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Abstract

Topological indices play an important role in Mathematical Chemistry, especially in the 
quantitative structure-property relationship (QSPR) and quantitative structure-activity 
relationship (QSAR) studies. Recent research indicates that to predict the certain 
physico-chemical properties of particular types of molecules, the augmented Zagreb 
index (AZI) possess the best correlating ability among several topological indices. The 
main purpose of the current study is to establish some mathematical properties of this 
index or, more precisely, to report tight bounds for the AZI of chemical bicyclic and 
chemical unicyclic graphs. A Nordhaus-Gaddum-type result for AZI (of connected 
graph whose complement is connected) is also derived. 
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1. Introduction

All the graphs discussed in this article are simple, finite and undirected. For a graph 
G, the vertex set and edge set of G will be denoted by V(G) and E(G) respectively. 
The degree of a vertex  will be denoted by du , while the edge connecting the 
vertices u and v will be denoted by uv (Harary, 1969). In chemical graphs, the vertices 
correspond to atoms while the edges represent covalent bonds between atoms (Karcher 
& Devillers, 1990). The complement  of a graph G has the vertex set  and 
the edge set . The maximum and minimum vertex degree in a 
graph G are denoted by ∆(G) and (G) (or simply by ∆ and ) respectively. A vertex 
u is pendant if du = 1. By a chemical graph we mean a connected graph with . A 
graph G is r-regular (or simply regular) if du = r for every vertex u of G. A connected 
graph is bicyclic (respectively unicyclic), if it has  (respectively n) edges. Denote 
by Cn and Pn the cycle and path, respectively, on n vertices. Undefined notations and 
terminologies may be referred to (Harary, 1969; Bondy & Murty, 1976).
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Topological indices are numerical parameters of a graph which are invariant 
under graph isomorphisms. Nowadays, there are many such indices that have found 
applications in Mathematical Chemistry especially in the quantitative structure-
property relationship (QSPR) and quantitative structure-activity relationship (QSAR) 
studies (Devillers & Balaban, 1999; Gutman & Furtula, 2010; Todeschini & Consonni, 
2009). A large number of such indices depend only on vertex degree of the molecular 
graph. One of them is the atom-bond connectivity (ABC) index, proposed by Estrada 
et al. (1998). The ABC is defined as 

This index provides a good model for the stability of linear and branched alkanes 
as well as the strain energy of cycloalkanes (Estrada et al., 1998; Estrada, 2008). 
Details about this index can be found in (Furtula et al., 2012; Hosseini et al., 2014; Lin 
et al., 2013; Dimitrov, 2013, 2014; Chen & Guo, 2012; Gutman et al., 2013; Imran et 
al., 2014; Das et al., 2012; Chen et al., 2012) and related references cited therein.

Inspired by the work done on the ABC index, Furtula et al. (2010) proposed the 
following modified version of the ABC index and named it as augmented Zagreb index 
(AZI): 

The prediction power of the AZI is better than the ABC index in the study of heat 
of formation for heptanes and octanes (Furtula et al. 2010). Gutman & Tošović (2013) 
tested the correlation abilities of 20 vertex-degree-based topological indices for the 
case of standard heats of formation and normal boiling points of octane isomers, and 
they determined that the AZI yields the best results. Moreover, Furtula et al. (2013) 
recently undertook a comparative study of the structure-sensitivity of twelve vertex-
degree-based topological indices by using trees and they concluded that the AZI has 
the greatest structure sensitivity.

When a new topological index is introduced in Mathematical Chemistry (or more 
precisely in Chemical Graph Theory), one of the important questions that need to 
be answered is for which members of a certain class of n-vertex (chemical) graphs 
this index assumes minimal and maximal values. Furtula et al. (2010) answered 
this question for the AZI and the class of all n-vertex acyclic chemical graphs. The 
motivation for the current study comes from this paper (Furtula et al., 2010). Also, 
the recently proven fact that the AZI possess the best correlating ability among several 
topological indices, to predict the certain physico-chemical properties of particular 
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types of molecules, has attracted our attention to study the mathematical properties 
of this index. In (Furtula et al., 2010) the extremal properties of the AZI of trees and 
chemical trees were studied. Huang et al. (2012) and Wang et al. (2012) gave sharp 
lower and upper bounds for the AZI under various classes of connected graphs (e.g. 
trees, unicyclic graphs, bicyclic graphs, etc.) and they characterized corresponding 
extremal graphs. Huang & Bolian (2015) ordered graphs with respect to their AZI 
values in several families of graphs (trees, unicyclic, bicyclic and connected graphs). 
Zhan et al. (2015) characterized the n-vertex unicyclic graphs with the second minimal 
AZI value and n-vertex bicyclic graphs with the minimal AZI value. Ali et al. (2016) 
characterized the graphs having the maximum AZI value in the family of all n-vertex 
connected graphs with fixed matching number (and vertex connectivity). In (Ali & 
Bhatti, 2016), the element among the class of all n-vertex cacti with fixed number of 
cycles having minimum AZI is identified.The main purpose of the present article is to 
solve the following chemical graph theoretic problem: 

Problem 1. For a given set of unicyclic (bicyclic) molecules with fixed number of 
atoms, find those molecules which have the minimum and maximum AZI values. 

In 1956, Nordhaus & Gaddum (1956) gave tight bounds on the product and sum 
of the chromatic numbers of a graph and its complement. Since then, such type of 
results have been derived for several other graph invariants. Details about this topic 
can be found in the recent survey (Aouchiche & Hansen, 2013) and the references 
cited therein.

Recently in (Ali et al., 2015), we established sharp lower and upper bounds for 
some topological indices of a certain family of chemical graphs known as polyomino 
chains. As a continuation of the topological study of chemical graphs, here in this 
paper, we consider two families of chemical graphs (chemical bicyclic and chemical 
unicyclic graphs) and find those elements in each family for which the AZI attains 
its minimum and maximum values by using the approach introduced by Furtula et 
al. (2009). Moreover, we obtain a Nordhaus-Gaddum-type result for the AZI of a 
connected graph whose complement is connected.

2. The AZI of chemical bicyclic and chemical unicyclic graphs

In this section, we give tight bounds for the AZI of chemical bicyclic and chemical 
unicyclic graphs. To do so, we need some lemmas and the following notations. Let  
ni (G ) be the number of vertices of degree i in a graph G, and xi, j(G ) be the number of 
edges connecting the vertices of degrees i and j.

Lemma 1. If Bn is a chemical bicyclic graph with n vertices but has no pendent vertex, 
then 
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Proof. Note that Bn is isomorphic to one of the graphs 1
nB , 2

nB  shown in Figure 1.  

Fig. 1. Two graphs 1
nB  and 2

nB , used in the proof of Lemma 1

But,

   and   

It can be easily checked that

 

Lemma 2. Let Bn be a chemical bicyclic graph with n vertices such that 

                                              
 (1)

where 

           (2)

and . Then

                                         
(3)
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Proof. After substituting the value of  in (1), one have 

                                          (4)

By using the identity (2) in the above inequality (4) and then after simplification, one 
obtained the desired result.

Theorem 1. If Bn is a chemical bicyclic graph with n vertices, then 

                                         (5)

If '
n nB B≅  (where '

nB  is depicted in Figure 2) then the bound is attained. 

Fig. 2. Chemical bicyclic graph  where .

Proof. If Bn has no pendent vertex, then from Lemma 1 the required result follows. 
So, let us suppose that Bn has at least one pendent vertex. We will prove the following 
inequality 

where  and  are defined in the Lemma 2. The Inequality (5) will, then, 
directly follow from Lemma 2. Let us, contrarily, suppose that there exist some n and 
some chemical bicyclic graph  with n vertices satisfying 

                                               (6)

Among all such chemical bicyclic graphs, let  be the one with the minimum 
value of . We claim that 

 
Suppose to the 

contrary that  such that  and  or 4. Consider the graph  
obtained from  by subdividing the edge uv. Then 
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and 

            

This contradicts the definition of . Hence  Now, consider 
the collection  of chemical bicyclic graphs  satisfying:  

1). 

2). 

Since  belongs to , this collection is non-empty. Condition 1) implies that 

 Among all graphs in , let  be the one, having the smallest 
value of . We claim that  Contrarily, suppose 
that  and let  such that  and 

. Then we have three cases:

Case 1. Exactly one of  is 2.

Without loss of generality we can assume that  and .

Subcase 1.1. If . Let  be the graph obtained from  by adding the vertices 
 and the edges . Then 

It means that . But 

This is a contradiction to the definition of .

Subcase 1.2. If . Consider the graph  obtained from  by removing the 
vertex u and adding the edge vw. Then 
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and 

which is again a contradiction to the definition of .

Case 2. .

It can be easily seen that v and w are non-adjacent. By using similar technique used in 
the Subcase 1.2, one obtains a contradiction.

Case 3. .

Let  be the graph obtained from  by adding the vertices  and edges 
. Then

                        

moreover, 

which is a contradiction, again. In all three cases, contradiction is obtained. Hence 
.

Now, let  be a sub collection of , consisting of all those graphs  
which satisfy the property . Note that the collection  is non-
empty because . (Let us denote by  the number of vertices of degree 
3 adjacent to at least two vertices of degree greater than 2 in a graph G) Suppose 
that  be a member of  having the minimum value of . We claim that 

. On contrary, suppose that there exist a vertex u of degree 3 adjacent 
to two vertices  of degrees greater than 2 and to a vertex  of degree greater 
than 1 (since ). Consider the graph  obtained from  by adding the 
vertices  and edges . Then . But 
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This contradicts the definition of . Hence .

From the facts  and , we deduce that no 
vertex of degree 2 lies on any cycle of  which implies that no vertex of degree 3 
lies on any cycle of  because . Note that in the graph , each vertex of 
degree 3 is adjacent to two vertices of degree 2 that are adjacent to vertices of degree 
1, which implies that  and . Hence, the vertices of 
degree 4 form a sub-bicyclic (connected) graph of  and therefore 

                                           (7)

Moreover,  implies that 

                                              (8)

Since  for all j, we have 

                              (9)

By using (7) and (8) in (9), we get 

                         (10)

Now, the relation  gives the equation

Bearing this preceding identity in mind and using the fact , the 
equation  can be transformed to 

                              (11)
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From (10) and (11), it follows that

which is a contradiction to the Inequality (6).

To prove that the bound is attainable, let us calculate the AZI of the graph  (see 
Figure 2). 

                   

Denote by  the collection of all those connected graphs G having n vertices, 
m edges and maximum degree ∆ in which du = ∆ and dv = 1 or 2 for each edge 

 Wang et al. (2012) gave the best possible lower bound for the AZI of 
connected graphs: 

Lemma 3. (Wang et al., 2012). Let G be a connected graph of order  with m edges 
and maximum degree ∆, where . Then 

with equality if and only if  for , and  with  for 
 

As a consequence of Lemma 3, we have: 

Corollary 1. If Bn be a chemical bicyclic graph with n vertices, then

equality holds if and only if  with . 

Proof. From the definition of Bn, it follows that  and ∆ = 3 or 4. Hence
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By simple calculations, one have 

Therefore, from Lemma 3 the desired result follows. 

                                           □

Remark 1. By using the technique, adopted in the proof of Theorem 1, we obtained the 
same lower bound as given in Corollary 1. 

Now, combining the Theorem 1 and Corollary 1, one have: 

Theorem 2. Let Bn be a chemical bicyclic graph with n vertices, then 

left equality holds if and only if  with . Moreover, if  
then the right equality holds. 

Now, let us derive lower and upper bounds for chemical unicyclic graphs with n 
vertices. For the unicyclic graph  depicted in the Figure 3, one have 

Fig. 3. Chemical unicyclic graph  where .

By using the same method as adopted to establish the Theorem 2, we have: 
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Theorem 3. If  is a chemical unicyclic graph with n vertices, then 

left equality holds if and only if  with . Moreover, if 
then the right equality holds. 

3. Nordhaus-Gaddum-type results for the AZI

Nordhaus & Gaddum (1956) gave tight bounds on the product and sum of the chromatic 
numbers of a graph and its complement. After their seminal work, such type of results 
have been derived for several other graph invariants, details can be found in the recent 
survey (Aouchiche & Hansen, 2013). Here, we derive such kind of relation for the 
AZI. To proceed, we need some known results. 

Lemma 4. (Huang et al., 2012). Let G be a connected graph with  edges and 
maximum degree ∆. Then 

                                            (12)

with equality holding if and only if G is a path or a ∆-regular graph. 

A graph G is said to be (r1, r2)-regular (or simply biregular) if  and  
or r2, for every vertex u of G. Let  denote the collection of those connected graphs 
whose pendent edges are incident with the maximum degree vertices and all other 
edges have at least one end-vertex of degree 2. Let  be the collection of connected 
graphs having no pendent vertices but all the edges have at least one end-vertex of 
degree 2. 

Lemma 5. (Wang et al., 2012). Let G be a connected graph of order  with m  
edges, p pendent vertices, maximum degree ∆ and minimum non-pendent vertex 
degree . Then 

                         (13)

with equality if and only if G is isomorphic to a (1, ∆)-biregular graph or G is 
isomorphic to a regular graph or  or . 

Now, we are ready to prove the Nordhaus-Gaddum-type result for the AZI.

Theorem 4. Let G be a connected graph of order  such that its complement  
is connected. Let ∆ , , p and , ,  denote the maximum degree, minimum non-
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pendent vertex degree, the number of pendent vertices in G and  respectively. If 
 and , then 

  (14)

with equalities if and only if  or G is isomorphic to r-regular graph with 2r + 1 
vertices. 

Proof. Suppose that m and  are the number of edges in G and  respectively. 
Firstly, we will prove the lower bound. Since both G and  are connected, we have 

 Note that both the functions  and  are 
decreasing in the interval , which implies that 

Hence from (13), we have 

                                 (15)

this implies

 

                                              (16)

Since the function  is increasing in the interval  and , from 
(16) it follows that 

 (17)

After using the fact  in (17), one obtains the desired lower bound. 
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Now, we prove the upper bound. From (12), it follows that 

                        (18)

Since the function  is increasing in the interval  and , 

from the Inequality (18) we have 

        (19)

Now, let us discuss the equality cases. If  then  and if G is isomorphic 
to regular graph with  vertices then  is also isomorphic to r -regular graph. 
Hence in either case, both lower and upper bounds are attained. Conversely, first let us 
suppose that left equality in (14) holds. Then all the Inequalities (15), (16), (17) must 
be equalities.

a). Equality in (17) implies that . 

b). Equality in (16) implies

•   G is isomorphic to regular graph or , and

•    is isomorphic to regular graph or . 

c). Equality in (15) implies that either  and , or G is isomorphic to 
a regular graph. 

Using the fact  and combining all the results derived in a), b), c), we obtain 
the desired conclusion. Finally, suppose that right equality in (14) holds, then both the 
Inequalities (18) and (19) must be equalities. Equality in (19) implies that . 
Equality in (18) implies that 

•    or G is isomorphic to regular graph and 

•    or  is isomorphic to regular graph.

Therefore, either  or G is isomorphic to r-regular graph with  vertices. 
□
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