose sectional curvature K*(7)

is given by equation (23). From equation (33), we get the scalar curvature is zero
or A = 0.

Thus, the vector field 4 is not parallel.
Considering concurrent vector field 4 in G(PRS),, leads to result:

Case 2. Similarly, we now assume that G(PRS), of definite metric with
concurrent vector field 4 admitting a semi-symmetric metric connection whose
sectional curvature K*(w) is given by equation (23). After some manipulation,
from equation (33) we get r(g;jdr — giA;) = 0. For similar reasons, A vector
field can not be concurrent.

Considering recurrent vector field 4 in G(PRS),, results in:

Case 3. We assume that a G(PRS), of definite metric with recurrent vector
field 4 admits a semi-symmetric metric connection whose sectional curvature
K*(m) is given by equation (23). Since the vector field is recurrent (i.e.
V;A; = ¢;A;) we have

vlvak - vmv/Ak - (vl¢/n - vn1¢1)A/c (40)
Using equation (40) and Ricci identity, we get
vl§b111 - Vm¢1 =0 (4])

By using equation equation (40), we have V,V,, 4 — V,,V,4; = 0.
Considering parallel, concurrent and recurrent vector field 4 in G(PRS), with
definite metric and by using Corollary 2, we obtain the following theorem:

Theorem 8. A G(PRS), with definite metric admitting a semi-symmetric
metric connection with constant sectional curvature does not exist if 1-form A4
satisfies one of the following conditions:
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(1) 4 is parallel vector field

(ii) 4 is concurrent

(iii) 4 is recurrent

THE EXP-FUNCTION METHOD

We consider a general nonlinear ODE in the form
Ou, o, u" u",..) =0 (42)

where the prime denotes the derivation with respect to x. According to Exp-
function method, we assume that the solution can be expressed in the form

d}zgca,lexp(nx)
u(x) = q >, buexp(mx) (43)

m=—p

where ¢, d,p and ¢ are positive integer which could be freely chosen, a, and b,,
are unknown constants to be determined. To determine the values of ¢ and p, we
balance the linear term of highest order in equation (42) with the highest order
nonlinear term. Similarly, to determine the values of d and ¢, we balance the
linear term of lowest order in equation (42) with the lowest order nonlinear
term.

This method was used to solve the travelling wave equations (in various
scientific and engineering fields) to deal with nonlinear physical situations. The
solution procedure of this method, by the help of Maple of Mathematica, is of
utter simplicity and this method can be easily extended to all kinds of nonlinear
evolution equations (Zhang, 2007).

ANALYSIS OF THE DIFFERENTIAL TRANSFORM METHOD

The differential transform method is an analytical method for solving
differential equations. The concept of the differential transform was first
introduced by Zhou (1986). Its main application is to solve both linear and
nonlinear initial value problems in electric circuit analysis. This method
constructs an analytical solution in the form of a polynomial. It is different from
the traditional higher order Taylor series method. The Taylor series method is
computationally expensive for large orders. This transform method is useful for
obtaining exact and approximate solutions of linear and nonlinear differential
equations. The method is well addressed in (Liu & Sang 2007; Jang et al., 2001).
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Now, we will discuss a brief outline of the differential transformation method
(DTM). The basic theory of the method depends on the following definitions.

If y(x) is analytic in the X domain, then it can be defined as

dy(x)
dxk

0(x, k) = Vx e X (44)

where k belongs to the set of nonnegative integers denoted by the K domain and
:k—k means the k-th derivative with respect to x. Then, we can give the following
X

definition.

The inverse differential transformation of a sequence { Y(k)}|;, is defined as

ooz Y(k)(x — xo)* (45)

Tablel: Operations of the DTM Method

Function Transformation
y(x) = u(x) Fv(x) Y(k) = Ulk) ¥ V(k)
y(x) = au(x) Y(k) =aU(k ) where a is a constant

(x) (k)
(x) (k)
(x) = u(x)v(x) Y(k) = Ulk) ® V(k) = Y3 U(r) V(k — r)
(x) (k)
(x) (k)

Y =ty YR =5 ozm b uls)(mpw(k — s —m)
y(x) = plo) T V() = PR @ E P b S YUl s 1)
EXAMPLE OF G(PRS),

This section deals with an example of G(RPS),,.

Let each Latin index run over 1,2,3,...,n and each Greek index over 2,3,...,n-1.
We define the metric g in R” (n > 4) by the formula (Roter 1974),

ds® = d(dx")? + kogdx®dx® + 2dx" dx" 46
°)

where [k,g] is a symmetric and non-singular matrix consisting of constant
entries and ¢ is a function independent of x".

In the metric considered, the only non-vanishing components of the
Christoffel symbols and the curvature tensor Ry are given by

. o 1 w1
Ffl = _Ek ﬂd).om I—‘rlll = Eqb-l? 1—‘1105 = E(b»a (47)
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and

1

1
Riap = §¢.uﬂ7 Riop = Ekaﬂ¢.(y[i (48)

where (.) denotes the partial differentiation and [k®?] is the inverse matrix of
[kqp). Here, we assume k,3 = 6,3 and f is a continuously differentiable non
constant function of x' and f’(x!) # f(x') where the prime denotes the
differentiation with respect to x!.

6 = (x') = /() basx™", S () £ 1) (49)

In this case, ¢ reduces to

¢=n—1y (fx") —f'(x"))(x")’ (50)

a=2

Then, it follows from (48) that the only non-zero components of R; is Ry,
where

Rip = (n=2)(flx") = /"(x") (51)

Therefore, our space with the considered metric is neither Ricci symmetric
nor Ricci recurrent. Now, we shall show that this space is G(RPS),. Let us
consider the 1 forms

A i=1
A= 52
{O otherwise} (52)
B i=1
B = 53
{0 otherwise} (53)
D, i=1
D; = 54
{O otherwise} (54)
where
3 2
2y + B+ Dy =L (55)

77
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On the other hand, equation (8) reduces to the following equation in our
space

SN =)+ L) =0 (56)

By the same procedure as illustrated in Section 3, we can determine values of
¢ and p by balancing for the linear term of highest order / and the highest order
nonlinear term 73 in equation (43). We have

, crexp((3p + o)x') + ..
 cexp(dpx!) + ...

(57)

and

~aexp((p+3e)xt) + ..
f= caexp(4pxt) + ... (58)

where ¢; are determined coefficients only for simplicity. Balancing highest order
of Exp-function in equations (57) and (58), we have

p+3c=3p+c (59)
which leads to the result
p=c (60)

Similarly, to determine values of d and ¢, we balance the linear term of lowest
order in equation (56)

i+ diexp(—(3q + d)x")
/= v+ drexp(—4gx) (61)

and

4 dzexp(—(3d + q)x!)
f= .. + dyexp(—4qx") (62)

where d; are determined coefficients only for simplicity. By a similar calculation
as illustrated in Section 3, we obtain

g=d (63)
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For simplicity, we choose p = ¢ = 1 and ¢ = d = 1, equation (43) becomes

) = arexp(x') +ap + a_jexp(—x')
' ~exp(x!) 4+ by + b_exp(—x!)

(64)

Substituting equation (64) into equation (56) and equating to zero, the
coefficients of all powers of exp(nx) yields a set of algebraic equations for ay, by,
ay, a_y and b_y. Solving the system of algebraic equations with the aid of Maple,
we obtain

a=2V2, a=0, a,=0 by=0, b =1 (65)
Then, equation (64) becomes

V2

chx!

S (66)

In Bekir & Boz (2008), similar solution method was used to find the exact
solution of the Klein-Gordon equation. Equation (64) satisfies equation (66).
Thus, it reduces to ¢ =n — lzﬂ

az2c‘/13xl

(x*)? and in this case, the metric is
determined. By using DTM, we get a series solution of equation (56). Assuming

the solution of Eq. (55) satisfies following the initial conditions

f0) =2, /(0)=0 (67)
From equations (56) and (65) and Table.1, we have

(k 4+ 1)(k +2)Y(k +2)

— Y(K) kX ko S Y(k) Y(ka — ki) Y(k — k) (68)
k=0 k=0

where Y(k) is the differential transform of f(x!) and the transform of the initial
conditions are Y(0) =+/2 and Y(1) =0. By using equation (68) and the
transformed initial condition, the following solution is evaluated by using
Mathematica up to (x!)"

fixy =vE - Ly 4 22

2 24

6112
720

(x)* ()"

2772, 1\8  50521v2 . 410 112
8064 (') 3628800 (¥)7+0((x)7)
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We can also write the solution in the form

Sy = V21— () + 2 ()t = 2 () 2 ()

2 24 720

50521
3628800

()" +o((x")")

The series equation (70) is the Maclaurin series of f(x') = v/2sech(x"). Thus,
we can easily see that this solution is the same as that in equation (66).

Let us introduce a new approximation for the solution of equation (56).
Multiplying both sides of equation (56) by /', then integrating, yields

f=ylP-3f+a Q)

where ¢ is the integration constant.

Consider the case ¢; = 0. Thus, we have

(x1+cz)=/}%f(f)2
' V2

where ¢, is the integration constant. If this integral is calculated, we finally
obtain

(72)

—(x' 4+ ¢y) = sech™ (L) (73)

V2
From (72), we have

f=V2sech(—(x" + ¢2)) (74)
If we take ¢, as zero and remembering that sech(—x') is an even function, we find
f=V2sech(x") (75)

It is clear that this solution is the same as the solution that we have found
before. Hence, an example of the existence of a generalized pseudo Ricci
symmetric manifold is given.

Thus, we can state the following theorem:

Theorem 9. Let (M",g) be a manifold endowed with the metric (46), then
(M",g) is a generalized pseudo Ricci symmetric manifold with vanishing scalar
curvature which is neither Ricci symmetric nor Ricci recurrent.
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