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ABSTRACT

The main purpose of this paper is to construct a Backlund transformation between two
spacelike curves with the same constant curvature in Minkowski space-time by
considering some assumptions. Moreover, we give the relations between curvatures of
these two spacelike Biacklund curves.
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INTRODUCTION

In 1883, Bécklund proved that for pseudospherical congruences, which satisfy
two additional conditions- namely the distance p between corresponding points,
is constant and the normal of the focal surfaces at these points form a constant

— sin? .
Y (Eisenhart, 1909; Tenenblat &

P
Terng, 1980; Rogers & Schief, 2002). This allows an iterative construction of

angle 6- have the same constant curvature

pseudospherical surfaces with the same constant curvature. Therefore, Biacklund
transformations have different physical applications (Rogers & Shadwick, 1982;
Deng, 2005; Zuo, et al., 2002; Nemeth, 2000). Moreover, Béacklund
transformation was discussed in Minkowski 3 space by Abdel-baky (2005) and
—sinh26 sin?0 sinh? 0
the curvatures are found as — and >

spacelike congruence, timelike surfaces with spacelike congruence and timelike

for spacelike surfaces with

surfaces with timelike congruence, respectively (Abdel-baky, 2005). Also, the
Bicklund transformation for construction of timelike surfaces with positive
Gaussian curvature and imaginary principal curvatures was established in Gu et
al. (2002). Furthermore, Backlund transformation on surfaces with Gaussian

curvature K = —1 in Minkowski 3-space was given by Tian (1997).

Bécklund transformation maps asymptotic curves to asymptotic curves and
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asymptotic curves have constant torsion. So, Biacklund transformation for
pseudospherical surfaces, which is equivalent to that of sine-Gordon equation,
can be restricted to give a transformation on space curves that preserves
constant torsion. The curve with constant torsion, which is associated with sine-
Gordon equation, constructs a pseudospherical surface, as it moves and at each
instant, forms an asymptotic line on the surface (Rogers & Schief, 2002; Schief
& Rogers, 1999). The binormal motion of curves with constant torsion is shown
to lead to integrable extensions of the classical sine-Gordon equations. Motion
of curves and its applications were given by several authors (e.g.Rogers &
Schief, 2002; Schief & Rogers, 1999).

The curve with constant torsion, which is constructed by a given curve, was
investigated by Calini & Ivey (1996). Nemeth (1998) proved that if there is a
correspondence between points of two unit speed curves 7,7 having the
property, where line joining the corresponding points ~(s) and 4(s) is the
intersection of the osculating planes of these curves, then the angle between
~(s) — v(s) and tangent vectors of the curves 7(s) and ~(s) are the same. Under
same assumptions, Nemeth proved that these two curves «y(s)and 7(s) have the

sin 0

same constant torsion k,_; =k, =

in n dimensional Euclidean space.
P
Here

kn—1:<E:17En—l> and Kn—l = <E;7En—l>~

In three dimensional Euclidean space, Bicklund transformation was given as
follows:

~ 2C

'y:v—l—cq—_’_Tz(cosﬁT—ﬁ—sinﬁB)

where (3 is the angle between ~(s) — ~(s) and tangent vectors of the curves 7(s)

and ~(s), (Z—ﬂ = Csinfg — k and k, 7, T, N, B are the Frenet apparatus (Nemeth,

1998). In four dimensional Euclidean space, Bicklund transformation of two
dimensional surface was given by Aminov & Sym (2000). Furthermore,
Bicklund transformation in Minkowski 3-space was discussed in (Ozdemir &

Coken, 2009).

In this paper, we construct a Biacklund transformation between two spacelike
curves with the same constant curvature in Minkowski space-time by
considering some assumptions. Moreover, we give the relations between
curvatures of these two spacelike curves in five different cases.
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PRELIMINARIES
Minkowski space-time is four dimensional Euclidean space which is provided
with Lorentzian inner product

— —
<u, v >L: —U1V] + UpVy + U3V3 + UaVy

for vectors @ = (uy, uz,uz,us), v = (vi,v2,v3,v4) and denoted by E‘l1 We say
that a vector u € E{ is called spacelike, lightlike (null) or timelike if
(w,u),>0, (w,u),=0 or (W, u) <0, respectively. Norm of a vector

U € Etis defined by
]l = 1Gaa), |

An arbitrary curve v = y(s) : I — E} is called spacelike, timelike or lightlike,
if its velocity vectors are spacelike, timelike or lightlike, respectively. If
[I7/(s)|]| = 1, then ~ is called a unit speed curve (O’Neill, 1983).

Let v be a unit speed non-lightlike curve and {E;, E;, E;, E4} be the Frenet
vector fields of ~ then the Frenet formulas are given as follows:

_E/l i [ 0 €2k1 0 0 i -El i
E,2 —811{1 0 63k2 0 Ez
= (1)
Eé 0 —Ezkz 0 E4k3 E3
_Eil_ L 0 0 —E3k3 0 | _E4_

where ¢; = (E;, E;); and k,_; = (E,,E,_),. Here, we call k3 as torsion of the
curve.

BACKLUND TRANSFORMATION FOR SPACELIKE CURVES

First, let us suppose that ¢ is a transformation between two spacelike curves
v and 7 in Minkowski space-time such that 7 = ¢(+(s)). Here s is the arc length
parameter of the curve . Now, let us assume that following properties for
corresponding points of these two spacelike curves are satisfied:

. T~ .
I Hq/(s)y(s) H = p such that p is constant.

ii.  The Frenet frame i}ﬁl,ﬁz, Ey,E4 ¢ of 4 can be obtained from the Frenet
frame {E;, E;, E;, E4} of v by a rotation with constant angle # around a
plane which contains Ey4.
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iii. F, is not perpendicular to tangent vectors of the curves and is contained in
the intersection of osculating hyperplanes such that F'; is unit vector of the

vector y(s)7(s).

iv. (E,F;),= —<E3,F/,>L where E; is tangent vector of the curve v, F, is
perpendicular to the intersection space of the osculating hyperplanes, but is
not a Frenet vector.

Since the distance between corresponding points of the curves + and 7 is
constant p, then we can define the transformation ¢ as ¢(y) =5 =+ pF,. If
the above properties i, ii, iii and iv are satisfied, then the curves v and ~ are
called Bécklund curves.

Let v and v be two spacelike Backlund curves in Mmkowskl space-time, then
according to property ii, we can write E = ATQAE where E = El,Ez, E3, E4}
and E” = {E,,E,,E;,E4} positively oriented Frenet frames of 7 and 7,
respectively. Here 2, 4 = [a,-j]4x4€ SO(1,3) with the property ay = as; = €46i4. We
examine the matrix € with respect to kind of rotation and casual characters of the
Frenet vectors E;, E;, E4. We know that E; is spacelike for spacelike curves. Thus,
there are five different cases for spacelike Biacklund curves.

Case 1 . E; is timelike and the rotation is around a spacelike plane which
contains E4

In this case, the rotation matrix with respect to index (+, —, +, +) is of the form:

So, according to the transformation E=
Frenet vectors of v and 7 can be given as follows:

1 0 0 0

0 -1 0 0
Q=

0 0 —cosf siné

[0 0 sin  cosd |

ATQ, AE, the relations between the

_El E, - (a%lEl + azjanE, + a31a33E3) (1 4 cosf) + Egaz; sin 6
E, B —E; — (a31aE; + a3,Es + anazsEs) (1 + cos ) + Eqaz sin 6 o)
E3 E; - (a31a33E1 + apaE, + a§3E3) (1 4 cosf) + Egazs sinf

| Ey|  Lsin0(Ea3 + Eyas, + Esass) + cos 0B,

Moreover, the frame {F;,F,, F3, E4} can be obtained by F=AE or F = Q,
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where FT = {F1,F»,F3,E4}. So, the vectors {F,F,} form a frame for the
intersection space of the osculating hyperplanes of the curves. We know that the
Frenet formulas for a unit speed spacelike curve with timelike E, can be stated
as follows:

Bl [0 -k 0 07[E]
E, ki 0 ko 0 ||E,
= (3)
E, 0 k 0 k||E;
E,] |0 0 -k 0]|Es

Using these formulas, we can show that ¥ = v + pF is a unit speed curve for
the unit speed curve 5. Here, F; is unit vector of ~(s)y(s). Since
F, = Eja; + Exapp + Ejzaps, we can write v = v + p(Eja11+Eqa19+E3a13). So
<F],E]> = (F|,E;); = a;;. On the other hand, differentiating the equation
(¥ — 7,7 — ), = p* with respect to arc length parameter of y, we get

<pF1,’~yI—E1>L =0- <F175/>L 4= <F1’E1>L'

Considering 7 = H HEI, we obtain 7 = E,. It means that, 4 is also a unit
speed curve, v and 4 have the same arc length parameter. Moreover, E, is also
spacelike and that means 4 is a spacelike curve. Now, let’s see the relations
between the curvatures of v and 7.

Lemma 1. Let v and ¥ = v + pF; be two spacelike Bécklund curves in E}. If
the Frenet vector E, is timelike and 6 is the rotation angle in spacelike plane
between the Frenet frames of curves, then relations between the curvatures of ~y
and v are obtained as follows:

L /
apk; = -2dj +kjazn,
L /
anks = apk; + 243,
k; = —k;,
and
, 0
az1 ' — ank) = —k3azia cot,
0
—kjas; + an' + asks = —ksaxas; cot =,

apks + a3’ =ks (1 — a§3) cotg
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Proof. If we differentiate the Frenet vector E4 of curve 4 in (2) and use the
Frenet formulas of «y in (3), then we get

E, =sinf(dyE +a,Es + d43Es + a3 E| + anE) + assE}) + cosOE
=Sin9[a/31E1 + angz + 0/33E3 + az (—klEz) + 6132(—k1E1 + k2E3) + a33(k2E2 + k3E4)]
+COSQ9(—k3E3).

On the other hand, we have

B, = b
=—k3 [Eg — (a32a33E2 + a§3E3)(1 — COoS 9)]

cos 0+1

. . . . . 0
Equality of above obtained vectors and using the identity = cot > we get

sin

ks = —ks, ,
0/31 — agzkl = —kzas1as3 COtE
0
—kjas + a’32 + aysks = —kzapas; COtE
0
anky +azz’ =k;(1 —a§3)cot£.

Similarly, by differentiating the Frenet vectors E; and E, of the curve 7 in ,
using the Frenet formulas of v and above obtained relations, we get

apk; = —261/31 + kiasy,
apk, = apk; + 261/33.

Theorem 1. Let v and ¥ = v + pF; be two spacelike Bicklund curves in E}. If
the Frenet vector E, is timelike and 6 is the rotation angle in spacelike plane
between the Frenet frames of curves, then the curvatures of « are obtained as
follows:

K — a3, (1 + cos0) + pa,

pam
Ky — — pa’13 + (1 4 cosO)aziass
pa2 ’
ks = — sin 6
P

Proof. If we differentiate ¥ = v 4 pF, and use the Frenet formulas of 7 in (3),
then we obtain
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Y+ pF,
Ei + p[(~Exki)ay + (-Eik; + Esko)ars + (Eoks + Egks)ais + Eqd); + Ead}y + Esals].

Comparing this equality to

El =E; — (aglEl + az1ankE) + a31a33E3)(1 + COS@) + sinfEg4a31,

we get
1 —a(1+cosl) = 1—pkian+ pd,,
—(1+cosO)aziaz, = —pkian + pkoaiz + pd,,
—(1+cos@)apzazs = pkaarn + pds,
sin 96131 = pk3a13.

By considering to iv’th property of Bicklund curves, we see that the
relations(E;,F3), = —(E;3,F;), and a3 = —a;3 are satisfied. Using these
relations and above equalities, we get

a3, (1 + cos®) + pd},

ki, =
pai2
K — pdyy + (1 4 cosB)azias;
pa2 ’
K sin 6
3 = - .

P

Case 2. E, is timelike and the rotation is around a Lorentzian plane which
contains E4

In this case, the rotation matrix with respect to index (4, —, +, +) is of the form:

1 0 0 0
0 cosh® O sinh@
0 =
0 0 1 0
|0 sinhf O cosh@ |

Also, relations between the Frenet vectors of v and 7 are given as follows:
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E, E| + (a3, Ei + a21anEs + a21423E3) (1 + cosh §) + a3 Eqsinh 0
E, —E; + (a21a0E| + a3,E; + a»a3E;) (1 + cosh §) + axEy sinh §
E3 a E; + (a21a23E1 + ananE, + a§3E3) (1 + cosh ) + a3 Eq sinh 6
}~34 sinh 0(Ejax1 + Exaxn + Ezazs) 4 cosh 0Ey4

Moreover, the frame {F;,F,,F3;,E4} can be obtained by F = AE where
FT = {F1,F2,F3,E4}. So, the vectors {F, F3} form a frame for the intersection
space of the osculating hyperplanes of the curves. Considering property iv of
Bicklund curves, we have (E;, F»), = —(E3,F|); oray; = —aj3. It can be shown
that v is also a unit speed curve.

Lemma 2. Let v and 7 = v + pF be two spacelike Bécklund curves in Ej. If
the Frenet vector E; is timelike and 6 is the rotation angle in the Lorentzian
plane between the Frenet frames of curves, then the relations between the
curvatures of v and 7 are obtained as follows:

Elazz = —2d5 + axk,
K2 = koaxn +2d);,
ks = —kj,
k3 (ax1a23) cothg = —ank| + d,
k3 (anan) Cothg = —ank; + ank: + dy,,
k; (1 + a§3) cothg = ank, + ds;.

Proof. The proof can be done similarly to the proof of Lemma 1 by

differentiating the Frenet vectors of 74 in (4) and using the Frenet formulas of ~,
~ . ... l+coshf 0
~ and the identity — = coth >

smn

Theorem 2. Let v and 7 = 7 + pF; be two spacelike Bicklund curves in Ej. If
the Frenet vector E; is timelike and 6 is the rotation angle in the Lorentzian
plane between the Frenet frames of curves, then the curvatures of ~ are obtained
as follows:

pd); — aty(1 + cosh6)

kl = )
pai2
K — —pd' 5 + ariaxz(1 + cosh 6)
paiz ’
Kk = sinh 0.

P
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Proof. If we differentiate ¥ = v+ pF; and use the Frenet formulas of the
curve « in (3), then we get

v

Y + pF)
E, + p{(—Egkl)a“ + (—E1k1 + E3k2)6112 + (E2k2 + E4k3)a13 + Ela’“ + Eza/u + E3a’13]

Comparing this equality to

E] =E; + (a%lEl + ar1ankE, + a21a23E3)(1 + cosh 9) + ar1E4 sinh 6,

we obtain
14+ a3, (1+coshf) = 1— pkjap + pd),,
a21a22(1 + cosh 9) = —pkia; + pkaajz + pa’12,
ayay(l+coshf) = pkoa + pajs,
sinh 66121 = pk3a13.

By considering to iv’th property of Bicklund curves, we can see that the
relations(E;,Fy), = —(E3,F),and ay; = —a;3 are satisfied. Using these
relations and above equalities, we get

pd); — aty(1 + cosh 6)

k, = )
paiz
K — —pd5 + arjax(1 —|—cosh<9)7
pai2
K — _ sinhﬁ.

P

Case 3. E4 is timelike and the rotation is around a Lorentzian plane which
contains E4

In this case, the rotation matrix with respect to index (+, +, +, —) is of the form:

1 0 0 0
1 0 0
coshf® sinh@

oS o O
=]

0 sinh6 cosh® |
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So, the relations between the Frenet frames of v and 4 can be given as
follows:

E, E| — (a3,E + a31anE, + a31a33E3) (1 — cosh 6) — a3 E4 sinh 6

E, _ E; — (a3103,E + a3,E + anazEs) (1 — cosh ) — a3 E4 sinh 6 5
E; E; — (a31a33E1 + anapE) + a§3E3)(1 — cosh 0) — a33E4 sinh 0

Eq —sinh 0(E a3, + Eyas, + Esass) + cosh 0E,

In this case, the vectors {F;,F,} form a frame for the intersection space of
the osculating hyperplanes of the curves and we have (E;,F3),= —(E3, Fy),

oraz; = —ay3. Here, we can also show that ¥ = v + pF is a unit speed curve by
using the Frenet formulas
[E| ] [0 ki 0 0 J[E{]
E} _ -k 0 ky 0 E; ©
E} 0 -k 0 —k3||Es
| E} | | 0 0 —ks3 0 ||[E4]

of a unit speed spacelike curve with timelike E4.

Lemma 3. Let v and 7 = v + pF; be two spacelike Bicklund curves in E}. If
the Frenet vector E4 is timelike and € is the rotation angle in the Lorentzian
plane between the Frenet frames of curves, then the relations between the
curvatures of v and 7 are obtained as follows:

Elag,z = —261/31 — axnki,
Kaa3) = —apky, —2d5;,
ks = ks,
apk; — a’31 = —ksazjas tanhg,
ayk, —ayky —ay, = —ksazpas; tanhg,
ank; + dis = ka(a}; + 1) tanh .

Proof. The proof can be done similar to proof of Lemma 1 by differentiating
the Frenet vectors of 7 in (5), using the Frenet formulas of +, 7 and the identity

1+cosh 6 0
= coth >

sinh 0
Theorem 3. Let v and ¥ = v + pF; be two spacelike Bicklund curves in E}. If
the Frenet vector E4 is timelike and 6 is the rotation angle in the Lorentzian
plane between the Frenet frames of curves, then the curvatures of - are obtained
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as follows:

k, =

73

pd); — a3 (—1 + cosh )

)

par

B pd} 5 — aszazi(—1 + cosh )

k3

)

pa2
sinh 6
P

Proof. If we differentiate v = v + pF and use the Frenet formulas of v in (6),

then we get

~1

Y +oF

= E + p[(Egkl)a” + (—E1k1 + E3k2)a12 + (—Ezkz - E4k3)d13 + Ela’“ + Ez(l’lz + E3a/13].

Comparing this equality to

E] = E1 — (a§1E1 + a31a32E2 + a31a33E3)(1 — cosh 9) — a31E4 sinh 9,

we obtain

1 —d3,(1 — coshb)
—azjazn(1 — cosh )
—a31a33(1 — COShH)

— sinh 96131

By iv’th property of Bicklund

1 — pkian + pd),
pkiar — pkoais + pd,,
pkoair + pall?,v

pkais.

curves, we have (E;,F3), = —(E3;,Fy),

andaz; = —a;3. We get
ki = pd); — a3 (—1 + cosh )
1 paiz ’
kK, = — pd}y — azzaz (—1 + cosh 0)
pain ’
Kk sinh 0
3 = .
P

Case 4. E; is timelike and the rotation is around a Lorentzian plane which

contains E4

In this case, the rotation matrix with respect to index (4, +, —, +) is of the form:
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1 0 0 0
0 1 0 0
Oy =
0 O coshf sinh@
|0 0 sinh& cosh@ |

So, the relations between the Frenet frames of v and 7 are given as;

E E| + (a3, E| + a31aE> + a31a33E3) (1 + cosh 6) + a3 E4 sinh 0

By | _ | Bt (a5109B1 +aEs + anasEs) (1 + cosh ) + anBasinh § -
E3 -E; + (a31a33E1 + apapE; + a§3E3) (14 cosh ) + a33E4sinh 6

E, sinh 6(E a3; + Exaz 4 Ezass) + cosh 0E,

In this case, the vectors {F;,F,} form a frame for the intersection space of
the osculating hyperplanes of curves. We have (E;,F;),=—(E3; Fy),
ora;; = —ajs. By the Frenet formulas

E 0 k 0 0][E
E,] |-k 0 -k 0 ||E, @®
E| | 0 -k 0 k||E
E, 0 0 ks O0]|E

of a unit speed spacelike curve with timelike E3, we can show that v = v + pF}
is unit speed curve.

Lemma 4. Let v and 5 = v + pF; be two spacelike Bidcklund curves in E}. If
the Frenet vector Ej is timelike and 6 is the rotation angle in the Lorentzian
plane between the Frenet frames of curves, then the relations between
curvatures of yand 7 are obtained as follows:

k az = 2dy — ank,
koas = ank, —2dy;,
k3 = ks,
4 /
ks (a31a33) COthE = —apk; + asy,
0
ks (asaz;3) COthE = ayk) —apks + d,,

ks (—1 + a§3) COthg = —azpks + a§3.
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Proof. The proof can be done similarly to proof of Lemma 1 by

differentiating the Frenet vectors of 4 in (7) and using the Frenet formulas of ~,

~ . .. I4coshd 0
~ and the identity +.c<:s9 = coth >

simh

Theorem 4. Let v and ¥ = 7 + pF; be two spacelike Bécklund curves in E}. If
the Frenet vector Ej is timelike and 6 is the rotation angle in the Lorentzian
plane between Frenet frames of curves, then the curvatures of v are obtained as
follows:

pd}; — a%, (1 + cosh 6)

k;
pa12
Ky, — pa’B — a33a31(1 + cosh 9)
pai2 ’
K = sinhﬁ'

p

Proof. If we differentiate ¥ = v 4 pF, and use the Frenet formulas of 7 in (8),
then we get

~1

= 7 +oF
E + p[(Ezkl)an + (—E1k1 - Egkz)au + (—E2k2+E4k3)a13 + E]a’“ + Eza’12 + E}(l’lﬂ.

Comparing this equality to

El =E; + (a%lEl + azjanE, + a31a33E3)(1 + cosh 9) + a31E4 sinh 6,

we obtain
1+ a3 (1+coshf) = 1- pkjap + paj,
anan(l+coshd) = pkia; — pkaais + pd),
ayas3(1+coshd) = —pkoay + pd'y
sinh fas, = pksais.

By iv’'th property of Bicklund curves, we have (E;, F3),=—(E;3,F),
andas; = —ay3. We get

pd}; — a1 + cosh 0)

kK, =
pai2
Ky = pdy3 — azzazi(1 + cosh o)
paiz ’
K = sinhﬁ.

p
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Case 5. E; is timelike and the rotation is around a spacelike plane which

contains E4

In this case, the rotation matrix with respect to index (4, +, —, +) is of the form:

1 0 0 0
0 —cosf@ O sinf
Qs =
0 0 -1 0
|0 sind 0 cosf |

So, the relations between the Frenet frames of v and 7 are given as follows:

El E, - (a%lEl + wmanE; + a21a23E3) (1 + cosf) + ay Eqsinf

E, | B2 (@102 + G + ananEs) (14 cosd) + anBysing o)
E; —E; — (az1a3E + anaE; + a3;E3) (1 + cos ) + axEysin

E4 sin(Ejay; + Exaxn + Esays) 4 cos 0E4

In this case, the vectors {F;,F3} form a frame for the intersection space of
the osculating hyperplanes of the curves and we have (E;,F,), = —(E3,Fy),
ora;; = —aj3. Using the Frenet formulas in (8), we can also show that
5 = v+ pF is a unit speed curve.

Lemma 5. Let v and ¥ = v + pF; be spacelike Bicklund curves in E7. If the
Frenet vector E; is timelike and 6 is the rotation angle in spacelike plane
between the Frenet frames of curves, then the relations between curvatures of
and 7 are obtained as follows:

kan = 2dy —ank,
krayn, = ank; —2d,;,

k; = ki,
and

0
k3(a21a23) COtE = apk; + agl,

4 /
k3 (arna) cot- = —aiky + anks — a,,

0
k3(1 + a%) cot; = ank; — dy.
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Proof. The proof can be done similarly to proof of Lemma 1 by

differentiating Frenet vectors of 7 in (9) and using the Frenet formulas of ~, ¥
. .. l4cosf 0
and the identity = cot >

s

Theorem 5. Let v and 7 = 7 + pF; be two spacelike Bicklund curves in Ej. If
the Frenet vector E; is timelike and 6 is the rotation angle in spacelike plane
between the Frenet frames of curves, then the curvatures of  are obtained as
follows:

pdy; + a3, (1 + cos )

kl = y
pa12
ky, — pa’B + 0236121(1 —+ cos 9)
pai2 ’
K = sin 6
P

Proof. If we differentiate v = v + pF'| and use the Frenet formulas in (8), then
we get

Y +pF|
Ei + p[(Eok))aiy + (-E k) — Esko)apy + (~Esko+Egks)ajs + Eyd} + Ead), + Esdly]

Comparing this equality to
E] =E; — (a§1E1 + aryanE, + a21a23E3)(1 + cos 9) + ar1E4 sin 0,

we obtain

1—a3(1+cosf) = 1—pkian+ pd,,
—ayan(l+cosf) = pkiay — pkoais + pd),,
—anaxn(l+cosb) = —pkoaiy + pd;,

sin fan, = pkiais.

By considering to iv’th property of Bécklund curves, the relations
(E,Fy), = —(E3,F); and a»; = —ay3 are satisfied. Thus, we get



78 M. Ozdemir, M. Erdogdu, H. Simsek and A. Aziz Ergin

pdy; + a3 (1 + cos )

kl = )
pa12
K — pdy5 + axazi (1 + cos0)
pa2 7
K — B sin 6
P
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