
An efficient deception architecture for cloud-based virtual networks

Mohammed Qasem , Hussain M. J. Almohri
Dept. of Computer Science
Kuwait University, Kuwait

*Corresponding author: almohri@cs.ku.edu.kw

Abstract

Emerging deceptive systems present a new promise for the uprising security problems in
cloud-based virtual networks, especially those operated by small and medium enterprises. The
main goal of deceptive systems is to form a layer of defensive nodes in an Internet-accessible
cloud-based virtual network to distract and deceive malicious clients. While numerous
approaches provide distinct models for developing decisive systems, misery digraphs present
a promising decisive model for distracting powerful remote intrusions. Misery digraphs can
delay access to targets deep in a cloud-based virtual network. A central challenge to the theory
of misery digraphs is verifying their applicability in prominent cloud computing platforms
as well as measuring the efficiency of networks that adapt them. Thus, an architecture is
needed that can be realized with long-term support technologies and can be deployed for large
networks. This work presents and analyzes a high-throughput architecture for misery digraphs,
embarking on implementation details and a performance analysis. A full implementation
of the architecture in Amazon Web Services imposes modest performance delays in request
processing, while highly delaying stealth intrusions in the network.

Keywords: Architecture; cloud security; intrusion prevention; web application security;
web services

1. Introduction

Cloud-based virtual networks enable small and
medium enterprises to rapidly and efficiently
initialize, deploy, maintain, and evolve net-
works of virtual machines. For example, a
startup company can utilize a virtual network
for connecting a user-end client application to
the company’s services by launching virtual
machine instances that could be conveniently
connected to Internet gateways, subject to fire-
wall and access control rules. Prominent cloud
computing platforms such as Amazon Web
Services and Google Compute Engine provide
both programmable interfaces to manage vir-
tual machine instances and modify their ac-

cess control rules. While solutions have as-
sisted small and medium enterprises in achiev-
ing their rapid growth, security challenges con-
tinue to threaten these networks, causing un-
precedented costs as a result of attacks, which
can lead to disastrous consequences.

Among the many security problems, re-
mote vulnerabilities are of critical importance.
A remote vulnerability in an Internet service
can potentially allow intrusion into hosts that
constitute a network’s surface. These hosts
are connected to the Internet, receive requests
from clients, and communicate them to iso-
lated databases, application servers, and other
services within the network. The intrusion’s
goal is to gain remote execution access on the

Mohammed Qasem1, Hussain M. J. Almohri 2,*
Dept. of Computer Science

Kuwait University, Kuwait

* Corresponding author: almohri@cs.ku.edu.kw

Kuwait J. Sci. 46 (3) pp. 40-52, 2019

An efficient deception architecture for cloud-based virtual networks41

victim host, for example through opening a re-
mote shell, or by hijacking a vulnerable appli-
cation to divert the execution, ultimately cre-
ating malicious user accounts on the target.
When under control of the intruder, the vic-
tim host in the network’s surface would allow
the attacker to further exploit vulnerabilities
within the network by investigating hosts that
are accessible from the compromised one.

Network deception is a potential solution for
slowing the rapid progress of intrusion in a
virtual network. To this extend, in a previ-
ous work, the concept of misery digraphs was
introduced, which provided a dynamic struc-
ture within a network of web services, dis-
tracting and confusing the attacker who wishes
to compromise a specific target deep in the
network (Almohri et al. 2018). In the pro-
posed solution, a cloud-based virtual network
is modeled as a connectivity digraph represent-
ing the network’s accessibility structure. The
connectivity digraph is then converted into an
expanded structure of decoy nodes that are dy-
namically modified over time, consistently los-
ing an intruder’s effort towards a target. Mis-
ery digraph is a powerful concept that requires
intensive implementation and testing.

The present work investigates an architec-
ture of the misery digraphs that enables a
dynamic network structure within Amazon
Web Services. The architecture includes sev-
eral components that, given an initial network
setup, transform an existing cloud-based vir-
tual network into one that includes misery di-
graphs, implementing a full misery digraph de-
fense system. This requires a careful design
of a transformation process, a realistic imple-
mentation of misery digraphs using a service-
oriented network, and an analysis of feasibility
of the proposed system.

1.1 Problem statement
This work investigates the problem of effi-

cient transformation of web services in cloud-
based virtual networks into deceiving net-
works containing misery digraphs. The fo-
cus is on networks that are created on Ama-
zon Web Services (AWS) with complex struc-

tures, containing multiple web servers, appli-
cation servers, and database servers. The as-
sumption is that the web servers, which form
the network’s surface, are vulnerable to remote
attacks and the attacker does not have prior ac-
cess to servers. The attacker’s target is a criti-
cal asset, such as a database server in the net-
work.

1.2 Approach and results

1.1 Problem statement

The approach is to design an architecture
that realizes misery digraphs in AWS. Since
misery digraphs complicate an attack path (by
enlarging the path to target, adding decoys that
are continuously relocated), the challenge is to
minimize the performance penalty facing be-
nign network requests. Thus, we designed a
transformation process that aids network man-
agers to implement misery digraphs accord-
ing to the specifications in (Almohri et al.
2018). The transformation process receives a
conventional (and vulnerable) virtual network
and produces a network of misery digraphs, in-
cluding the network paths of the original con-
ventional network while adding decoy paths.
Increasing the entropy for attackers, misery di-
graphs evolve and change their structures over
time. This dynamic nature of misery digraphs
requires a special proxy system for forward-
ing network requests from the network’s en-
try points towards the target. We developed
the proxy system for misery digraphs based
on Apache’s reverse proxy module. The effi-
ciency of the approach was measured by con-
structing two networks that perform identical
functions, one using misery digraphs as the un-
derlying topology, and one that uses a minimal
connectivity digraph. The results show that
misery digraphs impose modest performance
penalty when processing HTTP requests when
compared to networks that do not implement
misery digraphs.

2. Background

While no prior work has proposed a practi-
cal and efficient architecture for deceiving sys-
tems for the cloud, the literature includes a
wide spectrum of deception and moving tar-
get defense techniques for combating power-

Mohammed Qasem, Hussain M.J. Almohri 42

ful network attacks. Some of the earlier pi-
oneering works in deception focused on the
use of overlay networks as the core idea
of deceiving, distracting, and slowing denial
of service attackers targeting specific hosts
within a network. Secure Overlay Services
(SOS) (Keromytis et al. 2004), and later Web-
SOS (Morein et al. 2003), utilize an overlay
network and enforce strict verification of the
sources of incoming requests when communi-
cating with a host. If a source passed verifica-
tion, a subset of hosts act as proxies that for-
ward the traffic towards hidden servers (often
serving applications) within the network. The
proxies are secret and their identities are not
exposed. The assumption in SOS and Web-
SOS is that both parts of the communication
are known a priori.

Network overlays, the use of proxy servers,
and the assumption of known clients was the
underlying approach for many other related
work. Within this context, Migrating OVEr-
lay (MOVE) (Stavrou et al. 2005) was intro-
duced, advocating the idea of client filtration
via authentication, and used client migration
as a policy for maintaining service availabil-
ity as well as detecting abusing clients (also
called insiders). MOVE, similar to others, built
on ideas from moving target defenses (Hong
and Kim 2016; Evans et al. 2011). The idea
behind MOTAG (Jia et al. 2013) was to pro-
vide a hidden contact point to each legitimate
client, when the client is registered and au-
thorized to use the service. MOTAG uses
these hidden contact points (or proxies) to fil-
ter clients and control access to application
servers. Later, address shuffling and client mi-
gration are also used in MOTAG to bypass at-
tacks. Moving target defenses do not neces-
sarily aim to deceive attackers, but to keep at-
tackers in the dark, random port hopping was
proposed (Badishi et al. 2007), which distracts
denial of service attackers while using packet
filtration to recognize legitimate traffic. Simi-
lar to randomizing ports, redundant data rout-
ing paths (Lee et al. 2007; Shu et al. 2010) is
a technique that can potentially distract attack-
ers.

Defending against denial of service in
clouds has has been the subject of some other
recent studies. One proposed approach is
to use elastic cloud features to guard against
a growing distributed denial of service at-
tack (Jia et al. 2014). Misery digraphs avoid
the ever expanding networks due to denial of
service vulnerabilities by modifying the exist-
ing network of machines, thus preventing over-
head costs.

The idea of deception has also been widely
studied in various other forms, including de-
ceptive attack techniques (Spitzner 2003; Lisý
et al. 2010; Alowibdi et al. 2014), defense
techniques that use software defined networks
to deceive attackers (Jafarian et al. 2012;
Achleitner et al. 2016), defending against non-
volumetric distributed denial of service at-
tacks (Pal et al. 2017), slowing down net-
work scanners (Alt et al. 2014), occasional
trap-setting to detect illegitimate insider ac-
tivities (Bowen et al. 2010), and as vir-
tualized honeypots atop the production net-
work (Stoecklin et al. 2018; Han et al. 2017).

2.1 Misery Digraphs

Misery digraphs (Almohri et al. 2018) take
a radical approach and form a theoretical ba-
sis for deception in cloud-based virtual net-
works. Similar to attack graphs (Hong and
Kim 2016; Miehling et al. 2015; Almohri et
al. 2016), misery digraphs model host access
control rules in a cloud computing platform as
a digraph. The resulting digraph is input to
an algorithm to enlarge and stretch every path
from an entry point to a target host. An en-
try point is a host that is accessible over the
Internet without filtration based on origin’s IP,
while the target is a host that is only accessi-
ble through entry points or other hosts that are
accessible through entry points.

The core elements of misery digraphs are:
(1) multiple, identical, and enlarged paths to a
target, and (2) a schedule of reseting and re-
locating hosts on randomly selected paths to
target. For example, a simple path to target,

is converted into a digraph consisting of a -is converted into a digraph consisting of a

An efficient deception architecture for cloud-based virtual networks43

tors when adapting the model, including chal-
lenges concerning the required implementa-
tion and performance tuning.

3. Architecture

Our design of misery digraphs has two prime
components. The first is a component to im-
plement the continuous evolution of the di-
graph (Figure 2) resulting in a Moving Target
Defense (MTD). The second component im-
plements a deep traversal of the client’s request
through the Misery Digraph Cloud, sending
the response back to the client. This process
follows a multicasting method as described in
Section 2.1. The focus of the architecture is on
implementing two tasks:

1. Constructing a Misery Digraph Network
using pre-existing cloud architecture and
deploying the constructed network to the
cloud as a set of instances and fire-
wall rules (security groups rules in AWS
terms).

2. Frequently selecting random instances of
Misery Digraph Cloud to switch their par-
ents and children and reset their images.
This process is referred to as the Trans-
formation Process (TP).

Throughout this work, Misery Digraph Net-
work refers to the theoretical representation of
the network as a graph data structure, and Mis-
ery Digraph Cloud refers to the realization of
misery digraphs in the cloud as a set of in-
stances and security groups. Also, a client is
defined as an application that is served by the
Misery Digraph Cloud.

Figure 2 shows the Moving Target Defense
component of our architecture. As a first step,
the administrator builds the architecture of the
cloud and defines firewall rules, then Cloud
Constructor creates a Misery Digraph Net-
work using the same method as in (Almohri
et al. 2018), filling the network with decoys
and deploy this network to the cloud. Once
the Misery Digraph Cloud is ready, Movement
Manager selects two random instances from a
layer in the misery digraph, which only con-
tains sibling nodes. The first layer and the

Fig. 1. A misery digraph generated for the at-
tack path , with an embedded
binary tree. An edge means can di-
rectly access via some network protocol. In
reality, is a web server, and are appli-
cation servers, is a database server, and the
rest are reverse proxies.

ary tree, with a single enabled path towards ,
as depicted in 1.

A cloud-based virtual network implement-
ing misery digraphs would need to replicate
a network request to nodes directly accessible
from an entry point. For example, in Figure 1,
a request received at will be replicated
and sent to and , which in turn replicate

to the layer below. The nodes at the final
layer , , , and attempt to forward

to . Misery digraphs guarantee that
will reach through one and only one path
(through in the example digraph of
Figure 1). The rationale is to confuse the at-
tacker early on in the digraph about the true
path towards the target.

Misery digraphs are also required to main-
tain freshness through a schedule of changes to
the location of nodes. At fixed time intervals, a
controller procedure inside the network selects
two nodes at the same layer (for example,
and in Figure 1) and switches their locations
in the digraph. Next, the hosts representing the
nodes are deleted from the network, and two
fresh hosts are created and added in their lo-
cation. The hosts will be created from images
that contain the required software for process-
ing requests.

While simulation is a useful method for as-
sessing the effectiveness of misery digraphs
and similar models, this work attempts to pro-
vide a realizable and practical architecture, ad-
dressing challenges facing system administra-

k- ary tree, with a single enabled path towards t1,
as depicted in 1.

Mohammed Qasem, Hussain M.J. Almohri 44

Fig. 2. Our architecture includes a cloud con-
structor, which examines the initial topology
of the cloud-based virtual network, expands
it to one with an embedded misery digraph
of decoy nodes with a special access control
setting, and automatically deploys the result-
ing topology in the network’s Virtual Private
Cloud (VPC). A movement manager uses a
pool of initialized virtual machines to contin-
uously evolve the resulting network by a sys-
tematic mutation of the misery digraph.

last layer (layer at depth , containing
the target node) are excluded from selection
by the Movement Manager. Note that a mis-
ery digraph is created using two parameters:
a branching factor , and the number of lay-
ers . Once the layer is selected, the
Transformation Process is performed at the se-
lected layer. This entire process of selection
and transformation is repeated each period of
time .

Figure 3 shows the life cycle of client’s re-
quest in the MDG cloud. In our architecture,
the life cycle of a request starts by receiving
it in an entry point node. Compared to a nor-
mal processing of a HTTP request, which is
sent to an application server and finally to a
database server, our architecture modifies this
path by multicasting the request to a layer of
decoy nodes. This multicasting continues un-
til it reaches a Request Server instance from
which a database request is created. The re-
quests are cached in a database registry, await-
ing responses from the database server. Once
the response is received, it is propagated back
up the tree until it reaches the entry point.

The entry point instance is the only instance
of Misery Digraph Cloud that is publicly ac-

cessible. A client sends a request to the entry
point which runs the Misery Multicaster that
multicasts the requests received from parent
nodes in the previous layer to all children in the
next layer. Once the request reaches layer , a
request to the target is stored by the Requests
Server. The RS will then wait for the PS to
ask about the request. The Polling Server runs
on the target itself and connects to Requests
Servers on layer to query them if there is
any new request for the database. If so, the re-
quests will be processed and the response will
be sent to the Requests Servers. A response
travels backwards (in the opposite direction of
the leaves) until it reaches the client through
the entry point.

Isolated Target refers to disallowing any in-
stance of layer to reach the target, letting the
target to poll the requests instead. This is one
of the differences from what is presented in the
original work (Almohri et al. 2018).

Fig. 3. Life cycle of a client’s request in the
Misery Digraph Cloud.

The presented architecture is intended for
testing on Amazon Web Services (AWS). De-
spite this, the main ideas are applicable to
competitors because the architecture was de-
signed to be generic with the least dependency
on the underlying technology specific to AWS.
Throughout this work, references are made to
AWS Elastic Compute Cloud (EC2) instances,

An efficient deception architecture for cloud-based virtual networks45

which are virtual machines that are computa-
tionally independent and are created using pro-
gramming tools available to cloud users. A
cloud refers to an account on a cloud comput-
ing platform containing a virtual network of
EC2 instances.

3.1 Cloud constructor

In order to construct the Misery Digraph
Cloud, the cloud administrator should set the
preferred values of the parameters and , the
parameter represents the number of the
Misery Digraph Network’s layers, while rep-
resents the number of children for each node in
the graph that belong to layer . After
setting the parameters and , the Cloud Con-
structor uses the Amazon Web Services Appli-
cation Programming Interface (API) to retrieve
the current architecture of the cloud, including
the instance information and security groups.
In our architecture we defined a tag named in-
stance type with the value mdg for each in-
stance the administrator would like to use in
constructing Misery Digraph Cloud. Cloud
Constructor identifies those instances and their
security groups and leave other instances.

By analyzing the rules of security groups,
the enabled services in the current cloud are
identified (e.g. web server, ftp server, SSH,
etc.). The Constructor creates connectivity di-
graphs for each available service. A con-
nectivity digraph represents the firewall rules
that enable communications amongst two con-
nected instances. Thus, an edge entails
that network communication is enabled from
instance to instance . Based on the cre-
ated connectivity digraphs, a misery digraph
will be created for each service. In this step
of creating misery digraphs, the network will
be filled with decoys depending on the values
of the parameters and . Once all misery di-
graphs of each service are constructed, a union
operation will be performed on them to get the
final misery digraph. The final misery digraph
is referred to as the Misery Digraph Network.
At this stage, Constructor deploys Misery Di-
graph Network to the cloud. Depending on
the edges of Misery Digraph Network, security

groups and their rules will be created to facili-
tate routing network requests across decoy ma-
chines in the network. As the new digraph re-
quires redundant decoy nodes, the correspond-
ing EC2 instances will be created, resulting in
a Misery Digraph Cloud.

To enhance the performance, the operat-
ing system images of Misery Digraph Cloud
should be ready and stored as Amazon Ma-
chine Images (AMIs) in the AWS cloud. Three
types of images should be available: (1) A
Misery Multicaster image which will run the
entry point and all instances of all layers but
layer (the layer right before the target) and

(target’s layer). (2) Isolated Target Re-
quests Server image, which runs the layer ,
web application (that is, an application that
connects to the target service) should reside in
this image. (3) Isolated Target Polling Server
image, which runs the target (layer), the
database server (which is the attacker’s target
according to our assumption) resides in this
image.

3.2 Evolving misery digraphs

As mentioned earlier in Section 2.1, a mis-
ery digraph prevents an intrusion from reach-
ing a target machine by: (1) continuously in-
terchanging two nodes, and (2) deleting and
replacing a node with a new node. The goal
behind these two properties of misery digraphs
is to lose the effort of an attacker on an attack
path towards the target. The Transformation
Process of our architecture implements these
two features. When creating new instances,
the TP faces a challenge: AWS approximately
requires five minutes of effort to create an reg-
ular EC2 instance. Since the Transformation
Process involves replacing a running instance
with a fresh instance, the five minutes delay
causes a bottleneck. To mitigate the delays
in creating instances, the Movement Manager
(Figure 3) maintains an instances pool. The
Movement Manager creates a set of instances
in the instances pool for future use. Depend-
ing on and the number of running instances
and their image types, the Movement Manager
computes the minimum number of instances

Mohammed Qasem, Hussain M.J. Almohri 46

Fig. 4. In this network, the nodes and
are randomly selected and switched such that
in the new resulting network, ’s parent is ,
while ’s parent is .

needed in the pool while taking into consid-
eration that creating a new instance during the
reset process should occur as infrequently as
possible. After initializing the instances pool,
two random instances will be selected, at a
layer of the misery digraph, from a random
layer but target and entry point’s layers. In
other words, the entry point and the target in-
stances shall not be selected. The Transforma-
tion Process performs two functions:

Switching ensures the disconnection of
the attacker’s session which connects him
to a compromised instance from layer
. This compromised instances parent is

also one of the selected instances. When
this process is performed, the changes
will be committed on both Misery Di-
graph Cloud in Misery Digraph Network,
this process is implemented by switching
the parents and children of the two se-
lected instances. Technically, the secu-
rity groups of the two instances will be
switched. Figure 4 shows an example of
the switching process. The network in
this figure is a part of a complete MDG
network, In (A) both and were se-
lected for the switching process. In (B)
the switching was performed, as we can
see the parent and the children of and

Fig. 5. When sending the request RQ1 to de-
coys and , the Multicaster awaits for the
fastest response, RP1 in this case, and discards
the slower ones.

were swapped.

Resetting replaces those two selected in-
stances with other pool instances that
have the same image. It ensures that
the other instances of the Misery Digraph
Cloud can communicate these new in-
stances. A new pool instance will be cre-
ated for each consumed instance pool in
the process with the same image type. An
instance will be created on-demand on the
case where no pool instance of the image
is available. After finishing this process,
the replaced instance will be terminated.
This process helps when the attacker has
installed a backdoor or turned the instance
to a bot.

3.3 Multicasting requests

Misery Digraph requires an instance to mul-
ticast any request to the whole instances in the
next layer. It ensures the integrity of the mes-
sage and hides the true path to the target. The
Misery Multicaster is a reverse proxy server
with multiple targets instead of just one target.
Misery Multicaster runs the entry point and all
instances but layer instances and the target.

The first step of a client’s communication
starts with the Misery Multicaster. We have
implemented this component by using an open
source project MapProxy, which uses the Tor-
nado network framework. As shown in Figure
5, when a new request is received by Misery
Multicaster, the same request is retransmitted
to the instances of the next layer. Let be
the entry point which resides in layer 1 and
and be the instances of layer 2. In this case
any new request will be sent to both and

An efficient deception architecture for cloud-based virtual networks47 Mohammed Qasem, Hussain M.J. Almohri

by . Subsequently, is going to wait for
the response. Once the fastest instance sends
the response back to the , the response will
be sent directly to the client. The response of
the slower instance(s) will be discarded. The
same method is used with a larger number of
instances in the next layer of Misery Multicas-
ter instance.

3.4 Design of Isolated Target
The idea of Isolated Target is to isolate the

target from any external or internal connec-
tions. Thus, no entity can connect to the tar-
get using any port. . It is believed that by im-
plementing IT, the security of the Misery Di-
graph Cloud will be improved. While Mis-
ery Multicaster is concerned with the client’s
HTTP request, Isolated Target addresses the
web application’s request to the database. As
mentioned earlier, the Isolated Target consists
of two components: (1) Requests Server (RS)
and (2) Polling Server (PS). The details of both
components will be examined in the next sub-
section.

3.4.1 Requests Server and Polling Server
In our design, the web application interacts

with the the database server as the Requests
Server. We developed the Requests Server as
a MySQL server that runs on port 3306 in our
setup. Note that the Requests Server is not a
real database management system; it only be-
haves as one in the handshaking stage of the
connection with the web application. This is
completed with one goal: to get the request
that should be sent to the real database and
store those requests.

When a client requests a page from the web
application, the request is transmitted through
the network from the entry point by using
the Misery Multicaster. Layer of the Mis-
ery Digraph Cloud contains instances that run
web servers (e.g. Apache HTTPd). The web
servers process the request according to the
web application’s code. When the code needs
to connect to the database (which is the target),
it connects to the Requests Server instead.

In the beginning of the session between the
web application’s code and Requests Server,

the latter is going to behave as a MySQL server
to get the request of the application (e.g. query
some table). Once the application’s request
is received, it will be assigned with a unique
identifier and then be stored in a location in the
Requests Server. One such location can be the
Requests Server’s memory, but we have cho-
sen to store those requests in the disk by using
the SQLite3 database engine. Up to this point,
the application is waiting for the response from
what it believes is the database server (where
it is actually the Requests Server), and the Re-
quests Server is waiting for Polling Server.

The Polling Server runs on the target itself.
The PS in the same machine the real database
server exists. For each short time interval

, Polling Server asks all Requests Servers
of layer if there is any new request for the
database that has not been handled. If so, those
requests will be consumed by PS and sent to
the real database. Once the response arrives,
it will be send back the Requests Server that
issued that request.

3.4.2 Handling dynamic IP addresses
Recall that Misery Digraph Cloud evolves

over time. When two nodes and are inter-
changed, Misery Multicaster must update the
IP addresses of and in the nodes of the next
layer. Similarly, the Polling Server must be up-
dated with the IP addresses of layer instances
to be able to query them about new requests.
Thus, there is a need to dynamically and effi-
ciently update IP addresses across the misery
digraph. This dynamic updating is handled by
the Address Server (Figure 6).

Figure 6 shows the communication between
the Movement Manager and Address Server
in both the Misery Multicater and the Polling
Server. Initially, when a new instance of the
Misery Multicaster and the Polling Server are
started, a list of needed IP addresses will be
stored in a list that will be maintained and used
in the future. AWS APIs are be used to initial-
ize this list. When interchanging two instances
on any layer (except layer), the Movement
Manager connects to the instances’ parent Ad-
dress Server to update the Misery Multicaster

3.4.1 Requests Server and Polling Server 3.4.2 Handling dynamic IP addresses

3.4 Design of Isolated Target

Mohammed Qasem, Hussain M.J. Almohri 48

Fig. 6. The communication between Move-
ment Manager and Address Server in both
the Misery Multicaster and the Polling Server.
When the selected instances are in layer the
Movement Manager communicates both the
Polling Server’s and the Misery Multicaster’s
Address Server. Otherwise, the Movement
Manager only communicates with the Misery
Multicaster’s Address Server.

with the changes. This causes the Misery Mul-
ticaster to query AWS API again to receive the
new list of next layer’s IP addresses. Simi-
larly, when an instance of layer is reset. In
addition, it tells its parent to update the IP ad-
dresses. The Address Server of the target will
then be connected by the Movement Manager,
and it will be updated with the new IP ad-
dresses of layer .

4. Performance

The main goal of this work is to assess the
feasibility of implementing misery digraphs in
real-world networks in terms of the processed
traffic in regular web applications. For this as-
sessment, multiple rounds of tests were per-
formed on a synthetic cloud-based virtual net-
work created using an AWS account. The traf-
fic processed by a normal cloud-based virtual
network is compared with two variations of
misery digraphs. The experiments reveal that
while misery digraphs can incur performance
penalties and request processing failures, the
system’s performance penalties are reasonable
compared to the magnitude of confusion cre-
ated for the attacker.

Experimental Setup. The experiments were
performed on t2.nano and t2.micro instances
with a single core processes and 500MB and

Fig. 7. An overview of the results of the ex-
periments with a normal cloud, a small misery
digraph with four layers, and a larger misery
digraph with five layers.

1GB RAM, respectively. A Transformation
Process ran on an EC2 instance, perform-
ing both switching and resetting of instances
throughout the misery digraph. A request em-
ulation tool was developed to send a new re-
quest to the entry point every few seconds
awaiting the responses. When a response was
received within a timeout window, the request
will be considered a success, otherwise it will
be considered a failure. Recall that refers
to the number of layers in the Misery Digraph
Cloud, and refers to the number of children
for each instance in misery digraph network.
Let be the duration of an experiment, the
frequency of the Misery Process (the number
of times the misery digraph changes), and is
the waiting time for a response.

The results of the experiments are depicted
in Figure 7. Processed requests capture the
number of requests processed by the web ap-
plication during the course of an experiment.
The failed requests captures the number of re-
quests that could not be processed within the
same period. The y-axis values refer to the
type of network that was used in the test (cloud
with a small misery digraph, cloud with a large
misery digraph, normal cloud with no misery
digraph).

A normal cloud is one that does not include a
misery digraph. We conducted an experiment
on a normal network which had three EC2 in-
stances. The first one was an entry point which

An efficient deception architecture for cloud-based virtual networks49

works as a reverse proxy for the second in-
stance which ran Apache HTTPd and a tiny
PHP page that sent a query to the third in-
stance which contains a MySQL server. The
entry point instance ran Apache HTTPd with
mod proxy extension to behave as a reverse
proxy server.

All of them were t2.nano but the database
server was t2.micro. Each instance had 8GB
of storage. The operating system images that
were used for the instances were based on
Amazon Linux AMI 64-bit. In this experiment

and since it was a normal net-
work and not a misery digraph cloud,
minutes, seconds and seconds.
The goal was to find the number of requests
that normal network could handle and compare
those numbers with networks that includes a
Misery Digraph. Our normal cloud could han-
dle an average of 716.5 requests with a maxi-
mum of 15 failed requests.

A Misery Digraph Cloud extends the archi-
tecture of the normal cloud by including a tree
of redundant virtual machines that mediate the
entry point and the target. We created two
Misery Digraph Clouds, one with , and
one with , with the branching param-
eter . We prepared two different op-
erating system images to be used in the in-
stances pool. The first one contained the Mis-
ery Multicaster based on Amazon Linux AMI,
The second one contained the RS that imple-
mented the Apache HTTPd and a PHP script
that connected to a database for testing using a
Ubuntu Server 16.04. Another image was built
based on Amazon Linux AMI, which was used
for the Network Constructor that created the
Misery Digraph Cloud, which contained the
Polling Server and the target database server
(with a MySQL engine).

In both experiments, minutes,
seconds and seconds. As one

can see, the average of successful requests
with was 675.8, with a performance
penalty of 40.7 requests compared to the nor-
mal cloud. When the misery digraph was cre-
ated using , the average of successful
requests was 642 with a performance penalty

of 74.5 requests from the normal network. The
most failures were with the executions that per-
formed the Misery Process on the second layer
instances.

5. Discussion

Our architecture demonstrates techniques for
realizing misery digraphs in cloud-based vir-
tual networks running conventional web appli-
cations. Here, we consider both the security
and the scalability issues and provide an anal-
ysis and a direction of future work.

The security of the presented architecture
depends entirely on the security promises of
misery digraphs. Attackers are assumed to be
remote. The requests are assumed to be first at-
tack attempts to exploit the target machines to
prepare for malicious data requests to follow
through the network. Our architecture does
not distinguish between the two types of at-
tack request and delays both types regardless
of intents. However, attackers may attempt
to mimic a normal request, taking advantage
of the fair treatment of requests by misery di-
graphs as they travel through the network. This
attack can be beneficial only when the ini-
tial attacking requests succeed in exploiting
machines in the very first layer of misery di-
graphs. Consequently, the attacker must esca-
late privileges to initiate new requests from an
exploited machine. This attempt can be pre-
vented by modifying the web application and
banning it from initiating new requests, unless
the requests come from a remote and registered
client.

A second possibility of attack is the threat
from insiders, which are those users within the
organization that have access to a subset of
nodes in the expanded cloud-based virtual net-
work with an enabled misery digraph. Given
enough nodes en route to the target, the in-
sider may attempt to create malicious requests
or launch an attack on other machines. This is
a vulnerability in the existing architecture and
requires mitigation, which is left for a future
work.

The scalability of the architecture depends
on a fast processing and cache management

Mohammed Qasem, Hussain M.J. Almohri 50

of misery digraphs. As demonstrated in our
work, given current web server performances,
one can create highly scalable misery digraphs
with low error rates. One may suggest cre-
ating even larger misery digraphs for better
mitigation of the attack. However, as demon-
strated in (Almohri et al. 2018), a misery di-
graph with with fast switching is confus-
ing enough for attackers. It remains a question
whether misery digraphs are effective against
distributed attacks, another topic for future in-
vestigation.

6. Conclusion

Prior to this work, the practical and perfor-
mance feasibility of misery digraphs were not
systematically explored. This research con-
tributes to the idea of misery digraphs by pre-
senting an efficient and high throughput archi-
tecture that can be used in practice. The main
constraints of this work were to use existing
prominent cloud technologies and high request
processing performance, which were achieved.
In the future, this work will be expanded to ex-
plore the idea of adaptive changes to the under-
lying misery digraph as a real time response to
detected attack incidents.

References

Achleitner, S., La Porta, T., McDaniel, P., Sugrim,
S., Krishnamurthy, S. V., & Chadha, R. (2016).
Cyber deception: Virtual networks to defend insider
reconnaissance. In Proceedings of the 8th ACM CCS
International Workshop on Managing Insider Security
Threats (pp. 57–68). MIST ’16. Vienna, Austria:
ACM.

Almohri, H. M. J., Watson, L. T., & Evans, D.
(2018). Misery digraphs: Delaying intrusion attacks
in obscure clouds. IEEE Transactions on Information
Forensics and Security, 13(6), 1361–1375.

Almohri, H. M. J., Watson, L. T., Yao, D., &
Ou, X. (2016). Security optimization of dynamic
networks with probabilistic graph modeling and linear
programming. IEEE Transactions on Dependable and
Secure Computing, 13(4), 474– 487.

Alowibdi, J. S., Buy, U. A., Yu, P. S., & Stenneth, L.
(2014). Detecting deception in online social networks.

In Proceedings of the 2014 IEEE/ACM International
Conference on Advances in Social Networks Analysis
and Mining (pp. 383– 390). ASONAM ’14. Beijing,
China: IEEE Press.

Alt, L., Beverly, R., & Dainotti, A. (2014).
Uncovering network tarpits with degreaser. In
Proceedings of the 30th Annual Computer Security
Applications Conference (pp. 156–165). ACSAC ’14.
New Orleans, Louisiana, USA: ACM.

Badishi, G., Herzberg, A., & Keidar, I. (2007).
Keeping denial-of-service attackers in the dark. IEEE
Transactions on Dependable and Secure Computing,
4(3), 191– 204.

Bowen, B. M., Kemerlis, V. P., Prabhu, P.,
Keromytis, A. D., & Stolfo, S. J. (2010). Automating
the injection of believable decoys to detect snooping.
In Proceedings of the Third ACM Conference on
Wireless Network Security (pp. 81–86). WiSec ’10.
Hoboken, New Jersey, USA: ACM.

Evans, D., Nguyen-Tuong, A., & Knight, J. (2011).
Effectiveness of moving target defenses. In S. Jajodia,
A. K. Ghosh, V. Swarup, C. Wang, & X. S. Wang
(Eds.), Moving Target Defense: Creating Asymmetric
Uncertainty for Cyber Threats (pp. 29–48). New York,
NY: Springer New York.

Han, X., Kheir, N., & Balzarotti, D. (2017).
Evaluation of deception-based web attacks detection.
In Proceedings of the 2017 workshop on moving
target defense (pp. 65–73). MTD ’17. Dallas, Texas,
USA: ACM.

Hong, J. B. & Kim, D. S. (2016). Assessing the
effectiveness of moving target defenses using security
models. IEEE Transactions on Dependable and Secure
Computing, 13(2), 163–177.

Jafarian, J. H., Al-Shaer, E., & Duan, Q. (2012).
Openflow random host mu12 tation: Transparent
moving target defense using software defined
networking. In Proceedings of the First Workshop on
Hot Topics in Software Defined Networks (pp. 127–
132). HotSDN ’12. Helsinki, Finland: ACM.

Jia, Q., Sun, K., & Stavrou, A. (2013). MO- TAG:
Moving target defense against in- ternet denial of
service attacks. In 2013 22nd International Conference
on Com- puter Communication and Networks (pp.
1–9).

An efficient deception architecture for cloud-based virtual networks51

Jia, Q.,Wang, H., Fleck, D., Li, F., Stavrou, A., &
Powell, W. (2014). Catch me if you can: A cloud-
enabled DDoS defense. In 2014 44th Annual IEEE/
IFIP International Conference on Dependable
Systems and Networks (pp. 264–275).

Keromytis, A. D., Misra, V., & Rubenstein,
D. (2004). SOS: an architecture for mitigating
DDoS attacks. IEEE Journal on Selected Areas in
Communications, 22(1), 176–188.

Lee, P. P. C., Misra, V., & Rubenstein, D. (2007).
Distributed algorithms for secure multipath routing
in attackresistant networks. IEEE/ACM Trans. Netw.
15(6), 1490–1501.

Lis´y, V., Zivan, R., Sycara, K., & Pˇechouˇcek,
M. (2010). Deception in networks of mobile sensing
agents. In Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent
Systems (pp. 1031–1038). AAMAS ’10. Toronto,
Canada: International Foundation for Autonomous
Agents and Multiagent Systems.

Miehling, E., Rasouli, M., & Teneketzis, D. (2015).
Optimal defense policies for partially observable
spreading processes on bayesian attack graphs. In
Proceedings of the second acm workshop on moving
target defense (pp. 67–76). MTD ’15. Denver,
Colorado, USA: ACM.

Morein, W. G., Stavrou, A., Cook, D. L., Keromytis,
A. D., Misra, V., & Rubenstein, D. (2003). Using
graphic turing tests to counter automated ddos attacks
against web servers. In Proceedings of the 10th
ACM Conference on Computer and Communications
Security (pp. 8– 19). CCS ’03. Washington D.C.,
USA: ACM.

Pal, P., Soule, N., Lageman, N., Clark, S. S.,
Carvalho, M., Granados, A., & Alves, A. (2017).
Adaptive resource management enabling deception
(armed). In Proceedings of the 12th International
Conference on Availability, Reliability and Security
(52:1–52:8). ARES ’17. Reggio Calabria, Italy:
ACM.

Shu, T., Krunz, M., & Liu, S. (2010). Secure
data collection in wireless sensor networks using
randomized dispersive routes. IEEE Transactions on
Mobile Computing, 9(7), 941–954.

Spitzner, L. (2003). The honeynet project: Trapping
the hackers. IEEE Security and Privacy, 1(2), 15–23.

Stavrou, A., Keromytis, A. D., Nieh, J., Misra, V.,
& Rubenstein, D. (2005). MOVE: an end-to-end
solution to network denial of service. In Proceedings
of the Network and Distributed System Security
Symposium, NDSS 2005, san diego, california, USA.

Stoecklin, M. P., Zhang, J., Araujo, F., & Taylor,
T. (2018). Dressed up: Baiting attackers through
endpoint service projection. In Proceedings of the
2018 ACM International Workshop on Security in
Software Defined Networks & Network Function
Virtualization (pp. 23–28). SDN-NFV Sec’18. Tempe,
AZ, USA: ACM.

Submitted: 16/09/2018
Revised: 08/11/2018
Accepted: 19/11/2018

Mohammed Qasem, Hussain M.J. Almohri 52

WO U « WO{«d ô« UJ AK W UF Ÿ«b WOM

r�U� bL��
*
Ë ÍdN*« 5��

*

X�uJ�« ¨X�uJ�« WF�U� ¨»u�U(« ÂuK r��

 almohri@cs.ku.edu.kw : n�R*«
*

h K*«

 …dOGB�« ÈU��R*« U�d�b� w��« pK� W�U� ¨WO{«d��ù« ÈUJ�A�« w� ÊU�_« q�UA* Î«b�b� Î«bË W�	UM�« WœU)« WLE�_« ÂbI�

 Ÿ«b�Ë XO�A�� X�d��ùU� WKB�*« ÈUJ�A�« w� WOU�b�« bIF�« s� WI�
 s�uJ� w� WœU)« WLE�ú� w�Ozd�« ·bN�« q�L�� ÆWD�u�*«Ë

 Î«b«Ë ÎUL�U� ÎU�–u/ ”R��« ÈU�u�— ÂbI� ¨WL�U� WLE�√ d�uD�� …eO2 Ã–U/ VO�U�_« s� b�bF�« d�u� 5� w� Æs�—UC�« ¡öLF�«

 ÈU�b���« b�√ q�L�� ÆWJ�A�« w� ·«b�_« v�≈ ‰u�u�« d�R� Ê√ ”R��« ÈU�u�— lOD��� ÆbFÔ� s W�uI�« ÈU�«d��ù« XO�A��

 ÈUJ�A�« …¡UH� ”UO� p�c�Ë …“—U��« WO�U���« W��u(« ÈUBM� w� oO�D�K� UN�OK�U� s� oI���« w� ”R��« ÈU�u�— W�dEM� WO�Ozd�«

 ÈUJ�A�« vK U�dA� sJ1Ë q�_« WK�u
 rb�« ÈUOMI� Â«b���U� UNIOI% sJ1 WOM� v�≈ W�U� „UM� ¨w�U��U�Ë ÆUNF� nOJ�� w��«

 w� Ã–uLM�« cOHM� - Æ¡«œ_« qOK%Ë cOHM��« qO�UH� w� ŸËdA�«Ë W�zU��« ÈU�u�dK� WO�U��ù« WO�U WOM� qLF�« «c� ÂbI� Æ…dO�J�«

 v�≈ Ã–uLM�« ÍœR� ULMO� ¨ÈU�KD�« W'UF� w� ¡«œ_« w� WF{«u�� È«dO�Q� œu�Ë 5�� qOK���« bF�Ë Amazon Web Services
ÆWJ�A�« w� qK���« ÂU���« ÈUOKL w� b�b	 dO�Q�

