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Abstract

This paper investigates the motion of a sliding bead on a smooth vertical parabola. The parabola is rotated about its 
vertical axis with a uniform angular frequency. The governing equation of motion is a highly nonlinear second-order 
ordinary differential equation. An approximate solution is achieved via the coupling of the homotopy perturbation 
method and Laplace transform. On the other hand, an expanded frequency concept is utilized in order to obtain an 
approximate periodic solution. Therefore, the expanded frequency method is applied to govern the stability criterion 
of the problem. An external excitation of the problem is examined through an additional oscillatory gravitational 
force. The multiple time-scales with the homotopy perturbation method are used to judge the stability criteria. The 
analyses reveal the resonance together with the non-resonant cases. Furthermore, the linearization techniques are 
utilized to check the stability of the linearized equation and to compare the findings with those obtained in the 
multiple time-scales. Numerical calculations are performed to graphically illustrate, the perturbed solutions as well as 
the stability examination. It is found that the initial and angular velocities have a destabilizing influence. In contrast, 
the parameter of the reciprocal of the latus rectum has a stabilizing effect.

Keywords: Expanded frequency analysis; homotopy perturbation methods; Laplace transforms; multiple time-scales 
technique. 

1. Introduction

The topic of the differential equations is a well-constructed 
part of mathematics. Many recent advances in 
mathematics have indicated that many phenomena in 
applied science are usually modeled by differential 
equations. The solutions of these equations yield some 
mathematical explanation. In other words, differential 
equations are arising naturally to form the foundations of 
science and engineering. They are considered as useful 
tools for solving physical problems. Nonlinear oscillator 
models have been widely used in several areas. They 
are significant in physics and engineering. Mechanical 
oscillatory systems are sometimes governed by nonlinear 
differential equations. Many problems in mathematical 
physics, chemical physics, and astrophysics are modeled 
by second-order nonlinear differential equation. Very few 
exact solutions for differential equations may be obtained 
in many branches of fluid mechanics, solid mechanics, 
physics, and engineering in accordance with the existence 
of nonlinearity, inhomogeneity, and variable coefficients. 
It is well-known that the existence and uniqueness of 
solutions of the nonlinear differential equations may be 

studied by means of general theorems (see, for instance, 
Coddington & Levinson, 1977). On the other hand, there 
are many nonlinear ordinary differential equations that 
have no exact solutions in compact forms. Therefore, 
many authors have focused on obtaining analytical 
approximate/numerical solutions. 

This paper focuses on the analytical approximate 
solution. Nayfeh and Mook (1979) discussed this topic. 
The well-known analytical approaches applied to solve 
nonlinear problems, in various situations, are called the 
perturbation methods (Nayfeh, 1973). These methods are 
based on the existence of a small parameter. Consequently, 
by means of this small parameter, the approximate solution 
may  be  expanded  into  an  infinite  number  of  linear 
sub-problems. This small parameter governs the accuracy 
of the perturbed approximation and achieves the validity 
of the perturbation method (Nayfeh, 1973). Through an 
analytical perturbation method, the small parameter should 
be exerted in the equation. Therefore, finding a small 
parameter in the differential equation is rather difficult. 
To overcome this shortcoming, many techniques have 
been postulated. Demiray and Bulut (2017) obtained exact 
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solutions involving the Jacobi elliptic function, hyperbolic 
function and a periodic wave solution for the generalized 
Gardner equation. This equation can be applicable in 
electromagnetic theory, special relativity, and heat transfer 
in several fields of physics.

As stated above, the perturbation method needs a 
small parameter to be utilized. However, the homotopy 
perturbation method (HPM) does not need the existence of 
any small parameter. It introduces an artificial imbedding 
parameter . The method provides an analytical 
approximate solution of different types of linear and 
nonlinear equations. The results indicate that the method 
is very effective, powerful and simple in obtaining 
approximate solutions of nonlinear differential equations. 
The HPM was first proposed by He (1999; 2000) for 
solving differential, integral and integro-differential 
equations. It has been the subject of extensive analysis 
and numerical works. In fact, the method is a coupling 
of the traditional perturbation method and homotopy 
in topology (He, 2000). The method has a significant 
advantage in that it provides analytical solutions to a wide 
range of nonlinear problems in engineering and physics. 

In recent years, the application of the HPM in 
nonlinear problems had been studied by scientists and 
engineers because of its simplification in handling 
these problems. Because HPM becomes a powerful 
mathematical tool, researchers are using it to solve a wide 
variety of problems. Bayat et al., (2015) used the HPM to 
obtain analytical solutions for three different examples. In 
addition, they compared their solutions with the energy 
balance method and the Runge-Kutta algorithm. They 
concluded that the HPM does not need any linearization 
and overcomes the limitations of the regular perturbation 
methods. Recently, El-Dib and Moatimid (2018) adapted 
the HPM to obtain exact solutions of linear and nonlinear 
differential equations. The basic idea to the approach is to 
choose a suitable trial function, usually in the form of a 
power series. The vanishing of the first order approximate 
solution guarantees that all higher orders are also 
canceled. Accordingly, the remaining zero-order solution 
is supported to become an exact one. 

The method of Laplace transforms (LT) has been 
considered as a valuable tool in dealing with problems 
related to the linear systems involving integro-differential 
equations with constant coefficients, ordinary, partial and 
difference equations. Laplace first proposed this approach 
around 1820. His technique has played an important role 

in mathematics for its theoretical interest and because it 
is a simpler fashion for solving problems in the sciences 
and engineering when compared to other mathematical 
techniques (Schiff, 1999). Ali et al., (2017) derived exact 
solutions by using the LT in terms of the Wright function. 
Furthermore, they illustrated the solutions throughout 
a set of diagrams of different physical parameters. 
Filobello-Nino et al., (2017) proposed an application 
of the LT with HPM when obtaining an analytical 
approximate solution for nonlinear differential equations 
with variable coefficients.

Parametric excitation in a mechanical system happens 
if a parameter of the system becomes time-dependent. 
The mathematical modeling of this type of excitation is 
characterized by means of differential equations which 
have time-dependent coefficients. A standard example of 
an equation which displays parametric excitation is the 
Mathieu equation. Parametric instability occurs when an 
external excitation appears as a coefficient of the system 
parameters. Under the periodic excitation instability, 
the excitation frequency approaches twice the natural 
frequency of the system. Ibrahim (1985) and Dao et al., 
(2007) studied a Van der Pol oscillator under parametric and 
forced excitations. Their studies include a small parameter. 
It is a quasi-linear general case (without the assumption 
of the smallness of nonlinear terms and perturbations). 
Maiybaev (2002) studied a linear multi-parameter non-
conservative system under small periodic parametric 
excitation. He derived approximations of the stability 
domain in a parameter space when the corresponding 
autonomous system has a zero eigenvalue or a pair of 
complex conjugate imaginary eigenvalues. Furthermore, 
the singularities that arise on the boundary of stability 
were analyzed. Kaliji et al., (2013) presented two new 
analytical techniques named the max–min approach 
and iteration perturbation method for solving nonlinear 
equations of two oscillatory systems. One case consisted 
of a mass grounded by linear and nonlinear springs in a 
series, and the other one was a rigid rod that rocks on a 
circular surface. They obtained highly accurate analytical 
solutions for the free nonlinear vibration of conservative 
oscillations. They also investigated the dynamic behavior 
of the systems.

It should be noted that, in example 7.7 on page 
245 of the book “Classical Dynamics of Particles and 
Systems”, (Thornton and Marion 2004) introduced the 
equation of the motion of a sliding bead over a smooth 
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vertical parabola. The parabola was assumed to rotate 
around its vertical axis by a uniform angular velocity. 
This investigation focuses on the stability profile of this 
problem. The goal was to obtain approximate solutions 
in different approaches. In addition, a stability profile 
was achieved. The paper begins with the methodology of 
the problem, and a simple derivation of the equation of 
motion is presented in Section 2. Section 3 shows how an 
approximate solution of the highly nonlinear equation via 
a coupling of the HPM and LT was obtained. The periodic 
solution, based on the nonlinear frequency analysis, is 
reported in Section 4. An external parametric excitation 
under a vertical oscillating gravity is introduced in 
Section 5. Furthermore, the stability analysis, based on 
the multiple-time scales with HPM, is presented. The 
analysis covers the resonance and non-resonant cases. 
The linearization technique used to check the stability of 
the linearized equations is the focus of Section 6. Section 
7 is devoted to the numerical calculations of all outcomes.  
This Section illustrates the approximate solutions as well 
as stability profiles. Concluding remarks can be found in 
Section 8.

2. Methodology

This paper focuses on (example 7.7 page 245) in the 
book of (Thornton and Marion 2004). For clarification, 
the problem under consideration consists of a bead 
which slides on a smooth wire which is bent in the shape 
of a vertical parabola in the form of  (Fig. 1). The 
parabola is assumed to rotate about its vertical axis with 
a uniform angular velocity . For more convenience, the 
cylindrical polar axes  are taken into account so that 
the vertical axis lies along the  axis. The motion of the 
bead is acted upon by the gravitational acceleration which 
acts on the negative  axis.

The Lagrangian function may be constructed as 
dependent only on the generalized coordinate  as 
follows:

                                     (1)

Therefore, the Euler-Lagrange’s equation of motion 
becomes

                                  (2)

which is a highly nonlinear second-order differential 
equation.

Fig. 1. Description of the problem.

A similar equation was analyzed by Wu et al., (2003). 
The authors combined the linearization of the governing 
equation with the method of harmonic balance to establish 
an approximate analytical solution. They showed that the 
obtained approximate solutions were valid for small and 
large amplitudes of oscillation. 

To achieve the approximate solution, it is convenient 
to assume the following initial conditions:

, and .                                                       (3)

As a special case, if the particle rotates on a circle  
then , it follows that the equation of motion in (2) 
becomes

 or .                                             (4)  

3. An approximate solution via the coupling of HPM 
and LT

It should be noted that it is difficult to find the solution 
of some nonlinear differential equations in a compact 
form. For this reason, analytic approximations can be 
used to find their solutions. Therefore, because of the high 
nonlinearity of the equation of motion that is given in 
Equation (2), and as shown in the introduction, there are 
many perturbation methods to treat similar equations. In 
the following analysis, the treatment of this equation will 
be based on coupling the HPM and LT  as follows:

The linear and nonlinear parts of Equation (2) may be 
chosen as:

 and ,                    (5)

where . 
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It follows that the homotopy equation may be 
formulated as follows:

,                       (6)

where  is the embedding homotopy parameter. 

Therefore, the function  may be written as 
 Applying the  on the homotopy Equation 

(10), one gets

                (7)

On using the initial conditions that are given in 
Equation (3), one finds

.                       (8)

The inverse Laplace transform of Equation (8), 
resulted in

.                    (9)

In accordance with the regular HPM, the dependent 
function  may be expanded as:

.                                                        (10)

Accordingly, the nonlinear part  should be written as 
follows: 

                                                (11)

where  

                        (12)

Inserting equations (10) and (11) into Equation (9), 
then equating the coefficients of like powers of  on both 
sides, one gets the following equations:

                                                       
(13)

           (14)

and

             (15)

Clearly, the solution of each order depends mainly on the 
previous one. 

Using the Mathematica, the following results can be 
obtained:

  (16)

and

 

 

                                                                   

                          (17)

The approximate solution of Equation (2) may be written 
as:

.                                       (18) 

Although the compact form of the solution of the 
equation of motion that is given by Equation (2) is rather 
difficult, we do not need to obtain an explicit form of the 
solution to study the long-time behavior. Actually, the 
unbounded solution comes from the presence of the secular 
terms that exist in the approximate solution as given in 
Equation (18). In fact, the previous traditional method 
does not enable us to remove these secular terms. It should 
be noted that the cancellation of the secular terms resulted 
in a trivial solution, which is not desired. As shown 
previously, the traditional perturbed solution in Equation 
(18) contains secular terms. So, one cannot theoretically 
judge the stability/instability of the system. As a result, 
the stability behavior will be obtained graphically through 
a set of figures. It is noteworthy that the HPM has been 
used for solving various kinds of nonlinear equations. 
Sometimes it is used to find the exact solution (El-Dib & 
Moatimid, 2018) or a closed approximate solution of the 
problem. (Ayati & Biazar, 2015) gave a brief elaboration 
on the convergence of the HPM.

4. An approximate solution via the expanded  
frequency analysis

This study aims to achieve the stability profile of the 
problem. Unfortunately, the previous analysis does not 
enable us to do this. Therefore, another new technique 
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must be sought to achieve a periodic solution of the 
governing equation of motion that is given in Equation 
(2). In fact, this equation has a natural frequency. Thus, its 
zero-order solution becomes a periodic one. 

Notice that the natural frequency of the problem is 
represented by the constant . The following 
stability discussion is based on the expanded frequency 
analysis (see El-Dib & Moatimid, 2019). In accordance 
with this approach, a nonlinear frequency  may be 
represented as follows: 

.                                                          (19)

Inserting Equation (19) into Equation (2), one may write 
the homotopy equation as   

.                       (20)

Taking the Laplace transform of Equation (20) and 
using the initial conditions that are given in Equation (3), 
one finds

.                      (21)

Employing the inverse transform of both sides of Equation 
(21), one obtains

                      (22)

Using the expansion of the dependent parameter  from 
Equation (10), and then equating the coefficients of like 
powers of  on both sides, one gets

                                                       (23)

,      (24)

and

.                    (25)

Substituting from Equation (23) into Equation (24), one 
finds

.                       (26)

The uniform valid expansion needs a cancellation of the 
secular terms. Therefore, the coefficient of the function 

 must be canceled. This concept formulates the 
parameter  as follows:

.                                                          (27)

It follows that the periodic solution of  becomes 

.                                                      (28)

Again, substituting from equations (23), (27) and (28) 
into Equation (26), one finds

.         (29)

Again, the cancellation of the secular term requires

.                                                                    (30)

Therefore, the direct calculations in Equation (29) gives

.                           (31)

As previously shown in the limiting of Equation (18), the 
approximate periodic solution of the equation of motion 
that is given in Equation (2) may be written as follows:

                        

(32)

Actually, the approximate solution in Equation (32) 
requires that the arguments of the trigonometric functions 
must be real values. For this purpose, we return back to 
Equation (19). Substituting Equations (27) and (30) into 
Equation (19), the following characteristic equation is 
obtained:

.                               (33)

Equation (33) is an algebraic quartic equation in . It is 
convenient to solve this equation by means of the HPM 
as follows:

The homotopy equation in this case becomes 

,                                                         (34)

where , and  is a new artificial 
homotopy parameter.
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As usual, the frequency  is expanded as given in 
Equation (10). Using similar arguments as before, one 
gets:

,                                                       (35) 

where .

In order for  to be of real values, we must have the 
following stability criterion:

.                                                            (36)

The effects of the characteristic parameters of the problem 
in the stability profile will be discussed through the 
numerical calculations in Section 6.

5. External excitation via an influence of an 
oscillating vertical gravity 

Here the external excitation of the problem at hand is 
analyzed. The excitation appears as a variable (i.e., 
time-dependent) coefficient in the governing equations 
of motion. This excitation  may occur due to an 
oscillating gravitational force. In accordance with this 
concept, consider a gravitational force in the form of 

 In this case, the equation of motion that is 
given by Equation (2) may be written as a transcendental 
cubic nonlinear Mathieu equation as:

                (37)

where  and .

According to the HPM, the homotopy equation may 
be formulated as follows:

            (38)

In order to analyze the external excitation, through 
the current case, the multiple time-scales technique is 
adapted. Therefore, uniform valid expansion of Equation 
(37) may be viewed as a function of three independent 
variables rather than one parameter (time). In light of the 
He-multiple scale method (El-Dib 2017), one may regard 
the dependent variable to be a function of  and  The 
underlying idea of the method of multiple-time scales is 
to consider the expansion that represents the response as 
a function of multiple independent variables, or scales, 
instead of a single variable. The method of multiple-time 
scales, through a little more involved, has advantages 
over the Lindstedt-Poincaré method. 

The first step is to introduce new independent variables 
according to

 .                                                     (39)

It follows that the derivatives  the time-independent 
variables become expansions in terms of the partial 
derivatives as follows:

                                   

(40)

and 

 
.                         (41)

One may assume that the solution of Equation (38) may be 
represented as an expansion having the following form:

                              
(42)

It should be noted that the number of the needed 
independent time scales depend on the order at which the 
expansion is carried out. Namely, if the expansion is carried 
to , then  and  are only needed. For convenience, 
to obtain a more accurate expansion, we carry out the 
expansion up to . Therefore, three-time scales ( 
and ) are utilized. Substituting from equations (39-42) 
into Equation (38), and then equating the coefficient of 
like powers of , one finds the following equations:

,                                                       (43)

 ,               (44)

and

                    

(45)

With this approach, it is convenient to write the solution 
of Equation (45) in the following form:

                                                   (46)

where  is an unknown complex function and  
represents the complex conjugate of the preceding terms. 
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The governing equations of the complex function  are 
obtained by requiring the distribution functions  and  to 
be of a periodic nature.

Substituting Equation (46) into Equation (44) leads to

             (47)

here, the complex function  represents the complex 
conjugate of the complex function .

The required uniform valid expansion of the function  
needs elimination of the secular terms. These secular 
terms are the coefficient of the exponentials  and  
Therefore, the uniform valid expansion requires

.                                          (48)

Equation (48) is well-known as the solvability condition. 
Sometimes, it is called the amplitude equation. It follows 
that the particular solution of Equation (47) may be 
written as

         (49)

Substituting from equations (46), (48) and (49) into 
Equation (45), after lengthy but straightforward 
calculations, one finds the following equations:       

     

          (50)

To eliminate the secular terms from Equation (50), we 
must have

.     (51)

It follows that the periodic solution of Equation (50) may 
be written as

                   (52) 

5.1 Stability analysis in the non-resonance case

To investigate the stability analysis, throughout the non-
resonance case, we return to the amplitude equations 
that are given by equations (48) and (50). In fact, these 
equations enable us to determine the unknown function 
 in terms of the time-independent variables  and  

In addition, the stability behavior mainly depends on the 
solutions of these equations. For this purpose, integrate 
Equation (48) partially  the variable  Then integrate 
Equation (50) partially  the variable  In other words, 
equations (48) and (50) are simply multiplied by  and 

 respectively. It follows that the partial differentiations 
in these amplitude equations may be transformed into

 Finally, one may obtain the following amplitude 
equation:

 

. 

         

(53) 

Equation (53) is a first-order nonlinear differential 
equation with an imaginary coefficient. It is similar to the 
well-known Landau equation. This amplitude equation 
will govern the stability criterion of the problem. The 
solution of this equation may be obtained by utilizing the 
polar form formula as given below:

The solution of Equation (53) has the form 

 ,                                                       (54)

where the functions  and  are two real functions on 
the time.



Galal M. Moatimid 14

Substituting Equation (54) into Equation (53), and 
then equating the real and imaginary parts on the two 
sides, one gets the following solutions:

,                                                                         (55a)

and 

      

(55b)

where  and  are the two real integration constants.

Actually, all the parameters of the problem, except the 
initial velocity , are included throughout the solution of 
the amplitude equation. Unfortunately, the solutions that 
are given in equations (55a) and (55b) indicate that the 
system is always stable. Hence, to achieve the stability 
criteria, we will proceed to investigate the resonance 
cases. Therefore, the following subsection is depicted to 
discuss the resonance cases.

The approximate solution, in the non-resonant case, 
may be formulated as follows:

,                                       (56) 

where ,  and  are given in equations (46), (49) and 
(51), respectively. In addition, Equation  (53) must be 
included.

5.2 Stability analysis in the resonance cases

As seen in the previous subsection, the non-resonance 
case fails to achieve the stability criteria. Consequently, 
the following discussion focuses on the resonance cases. 
It should be noted that resonance occurs when  is large, 
or when the frequency of the external excited gravitational 
force  is nearer to the resonance of the system. This 
means that the system will oscillate with a high amplitude. 
Generally, in a mechanical system, it is better to avoid 
resonance caused by a small driving force that can cause 
large amplitude vibration and could subsequently damage 
the system. In the case when the frequency of the excited 
force is nearer to the natural frequency of the system,  
the oscillation is defined as a primary or main resonance. 
It should be noted that if , the resonance is called 
super-harmonic resonance. On the other hand, if  

the resonance is termed as sub-harmonic resonance. In 
fact, there are several powers in the different stages, as 
shown in equations (53) and (55). It follows that there are 
many resonance cases. 

To avoid lengthy calculations, the present analysis is 
only concerned with one of these resonance cases. For 
this purpose, instead of the frequency of the external 
excitation , one may introduce a detuning parameter 

 that quantitatively describes the nearness of  to  
This helps one to recognize the terms in the governing 
equation for  that lead to secular, and nearly secular 
(small divisor), terms. Accordingly, one may write

.                                                                (57)

In this case, one obtains

.                                                (58)

In this case, there is no contribution in the secular that 
appears in Equation (45). It follows that the amplitude 
equation that is given in equation (48) is unaffected. On the 
other hand, the governing equation of  has an additional 
secular term. Inserting Equation (58) into Equation (50), 
one gets

  (59) 

The elimination of the secular term from Equation (59) 
leads to

                       

(60)

It follows that the particular solution of Equation (59) 
becomes
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                 (61)

Finally, the approximate solution for instances of the 
resonance case is given in Equation (56). Keep in mind 
that the functions ,  and  are given in equations (46), 
(49) and (61), respectively. In addition, the unknown 
function  may be obtained as follows:

Using  similar  arguments  as  that  is  shown  in  the 
non-resonance case, one gets

,                           (62)

where

and .

Equation (62) is a first-order nonlinear differential equation 
with complex and variable coefficients. Its solution may 
be obtained by the following transformation:

,                                                                 (63)

where  must be real and time-dependent functions.

Substituting from Equation (63) into Equation (62), 
and then separating the real and imaginary parts, one 
gets:

, where  is a real parameter. This parameter 
satisfies the following relation:

.                                                (64)

Equation (64) may be analyzed in the same manner used 
in Equation (33). In the present case, we seek only that 
condition which makes  be of real values. 

     Because of the nature of , one finds

.                                                                 (65)

Inserting the stability criterion as given in Equation (65) 
into the transition curve that is represented in Equation 
(57),  one  finds  the  final  stability  condition  in  the  
non-resonant case as:

.                                                           (66)

Actually, the transition curve that separates the stable 
from the unstable regions is described by the following 
equation:

                                                            (67)

In fact, Equation (67) is a transcendental equation. It 
includes  all the parameters of the considered problem 
except for the initial velocity . It is convenient to graph 
this equation by means of the Mathematica software to 
show the influence of some parameters in the stability 
diagram. It is more convenient to discuss the stability 
profile using another simple technique. Therefore, in the 
next Section, the linearization technique to check the 
stability of the linearized equation is utilized.

6. The linearization technique

In the following linearization technique, the linear system 
is used to approximate the behavior of the nonlinear 
system. The analysis is classified into two categories (see 
6.1 and 6.2).

6.1 The autonomous system

This is concerned with  the governing equation as given 
by Equation (2) in which the gravitational force is only 
uniform. The stability analysis, in this case, corresponds 
to the occurrence of the non-resonance case as given 
in the previous analysis. For this purpose, consider the 
following transformations:

 and                                                               (68)

It follows that the governing equation given by Equation 
(2) may be represented by the following first-order 
nonlinear equations:
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 and                                              (69)

where

, , and 

The constant solutions of this system are called the 
equilibria. They satisfy the following equations:

 and                                         (70)

The equilibrium solution of equations (70) is exactly the 
origin (critical point).

Now, using the Taylor expansion to expand the 
functions  and  around the critical point, 
considering only the linear terms, one finds the following 
Jacobian matrix:

.                     (71)

At the origin, the Jacobian matrix becomes

                                                                (72)

The above matrix has the eigenvalues:

.                                                                         (73)

If  it follows that  becomes of real values, 
and the type of the critical point is a center. The behavior 
of the system is stable, but not asymptotically stable. In 
contrast, if  it follows that  is pure imaginary, 
and the type of the critical point is a saddle. In this case, 
the system has an instability behavior.

The previous analysis may be simplified as follows:

Returning to the governing equation as given in Equation 
(2), it is evident that the trivial solution ( ) satisfies this 
equation. Therefore, the linear solution of the equation of 
motion may be obtained around this zero-order solution. 
For this purpose, one may assume the linear solution as

                                                                        (74)

Substituting from Equation (78) into Equation (2), and 
then considering only the linearized term, one finds

                                                                      (75)

It follows that the system is stable if  has real. Otherwise, 
the system has an unstable behavior. The comparison 
with the obtained results as given in the subsection 5.1 

shows that the present analysis is more accurate than the 
previous one. 

6.2 The non-autonomous system

This subsection analyzes the governing equation that 
is given in Equation (2), in the case of the excited 
gravitational force. The stability analysis, in this case, 
corresponds to the resonance given throughout the 
multiple time-scale technique.

For simplicity, following similar arguments as before, one 
may write

                                                                        (76)

It follows that the excited equation of motion becomes

                                             (77)

Now, normalizing the time , such that , it follows 
that Equation (77) becomes

                                                  (78)

where the prime refers to differentiation with respect to 

the new parameter , , and .

Equation (78) is a standard Mathieu equation. This 
equation has been studied extensively. It appears in 
many problems in applied mathematics, such as with the 
instability of a transverse column subjected to an excited 
periodic load and to electromagnetic wave propagation in 
a medium with periodic forces.

The stability of this equation has been extensively 
studied by Nayfeh (1973) as well as Nayfeh and Mook 
(1979). According to Floquet theory (Neves 2009), the 
transition curves, in the  plane, separate the stable 
from unstable regions. In addition, the regions between 
these curves are unstable. In contrast, the regions outside 
these curves are stable.

In accordance with the HPM, these transition curves 
may be obtained as follows:

The homotopy equation may be written as

.                                   (79)

Expanding the parameters  and  as

,                                          (80)

                                   (81)
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Substituting from equations (80) and (81) into Equation 
(79), one finds the zero-order solution

.                                                      (82)

Following similar arguments given earlier by Moatimid 
and Obied Allah (2010), one gets the following transition 
curves:

In the case of :

,                                                           (83)

In the case of :

,                                            (84)

In the case of :

.                                                         (85)

As seen in the resonance case, throughout the analysis 
of the multiple time-scales method, there exists a finite 
number of the transition curve. The previous analysis 
obtains only one of them. In contrast, in the present case 
there are many transition curves. One can conclude that 
the analysis in the linearization techniques of stability is 
richer than the previous one.

7. Numerical calculations

In order to estimate the previous theoretical outcomes, 
numerical calculations are needed. Therefore, in what 
follows, numerical investigations are made to illustrate 
the effects of the various parameters as well as the 
obtained solutions in a stability picture.

7.1 An investigation of the approximate solution given 
by Equation (18).

The approximate solution that is given by Equation (18) 
depicts the behavior of the distribution function versus the 
time. Furthermore, the influences of the various governed 
parameters on the distribution function are plotted. 
Therefore, the following figures are displayed. Figure 2 
plotted the approximate solution of  versus the time 
 As previously shown, the presence of the secular term 

prevents the oscillatory solution to appear. For small 
values of time as , the solution seems to be stable. 
For large values of time, the amplitudes of the solution are 
elongated. Figure 3 indicates the influence of the angular 
velocity of the parabola. It is evident that an interval of 
the time is taken to display the required influence, where 

. The increase in the frequency  accelerates the 
amplitude of the solution. This means that the parameter 
 has a destabilizing influence. Actually, this is of physical 

significance. The influence of the initial linear velocity 
 of the approximate solution is shown in Figure 4. As 

in Figure 3, a time interval is considered at which the 
influence of the variation of  is seen, where 
Furthermore, as previously mentioned, the initial linear 
velocity has a destabilizing influence. Finally, Fig. 5 
shows the effect of the parameter . It can be seen that the 
amplitude of the solution increases with the decrease of 
this parameter. In addition, the wavelength decreases with 
the increase of parameter . In other words, the first two 
zeros on the horizontal axis shift in the direction of  as 
the parameter is increased. These observations show that 
this parameter has a stabilizing effect.

7.2 An investigation of the approximate solution given 
by Equation (32) 

As previously shown, the cancellation of the secular 
term produces an approximate periodic solution. Now, 
it is convenient to give the periodic solution from 
Equation (32). In addition, we focus on the influence 
of the physical parameters of the problem. Fig. 6 gives 
the distribution function  versus the time . Actually, 
the stability condition that is given in Equation (36) 
must be verified. The artificial frequency is real and of 
value  (see Figure 6 caption). This figure 
indicates the periodic nature of the distribution function 

 versus time. The influence of the various physical 
parameters in the periodic approximate solution as given 
in Equation (32) are shown in the following figures. 
The effect of the angular velocity  in the approximate 
periodic solution is depicted in Figure 7. The amplitude 
of the approximate solution increases when the initial 
velocity increased. This indicates a destabilizing 
influence of this parameter. The same mechanism was 
first observed in the previous case by Equation (18). The 
influence of the initial velocity of the periodic solution is 
depicted in Figure 8. Here, one can see that the amplitude 
of the wave solution decreases as the initial velocity 
increases. Thus, the increase in the initial velocity plays 
a stabilizing effect. This is in contrast to the previous 
case. Figure 9 shows the influence of parameter , which 
measures the reciprocal of the length of the latus rectum 
of the parabola,. It is evident that the amplitude of the 
wave solution decreases as the value increased. These 
observations show a stabilizing influence for parameter 

 This influence is in agreement with the previous case. 
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7.3 An investigation of the stability analysis of the 
parametric excitation given by Equation (67)

In the above two cases, the approximate solutions were 
obtained and graphed. In order to avoid repeating the 
graphs of the approximate solutions, other graphs 
were plotted to illustrate the stability criterion for the 
parametric resonance case. Thus, the stability picture 
depicts the transition that is obtained by Equation (67). 
This equation seems to be a single transition curve. 
Actually, it represents a transcendental equation as 

. Mathematica software was used to graph 
this equation. As shown from the Floquet theorem 
(Neves, 2009), the regions between the transition curves 
are unstable and vice-versa outside these curves. For 
this purpose, Figure 10 indicates the influence of the 
coefficient of the existing force  in the stability picture. 
The figure shows that an increase in this parameter 
causes a stabilizing influence. This is in contrast when 
there is an absence of external excitation. The effect 
of the excitation parameter  is shown in Figure 11. In 
contrast to the previous mechanism, for large values of
, the unstable regions increased. This shows that this 

parameter has a destabilizing effect.

Fig. 2. Depicts the approximate solution that is given  
in Equation (22) for a system having the 
particulars: , , , 
and .

Fig. 3.  Depicts the approximate solution that is given in 
Equation (22) for a system having the particulars:  

, ,  with the 
variation of the frequency .

Fig. 4.  Depicts the approximate solution that is given in 
Equation (22) for a system having the particulars: 

, , .

Fig. 5. Depicts the approximate solution that is given in 
Equation (22) for a system having the particulars: 

, ,  with the 
variation of the reciprocal of the latus rectum .

Fig. 6. Depicts the approximate solution that is given in 
Equation (36) for a system having the particulars: 

, , , , 
and .

Fig. 7. Depicts the approximate solution that is given in 
Equation (36) for a system having the particulars: 

, ,  with the 
variation of the angular frequency .
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Fig. 8.  Depicts the approximate solution that is given in 
Equation (36) for a system having the particulars: 

, ,  with the 
variation of the initial velocity .

Fig. 9. Depicts the approximate solution that is given in 
Equation (36) for a system having the particulars: 

, ,  with the 
variation of the reciprocal of the latus rectum .

Fig. 10. Depicts the transition curve that is given in 
Equation (71) for a system having the particulars: 

,  with the coefficient of the 
excitation force .

Fig. 11. Depicts the transition curve that is given in 
Equation (71) for a system having the particulars: 

,  with the reciprocal of 
the latus rectum .

8. Concluding remarks

The present study investigates the motion of a sliding 
bead on a smooth wire which is bent in the shape of a 
vertical parabola of the form . The parabola rotates 
around its vertical axis with uniform angular velocity 

 By making use of the Euler-Lagrange approach, the 
governing equation of motion is achieved. The coupling 
of the HPM and  is utilized to obtain an approximate 
solution. Unfortunately, this approach does not enable 
us to avoid the secular terms. It is evident that this 
cancellation resulted in the trivial solution, which is valid 
but not desired. Therefore, the obtained approximate 
solution is unstable for a long time. On the other hand, 
an approximate periodic solution is obtained via the 
expanded frequency analysis together with the coupling 
of the HPM and . In fact, the latter approach can be 
characterized as powerful, promising and straightforward. 
It may be applied to highly nonlinear problems. Through 
this approach, the stability criterion is obtained. The 
dispersion equation is also achieved. It represents a 
quadratic algebraic equation in the artificial frequency  
By means of HPM, an approximate solution is obtained.  
Furthermore, the analyses reveal an external excitation 
which is based on an oscillatory gravitational force. 
For this purpose, the stability analysis of the problem is 
investigated by the use of multiple time-scales with HPM. 
The non-resonance case reveals a Landau equation, which 
shows that the system is always stable. Because this mode 
does not enable us to judge the stability/instability of the 
system, we proceed to investigate the resonance case. In 
order to make the stability analysis more profound, the 
linearization techniques are used in order to check the 
stability of the linearized equation and then compare 
the finding with those from the multiple time-scales 
method results. The outcomes of the present work may be 
summarized as follows:

The classical approximate solution, involving the • 
secular terms is given by Equation (18).

The periodic approximate solution, based on the • 
expanded frequency is given by Equation (32).

The characteristic equation of the expanded frequency • 
is defined in Equation (33).

The stability criterion in the case of expanded frequency • 
is given by Equation (36).

The periodic approximate solution, based on the • 
multiple time scales in the non-resonance case, is 
given by Equation (56).
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Several figures display the effects of the various • 
physical parameters in the approximate perturbed 
solutions as well as the stability criteria.

The numerical calculations, in the previous two cases, • 
show that the angular frequency and the initial linear 
velocity have a destabilizing influence.

In contrast, the parameter • , which represents the 
reciprocal of the latus rectum, has a stabilizing effect.

The multiple time scale analysis resulted in a transition • 
curve as given by Equation (67).

In contrast with the non-resonant case, the linearization • 
techniques of stability, in the autonomous case, resulted 
in some stability criteria.

In the non-autonomous case, several transition curves • 
were obtained.

The examination of the external excitation shows that • 
the parameter  has a stabilizing influence. In contrast, 
the coefficient of the excitation term has a destabilizing 
influence.  
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