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ABSTRACT

In this paper, we introduce the concept of pointwise statistical convergence of order « of
sequences of fuzzy mappings. Furthermore we give the concept of a-statistically Cauchy
sequence for sequences of fuzzy mappings and prove that it is equivalent to pointwise
statistical convergence of order « of sequences of fuzzy mappings. Also some relations
between S°(F)-statistical convergence and strong wi (F)-summability are given.
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INTRODUCTION

The idea of statistical convergence was given by Zygmund (1979) in the first
edition of his monograph published in Warsaw in 1935. The concept of
statistical convergence was introduced by Steinhaus (1951) and Fast (1951) and
later reintroduced by Schoenberg (1959) independently. Over the years and
under different names statistical convergence has been discussed in the theory of
Fourier analysis, Ergodic theory, Number theory, Measure theory,
Trigonometric series, Turnpike theory and Banach spaces. Later on it was
further investigated from the sequence space point of view and linked with
Summability theory by Connor (1988); Et & Nuray (2001); Et (2003); Et et al.
(2006); Fridy (1985); Gokhan & Giingor (2002); Giingdr et al. (2004); Isik
(2011); Rath & Tripathy (1994); Salat (1980); Tripathy (1997) and many others.

The existing literature on statistical convergence appears to have been
restricted to real or complex sequences, but Altin et al. (2006,2007); Altin et al.
(2007); Altinok et al. (2009); Burgin (2000); Colak et al. (2009); Gokhan et al.
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(2009); Mursaleen & Basarir (2003); Talo & Basar (2009); Tripathy & Sarma
(2011) and Tripathy & Dutta (2006,2007) extended the idea to apply to
sequences of fuzzy numbers.

In the present paper, we introduce the concept of pointwise statistical
convergence of order a of sequences of fuzzy mappings. In section 2 we give a
brief overview about statistical convergence, p—Cesaro summability and fuzzy
numbers. In section 3 we give the concept of pointwise statistical convergence of
order o and the concept a—statistically Cauchy sequence of sequences of fuzzy
mappings and prove that it is equivalent to pointwise statistical convergence of
order « of sequences of fuzzy mappings. We also establish some inclusion
relations between wi(F) and S?(F) and between S®(F) and S(F).

DEFINITIONS AND PRELIMINARIES

The definitions of statistical convergence and strong p—Cesaro convergence of a
sequence of real numbers were introduced in the literature independently of one
another and followed different lines of development since their first appearance.
It turns out, however, that the two definitions can be simply related to one
another in general and are equivalent for bounded sequences. The idea of
statistical convergence depends on the density of subsets of the set N of natural
numbers. The density of a subset £ of N is defined by

1 n
O(E) = lim — E xe(k) provided the limit exists
n
=1

n—00

where x is the characteristic function of E. It is clear that any finite subset of N
has zero natural density and 6(E°) = 1 — §(E).

The a — density of a subset E of N was defined by Colak (2010). Let « be real
number such that 0 < a < 1. The a — density of a subset E of N is defined by

1
0u(E) = liin s {k<n : ke E}|, provided the limit exists,

where [{k <n : k € E}|denotes the number of elements of E not exceeding .

If x = (x¢) is a sequence such that x; satisfies property P(k) for almost all k
except a set of o — density zero, then we say that x; satisfies property P(k) for
"almost all k according to o " and we abbreviate this by " a.a.k(«) ".

It is clear that any finite subset of N has zero a — density and 6, (E°) = 1 — 6,(E)
does not hold for 0 < a < 1 in general, the equality holds only if « = 1. Note that the
a — density of any set reduces to the natural density of the set in case a = 1.
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The order of statistical convergence of a sequence of numbers was given by
Gadjiev & Orhan (2002) and after then statistical convergence of order o and
strong p—Cesaro summability of order « studied by Colak (2010).

Fuzzy sets are considered with respect to a nonempty base set X of elements
of interest. The essential idea is that each element x € X is assigned a
membership grade u(x) taking values in [0, 1], with u(x) = 0 corresponding to
nonmembership, 0 < u(x) <1 to partial membership, and u(x) =1 to full
membership. According to Zadeh (1965) a fuzzy subset of X is a nonempty
subset {(x, u(x)): x € X} of X x [0, 1] for some functionu : X — [0, 1]. The
function u itself is often used for the fuzzy set.

Let C(R") denote the family of all nonempty, compact, convex subsets of R".
If o, B € Rand 4, B € C(R"), then

a(A+ B) =ad+ aB, (af)A = a(BA), 14=4

and if o, 8 >0, then (a+ )4 = a4 + BA. The distance between 4 and B is
defined by the Hausdorff metric

00o(A, B) = max{sup inf|ja — b||, sup inf|a — b||},
acA bEB beB a€A

where || . || denotes the usual Euclidean norm in R". It is well known that
(C(R"), 6x) is a complete metric space.

Denote

LR")={u : R"—[0,1]: usatisfies (i) — (iv) below},

where
i)  wuisnormal, that is, there exists an xy € R” such that u(xy) = 1;

if) uis fuzzy convex, that is, for x, y€ R" and 0 < A <1, u(Ax+ (1 —N)y)
> minfu(x), u(y)];

i) wis upper semicontinuous;
iv)  theclosure of {x € R" : u(x) > 0}, denoted by [u)’, is compact.

If u € L(R"), then u is called a fuzzy number and L(R") is said to be a fuzzy
number space.

For 0 < a < 1, the a-level set [u] is defined by

u*={xeR" : ulx)>a}

Then from (i) — (iv), it follows that the a-level sets [u]* € C(R").
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Some arithmetic operations for a—level sets are defined as follows:

Let u, v€ L(R) and the a—level sets be [u]"= [uf, us] , [V]"= [y}, 5] ,
a € [0, 1]. Then we have

[+ ]"= [uf 07, 15 +5]

=)= =g, w5 =i
[kuft, kug], if k>0

[kug, ku$],  otherwise.

Define, for each 1 < ¢ < oo,

1/q

dy(u, v) = / oo (1", 1)) dl

and dy(u, v) = sup 6 ([u]”,[v]"), where O is the Hausdorff metric. Clearly
0<a<l

ds(u, v) = lim d,(u, v) with d, <d if ¢ <s, Diamond & Kloeden (1990);
q—00

Lakshmikantham & Mohapatra (2003). For simplicity in notation, throughout

the paper d will denote the notation d, with 1 < g < oo.

A fuzzy mapping X is a mapping from a set 7(C R") to the set of all fuzzy
numbers. A sequence of fuzzy mappings is a function whose domain is the set of
positive integers and whose range is a set of fuzzy mappings. We denote a
sequence of fuzzy mappings by (Xj). If (X;) is a sequence of fuzzy mappings
then (Xx(7)) is a sequence of fuzzy numbers for every ¢ € T. Corresponding to a
number ¢ in the domain of each of terms of the sequences of fuzzy mappings
(X1), there is a sequence of fuzzy numbers (X;(z)). If (Xi(¢)) converges for
each number ¢ in a set 7 and we get lilrchk(t) = X(¢), then we say that (Xj)

converges pointwise to X on 7 Matloka (1987).

MAIN RESULTS

In this section we introduce the notion of pointwise statistical convergence of
order o and the concept of a—statistically Cauchy sequence for sequences of
fuzzy mappings. We give the relations between the statistical convergence of
order « and the statistical convergence of order 3 (« < 3) of sequences of fuzzy
mappings, the relations between strong p—Cesaro summability of order o and
strong p—Cesaro summability of order § (o < () and the relations between
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strong p—Cesaro summability of order « and the statistical convergence of
order 3 (« < f3) sequences of fuzzy mappings.

Before giving the inclusion relations we will give two new definitions.

Definition 3.1 Let 0 < o < | be given. A sequence of fuzzy mappings (Xk) is
said to be pointwise statistically convergent of order a or pointwise « -
statistically convergent to fuzzy number X on a set T 'if, for every € > 0,

1
limn—a|{k <n : d(X(t), X(t)) > eforeveryt € T}| =0,

i.e. forevery te T,
d(Xi (1), X(1)) < e for a.ak (o) . (1)

In this case we write S — lim X (¢) = X(¢) on T. This means that for every
6 > 0, there is an integer N such that

1
n—a|{k <n : d(Xk(1), X(t)) > eforevery t € T} | < 6,

foralln > N(= N(e, 6, t)) and for each ¢ > 0. It is clear that if the inequality (1)
holds for all but finitely many k, then lim X;(¢#) = X(¢) on T. It can be shown
that lim X (7) = X(¢) implies S® —lim Xx(#) = X(¢#) on 7. The set of all
pointwise statistically convergent sequences of fuzzy mappings of order a will be
denoted by S®(F) . For o = 1, we shall write S(F) instead of S%(F) and in the
special case X = 0, we shall write S§(F) instead of S“(F).

Definition 3.2 Let o be any real number such that 0 < « < 1 and let (X;) be a
sequence of fuzzy mappings on a set 7. The sequence (Xj) is a statistically
Cauchy sequence of order «, or « - statistically Cauchy sequence provided that
for every € > 0 there exists a number N(= N(e, x)) such that

d(Xi (1), Xn(1)) < € for a.ak (o) and every t € T
ie

1
lim —[{k <n : d(X(t), Xn(t)) > e foreveryt € T} | =0.

n—oon

Definition 3.3 A fuzzy sequence space E(F) with metric d is said to be normal
(or solid) if (X;) € E(F) and (Y}) is such that d(Yy, 0) < d(Xx, 0) implies
(Y4) € E(F).
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Definition 3.4 A fuzzy sequence space E(F) is said to be monotone if
X = (Xx) € E(F) implies x.X C E(F) where x is the class of all sequences of
zeros and ones. The product considered is the term product.

Remark 1. From the above definitions it follows that if a fuzzy sequence space
E(F) is solid, then it is monotone.

Definition 3.5 A fuzzy sequence space E(F) is said to be symmetric if
(Xx) € E(F) implies (X)) € E(F), where 7 is a permutation of N.

Definition 3.6 A fuzzy sequence space E(F) is said to be convergence free if
(Xx) € E(F) implies (Yy) € E(F), where Y = 0 whenever X, = 0, where

_ (1, fort=(0,0,0,..,0)
0(r) = {0, otherwise

Theorem 3.7 Let 0 < o<1 and (X;) and (Y%) be sequences of fuzzy
mappings.

(i) IfS*—lim X% (¢) = Xo(¢) and ¢ € R, then % — lim c X (¢) = cXy(?),
(i) If S* —lim Xi (1) = Xo(z) and S — lim Yy (7) = Yo(¢), then S*—lim(X(7)
+Yi(1)) = Xo(2) + Yo(2) -
Proof. The proof is clear in case ¢ = 0. Suppose that ¢ # 0 then the proof of
(i) follows from the following inequality

,,—la\{k <n i d(cXi(), cXo(r)) > e}

{k <n o dXe(t), Xo() > = H .

1
<
- no

if) Suppose that S*—lim X;(7) = Xo(¢#) and S® —lim Yy () = Yo(¢) . By
triangular inequality we get

d(Xi (1) + Yi(1), Xo(1) + Yo(2)) < d(Xi(2), Xo(1)) + d(Yi(1), Yo(1)) -

Therefore given € > 0 we have

%| {k<n : dXi(1) + Yi(t), Xo(1) + Yo(1)) > €} |

< nia]{kgn L d(X, (1), Xo(z))zg}\+nia]{kgn - A0, Vo) 25 1|

Hence S®—lim (X (2) + Yx(2)) = Xo(2) + Yo(r).
Theorem 3.8 Let (X}) be a sequence of fuzzy mappings defined on a set 7. The
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following statements are equivalent:
(i) (Xx) is a pointwise a—statistically convergent sequence on 7
(ii) (Xx) is a a—statistically Cauchy sequence on T

(iii) (Xx) is a sequence of fuzzy mappings for which there is a pointwise
convergent sequence of fuzzy mappings (Y) such that X, () = Yi(¢) for
a.a.k(a) and for every r € T.

Proof. (i = ii)gSuppose that S®—limXy () = X(¢) on T and let € > 0. TheEn
d(Xi(1), X(1)) < 3 for a.a.k(«) and if N is chosen so that d(Xn(7), X(7)) < >
then we have

d(Xi (1), Xn(1)) < d(Xi(1), X(1)) + d(Xn(1), X(1)) < % + % for a.a.k(a)

for every t € T. Hence (X(1)) is a a—statistically Cauchy sequence.

(ii = iif) Next, assume that (Xj (7)) be a—statistically Cauchy so that the
closed ball B= B(Xy)(t), 1) contains Xy () for a.a.k(c) for some positive
number N(1) and for every ¢ € T. Also apply hypothesis to choose M so that
B = B(XM(Z), %) contains X (7) for a.a.k(«) and for every ¢ € T. It is clear that
B, = B[\ B’ contains X (t) for a.a.k(«) and for every ¢t € T. Therefore B is a
closed set of diameter less than or equal to 1 that contains X(¢) for a.a.k(«) and
for every t € T. Now we proceed by choosing N(2) so that B” = B(XN(2>(Z), i)
contains Xy (#) for a.a.k(a) and by the preceding argument B, = B;[|B’
contains X () for a.a.k () and for every z € T, and B, has diameter less than or
equal to % Continuing this process, we construct a sequence {B,,},,_, of closed
balls such that for each m, B,, D B,,.1, the diameter of B, is not greater than

2’73—71 and X (¢) € By, for a.a.k(«) and for every ¢ € T. By the nest of closed set
(o.¢]
m=1

fuzzy mapping X () which is X(¢) € (,,_, By, for every ¢ € T. Using the fact that

theorem, we have (_, B,y # ¢ and contains exactly one element. So there is a

Xi(t) € B, for a.a.k(a) and for every ¢ € T, we choose an increasing positive

integer sequence { H,,},_, such that
. 1.
hmn—a|{k <n : Xi(t)¢B, foreveryte T} | < p iftn> Hy,. (2)
n

Now we construct a subsequence (Zx (7)) of (Xx(¢)) consisting of terms of
Xk () such that if H,, < k < H,;41 and Xy (¢)¢B,, for every ¢t € T, then X;(7) is a
term of Z; (1) .
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Next define the sequence (Y (7)) by

X(1), if Xi(¢) is a term of Zi(r)
Yk(l) = {

Xi(t), otherwise,

for every t € T. Then klim Yi(t) = X(¢) on T; for if ¢ > i >0 and k > H,, then
either Xi(7) is a term of (Zx(¢)), which means Yj(7) = X(t) on T or
Yi(t) = Xi(t) € By, on T and d(Yx(t), X(¢)) <diameter of B,, < - for every
t € T. We also assert that Xy (¢) = Yi(¢) for a.a.k(c) and for every teT. To
verify this we observe that if H,, < n < H,,,| then

{k<n : Yi(t)# Xi(t) forevery t € T} C{k <n : Xy(t)¢B,, for every t € T}

so by (2)

1
— Nk <n : Yi(t) # Xi(t) for every t € T}|
n()t

1 1
< —Hk<n : Xi(t)¢B, foreveryt e T} < —
ne m

Hence, the limit is 0, as n — oo and Xi(7) = Yi(¢) for a.a.k(a) and for every
t € T. Therefore (if) implies (iif).

Finally, assume that (iif) holds, say Xi(¢) = Yi(¢) for a.ak(a) and for
everyt € T, and klim Y (#) = X(¢) on T. Let € > 0 then for each n,
{k<n : dX(t), X(t)) > ¢ for every t € T}
C{k<n : Xi(t)# Yi(t) forevery t € TH Uk <n : d(Yi(1), X(2)) > ¢ for every t € T}

Since llim Yi(t) = X(¢) on T, the latter set contains a fixed number of

integers, say L = L(e, t). Therefore

hm—|{k<n o d(Xi (1), X(2)) > eforevery t € T}|

n—oo Nl

1 L
< lim—|[{k<n : Xk(l)7éYk()foreverylET}H—hm—:O

— n—oon® n—oo n%
because Xy (1) = Yi(t) a.ak(a) for every t € T. Hence d(Xi(1), X(7)) < e for
a.a.k(«) and for every ¢ € T, so (i) holds and proof is complete.
As an immediate consequence of Theorem 3.8, we have the following result.

Corollary 3.9 If (X;) is a sequence of fuzzy mappings such that
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S* —lim X (1) = X on T, then (X;) has a subsequence (Xj;(7)) such that
lika(,-)(Z) = X([) on 7.

Theorem 3.10 Let 0 < o < 8 < 1, then S*(F) C S*(F).
Proof. If 0 < o < # < 1, then

nide <n : d(X(t), X(t)) > eforevery t € T}|

< n%| {k<n : dXi(t), X(t)) > ¢ for every t € T} |

for every € > 0 and this gives that S*(F) C S*(F).
The following result is a consequence of the above theorem.

Corollary 3.11 If a sequence of fuzzy mappings (X} ) is statistically convergent
of order «, to X, for some 0 < v < 1, then it is statistically convergent to X.

Definition 3.12 Let « be any real number such that 0 < o <1 and let p be a
positive real number. A sequence of fuzzy mappings (Xk) is said to be strongly
p—Cesaro summable of order « if there is a fuzzy-valued function X such that

In this case we write wj —lim Xi(7) = X(7) on T. The set of all strongly

p—Cesaro summable sequences of fuzzy mappings of order o will be denoted by

wy, (F). In the special case X = 0, we shall write wi, (F) instead of wj (F).

Theorem 3.13 Let 0 < a < (<1 and p be a positive real number, then
wo(F) C wi(F).

Proof. Let the sequence (X}) be strongly p—Cesaro summable of order a.
Then, given « and (8 such that 0 < @ < 8 <1 and a positive real number p we
may write

LS ), X)) < S X (0), X(0)Y
k=1

and this gives that wi(F) C w}‘f (F).
Corollary 3.14 Let 0 < o < 8 < 1 and p be a positive real number. Then
(i) If a = B, then w))(F) = wf(F),
(i) Wi (F) € wy(F) foreach o € (0, 1] and 0 < p < .
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Theorem 3.15 Let 0 < o < l and 0 < p < ¢ < oo. Then w((F) C wi(F).
Proof. Omitted.

Theorem 3.16 Let o and 3 be fixed real numbers such that 0 < a < 4 < 1 and
0 <p<oo. If a sequence of fuzzy mappings (X)) is strongly p—Cesaro
summable of order «, to X, then it is statistically convergent of order (3, to X.

Proof. For any sequence of functions (X) defined on T, we can write
> (dXi(r), X()))'> |{k <n : d(Xk(1), X(1))’> € for every 1 € T} | &/

k=1

and so that

1 n

n(l
=

z n_3| {k<n : dXi(1), X(1))’> e for every t € T} | &’

(d( Xk (1), X(2)))'> ni“| {k<n : d(Xi(1), X(2))’> e forevery r € T}| &’

Corollary 3.17 Let o be a fixed real number such that 0 <« <1 and
0 <p<oo. If a sequence of fuzzy mappings (Xj) is strongly p—Cesaro
summable of order «, to X, then it is statistically convergent of order «, to X.

Theorem 3.18 (i) The spaces S§(F) and wy (F) are solid and such as are
monotone.

(ii) The spaces S“(F) and w} (F) are neither solid nor monotone.

Proof. (i) We shall prove only for Sj(F) and the other can be treated
similarly. Let (Xx) be a sequence of fuzzy mappings in Sj(F). Let
d(Y(1), 0) < d(Xk(1), 0) for all k € N. The proof follows from the following
inclusion:

(keN : dXi(1),0) >} D{keN : d(¥i(r),0) > e}

The rest of the proof follows from the Remark 1.
(ii) The proof follows from the following examples.

Example 1 Let o = 1 and consider the sequences (Xi) and (Y}) defined as
follows:
_f1, fort=(1,1,1,.., 1)
Xi(1) = {0, otherwise
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I, forallkoddand = (-1,—-1,—-1,...,—1)
Yi(t) = 0, forallkoddand# (—1,—1,—1,...,—1)

I, forallkevenandz=(1,1,1,..., 1)

0, forallkevenandt#(1,1,1,...,1)

Then (X}) belongs to S*(F), but (Y)) does not belong. Hence the space S%(F)
is not solid.

Example 2 Let o = 1 and consider the sequence { X} defined by
X, =1, forall k € N.
Consider its J” step space Z; defined as (Y;) € Z; = Y, = X; for all

k=2i+1,i€ N and Y; =0, otherwise. Then {X;} € S%(F), but (Y;) does not
belong to S*(F).

Theorem 3.19 The spaces Sg(F) , wy (F) , S%(F) and wj(F) are not symmetric.

Proof . The proof follows from the following example.

Example 3 Let o = 1 and consider the sequence (X%) defined by
I, k=@, ieNandt=(1,1,1,.., 1)
0, k=2, ieNandr#(1,1,1,.., 1)
1, k+#4, foranyand = (0,0,0,...,0)
0, k##, foranyandt#(0,0,0,.., 0)

Consider the rearranged sequence (Y) of (Xj), defined as follows :

Xk(t) =

(Yi) = (X1, X2, X3, X3, Xo7, X4, Xea, X5, X125, Xo, X216, X7, X343, X, ...).

The (X}) belongs to the space S*(F), but (Y;) does not belong to S*(F),
hence the space S%(F) is not symmetric. The others can be treated similarly.
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