
1. Introduction
Let F be an arbitrary field with characteris-
tic not 2. The quaternion algebra H is a four-
dimensional central simple algebra over F . The
addition and multiplication operations together
give H the structure of a ring, or more explic-
itly, a non-commutative division ring. It is well
known that every quaternion algebra over the
field F is isomorphic to the following form

H :=
{
F + F i + F j + F ij | i2 = a, j2 = b, ij = k = −ji

}
,

where a and b are nonzero invertible elements of
F . Here the basis {1, i, j, k} is called a standard
basis for H, and we simply write H =

(
a,b
F
)
.

All of quaternion algebra proceeds from the
equations in H. The classical example of a
quaternion algebra is the 2× 2 real matrix alge-
bra M2(R) �

( 1,1
R

)
. Other familiar examples

are Hamilton’s quaternions
(−1,−1
R

)
and split

quaternions
(−1,1
R

)
.

The product of two quaternions p and q in(
a,b
F
)
, where
p = a0 + p = a0 + a1i + a2j + a3k

and
q = b0 + q = b0 + b1i + b2j + b3k

can be reduced to
pq = a0b0 − p · q + a0q + b0p + p × q.

Here, “ · ” is the dot product, and “ × ” is the
cross product all in accordance with Hamilton’s
foregoing original equations.

The conjugate of the quaternion
q = a0 + a1i + a2j + a3k

in quaternion algebra H denoted by q∗ is defined
by q∗ = a0−a1i−a2j−a3k. The trace and norm
of a quaternion q is defined as usual

Tr (q) = q + q∗ and N (q) = qq∗.
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In addition, the inverse of a quaternion q is
q−1 = N (q)−1q∗, and if q is a unit quaternion,
then q−1 = q∗.

Quaternions whose components are from
special number sequences have been studied by
several authors for many years. These types
of quaternions are referred to as quaternion se-
quences. There are various types of quaternion
sequences which are determined by their com-
ponents taken from different types of integer
sequences. Horadam (1963) defined the nth Fi-
bonacci quaternion and nth Lucas quaternion as

Qn = Fn + Fn+1i + Fn+2j + Fn+3k (1.1)

and

Kn = Ln + Ln+1i + Ln+2j + Ln+3k, (1.2)

that is, the quaternions whose components are
the well-known Fibonacci and Lucas numbers,
respectively. In that paper, he essentially con-
sidered the elements of the algebra of real
quaternions whose components are special inte-
ger sequences. Through natural logic, Horadam
(1967) investigated the generalized Fibonacci
sequence Wn(a, b; p, q), where a, b, p, q are in-
tegers

W0 = a, W1 = b

and

Wn = pWn−1 + qWn−2, n ≥ 2.

For a = 0 and b = 1, we write the recurrence
Wn(a, b; p, q) in the form

Un = pUn−1 + qUn−2, n ≥ 2. (1.3)

For a = 2, b = p, we use the form

Vn = pVn−1 + qVn−2, n ≥ 2. (1.4)

Swamy (1973) discussed some relations for
generalized Fibonacci quaternions. Horadam
(1993) considered a few recurrence relations of
some special quaternions. Pell, Pell-Lucas and
Jacobsthal are also fundamental q sequences

(see Çimen and İpek (2016); Szynal-Liana and
Włoch (2016)). Other authors have investigated
similar structures and obtained meaningful re-
sults (see Catarino (2016); Catarino (2019);
Flaut and Savin (2015); Flaut and Shpakivskyi
(2013); Flaut and Shpakivskyi (2015); Halici
(2012); Iyer (1969); İpek (2017); Ramirez
(2015); Savin (2017)).

In accordance with our purpose, we define
the second order linear sequences

{
Fk,n
}

and{
Lk,n
}

for n > 1 as

Fk,n = kFn−1 + Fn−2, Fk,0 = 0, Fk,1 = 1,
Lk,n = kLn−1 + Ln−2, Lk,0 = 2, Lk,1 = k.

Falcon and Plaza named the elements of the se-
quence

{
Fk,n
}

as k−Fibonacci (see Falcon and
Plaza (2007)). In Falcon (2011), the sequence{
Lk,n
}

is called as k−Lucas numbers. The Binet
formulæ of these numbers are

Fk,n =
αn − βn

α − β and Lk,n = α
n+ βn , (1.5)

where α, β =
(
k ± √k2 + 4

)
/2.

Let h(x) be a polynomial with real
coefficients. h(x)−Fibonacci polynomials
{Fh,n(x)}∞n=0 are defined by the recurrence re-
lation

Fh,n(x) = h(x)Fh,n−1(x) + Fh,n−2(x), n ≥ 2

with the initial conditions

Fh,0(x) = 0, Fh,1(x) = 1.

We can see that h(x)−Fibonacci polynomials
are the generalizations of Catalan’s Fibonacci
polynomials, Byrd’s Fibonacci polynomials and
also the k−Fibonacci numbers. Using these
polynomials Catarino studied h(x)−Fibonacci
quaternion polynomials

Qh,n(x) = Fh,n(x) + Fh,n+1(x)i +
Fh,n+2(x)j + Fh,n+3(x)k

and obtained Binet formulæ, the generat-
ing function and some identities of the
h(x)−Fibonacci quaternion polynomials (see
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Catarino (2015)). For h(x) = k, k being
any real number, we get the k−Fibonacci num-
bers Fk,n from the definition of h(x)−Fibonacci
polynomials Fh,n(x), and hence we obtain
k−Fibonacci quaternions Qk,n

Qk,n = Fk,n + Fk,n+1i + Fk,n+2j + Fk,n+3k

from the definition of h(x)−Fibonacci
quaternion polynomials Qh,n(x). Thus,
h(x)−Fibonacci quaternion polynomials gen-
eralize the k−Fibonacci quaternions, and in
so doing, they also generalize the Fibonacci
quaternions.

We consider two types of quaternion se-
quences with components including quantum
integers. We begin with a brief introduction to
some properties of the quantum integers. Let
R be an associative ring with unit and q is an
element of R. If n ∈ N, the quantum integer n
or simply the q−integer n is defined by

[n]q =

n−1∑
i=0

qi .

The q−integer (−n) is defined as

[−n]q = −
n∑

i=1
q−i,

when q is invertible in R . Thus for n ∈ Z−, we
have [n]q = −qn[−n]q. In particular, if 1 − q is
invertible in R, we have

[n]q =
1 − qn

1 − q
.

For all m, n ∈ Z, we have

[m + n]q = [m]q + qm[n]q

and
[mn]q = [m]q[n]qm

for an invertible element q in R . For R = Z and
q = 1, it can be easily seen that the quantum
integer [n]q will be the usual integer n (see Le
Stum and Quirós (2015)).

The elements of the second order integer
sequences and q−integers can be transformed
to each other. That is, for q = β/α the Binet
formulæ in (1.5) are reduced to the following
q−integer forms:

Fk,n = α
n−1[n]q and Lk,n = α

n [2n]q

[n]q
,

where i =
√−1 = α√q.

As before stated, we will introduce two types
of quaternion sequences with components in-
cluding quantum integers in Section 2. We
give some properties and identities of defined
quaternions. Because quantum integers are ex-
tensively used in physics, quantum quaternion
types may also be applied to many applications.
In Section 3, we introduce q−quaternion poly-
nomials which generalize the h(x)−Fibonacci
quaternion polynomials. We obtain the Bi-
net formulæ and generating functions for q−
quaternion polynomials. Furthermore, we give
some properties and identities for these quan-
tum quaternion polynomials. Finally, in Sec-
tion 4, we will give time evolution and rota-
tion applications for some specific quaternion
sequences. The applications can be converted
into quantum integer forms under suitable con-
ditions with similar considerations.

2. q−Quaternions
The quaternion sequences up to now were the
quaternions whose components are real se-
quences. Inspired by these studies, we consider
a more general quaternion sequence by receiv-
ing components from complex sequences.

Throughout this section, we take n ∈ N and
1 − q as a nonzero complex number.

Definition 1 Quaternions of the form

Qn = α
n−1[n]q + αn[n + 1]q i + αn+1[n + 2]qj + αn+2[n + 3]qk

are the nth q−Fibonacci quaternion. Quater-
nions of the form

Vn = αn [2n]q
[n]q

+ αn+1 [2n + 2]q
[n + 1]q

i + αn+2 [2n + 4]q
[n + 2]q

j + αn+3 [2n + 6]q
[n + 3]q

k
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are referred to as the nth q−Lucas quaternion.

Theorem 1 The Binet formula of the q-
Fibonacci quaternion Qn is

αn−1[n]qα + (αq)n β .

The Binet formulæ of the q-Lucas quaternion
Vn is

αn [2n]q

[n]q
γ + αn+1(1 − q) β,

where

α = 1 + αi+α2j+α3k,
β = i + α[2]qj + α2[3]qk,

γ = 1 + (αq)i + (αq)2j + (αq)3k.

Proof. By Definition 1, we have

Qn = α
n−1[n]q + α

n[n + 1]qi +
αn+1[n + 2]qj + αn+2[n + 3]qk

= αn−1[n]q + α
n([n]q + qn)i+

αn+1([n]q + qn[2]q)j +
αn+2([n]q + qn[3]q)k

= αn−1[n]q(1 + αi+α2j+α3k) +

αnqn
(
i+α[2]qj+α2[3]qk

)
.

That is,

Qn = α
n−1[n]qα + (αq)n β.

The Binet form of Vn can be similarly proven.

Remark 1 We can write the Binet formulæ of
the q−quaternions Qn and Vn in other forms.
We have

Qn = αn−1[n]q + αn[n + 1]qi +
αn+1[n + 2]qj + αn+2[n + 3]qk

Qn = αn−1 1 − qn

1 − q
+ αn

1 − qn+1

1 − q
i +

αn+1 1 − qn+2

1 − q
j + αn+2 1 − qn+3

1 − q
k

Qn =
αn − (αq)n

α − αq
+
αn+1 − (αq)n+1

α − αq
i +

αn+2 − (αq)n+2

α − αq
j + α

n+3 − (αq)n+3

α − αq
k

Qn =
αn

α − αq

(
1 + αi + α2j + α3k

)
−

(αq)n

α − αq

(
1 + (αq)i + (αq)2j + (αq)3k

)
.

A similar consideration shows that

Vn = αn
[2n]q
[n]q

+ αn+1 [2n + 2]q
[n + 1]q

i +

αn+2 [2n + 4]q
[n + 2]q

j + αn+3 [2n + 6]q
[n + 3]q

k

Vn = αn
1 − q2n

1 − q
+ αn+1 1 − q2n+2

1 − q
i +

αn+2 1 − q2n+4

1 − q
j + αn+3 1 − q2n+6

1 − q
k

Vn = αn(1 + qn) + αn+1(1 + qn+1)i +
αn+2(1 + qn+2)j + αn+3(1 + qn+3)k

Vn = αn
(
1 + αi + α2j + α3k

)
+

(αq)n
(
1 + (αq)i + (αq)2j + (αq)3k

)
.

Hence we obtain that

Qn =
αnα − (αq)nγ

α(1 − q)
,

Vn = α
nα + (αq)nγ,

(2.1)

respectively.

The following theorem gives the exponential
generating functions of the q−Fibonacci quater-
nion Qn and q−Lucas quaternion Vn.

Theorem 2 The exponential generating func-
tion for the q−Fibonacci quaternion Qn is

F (x) =
eαxα − e(αq)xγ

α(1 − q)
,

and the exponential generating function for the
q−Lucas quaternion Vn is

G(x) = eαxα + e(αq)xγ.
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Proof. By using the Binet formula of Qn given
in (2.1) and the well-known equality

eαx =
∑
αn xn

n!
we get the result. Exponential generating func-
tion for the q−Lucas quaternion Vn can be sim-
ilarly proven.

Example 1 Let α = 1+
√

5
2 and q = − 1

α2 . Then
we have

Qn = α
n−1[n]q + α

n[n + 1]qi +
αn+1[n + 2]qj + αn+2[n + 3]qk

Qn =
αn − (αq)n

α − αq
+
αn+1 − (αq)n+1

α − αq
i +

αn+2 − (αq)n+2

α − αq
j + α

n+3 − (αq)n+3

α − αq
k.

Since Fn =
αn−(αq)n

α−(αq) for α = 1+
√

5
2 and q = − 1

α2 ,
we obtain that

Qn =
αn − (αq)n

α − (αq)
+
αn+1 − (αq)n+1

α − (αq)
i +

αn+2 − (αq)n+2

α − (αq)
j + α

n+3 − (αq)n+3

α − (αq)
k

Qn = Fn + Fn+1i + Fn+2j + Fn+3k,

which gives the Fibonacci quaternions Qn (1.1).
On the other hand, we have

Vn = α
n [2n]q

[n]q
+ αn+1 [2n + 2]q

[n + 1]q
i +

αn+2 [2n + 4]q

[n + 2]q
j + αn+3 [2n + 6]q

[n + 3]q
k

Vn = α
n(1 + qn) + αn+1(1 + qn+1)i +
αn+2(1 + qn+2)j + αn+3(1 + qn+3)k.

Since Ln = α
n(1 + qn), we obtain

Vn = Ln + Ln+1i + Ln+2j + Ln+3k,

which gives the Lucas quaternions Kn (1.2)
(see Horadam (1963)). A similar considera-
tion shows that for α = 1 +

√
2 and q = − 1

α2 ,
we obtain the usual Pell quaternions QPn and
Pell-Lucas-quaternions QPLn given in Cimen
and Ipek (2016).

Example 2 Let α = 2 and q = −1
2 . Then

q−Fibonacci quaternion Qn and q−Lucas
quaternion Vn will be in the following forms:

Qn = α
n−1[n]q + α

n[n + 1]qi +
αn+1[n + 2]qj + αn+2[n + 3]qk

Qn =
2n − (−1)n

3
+

2n+1 − (−1)n+1

3
i +

2n+2 − (−1)n+2

3
j + 2n+3 − (−1)n+3

3
k,

Vn = α
n [2n]q

[n]q
+ αn+1 [2n + 2]q

[n + 1]q
i +

αn+2 [2n + 4]q

[n + 2]q
j + αn+3 [2n + 6]q

[n + 3]q
k

Vn = 2n + (−1)n + 2n+1 + (−1)n+1i +
2n+2 + (−1)n+2j + 2n+3 + (−1)n+3k.

For p = 1, q = 2 the sequences Un and Vn de-
fined in (1.3) and (1.4) are called the Jacobsthal
sequence {Jn}n and Jacobsthal-Lucas sequence
{ jn}n, respectively. These sequences are given
by the formulæ

Jn =
2n − (−1)n

3
and

jn = 2n + (−1)n.

Hence we have

Qn =
2n − (−1)n

3
+

2n+1 − (−1)n+1

3
i +

2n+2 − (−1)n+2

3
j + 2n+3 − (−1)n+3

3
k

Qn = Jn + Jn+1i + Jn+2j + Jn+3k,

and

Vn = 2n + (−1)n + 2n+1 + (−1)n+1i +
2n+2 + (−1)n+2j + 2n+3 + (−1)n+3k

Vn = jn + jn+1i + jn+2j + jn+3k,

which are Jacobsthal quaternions JQn and
Jacobsthal-Lucas quaternions JLQn, respec-
tively. For more details about these quater-
nions, see Szynal-Liana and Włoch (2016).
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Simplification. By taking α√q = i in Example
1, we can rewrite Qn and Kn after some calcu-
lations and simplifications as

Qn =
q− n+1

2 in−1

1 − q
[qan − an+2j],

where

an = 1 − qn − q−1/2(1 − qn+1)

and
Kn = q−n/2−1in[qbn − bn+2j],

where

bn = 1 + qn − q−1/2(1 + qn+1).

Thus these quaternions are equal to one of the
following forms, according to reduction of the
integer n modulo 4 :

Qn =

1
1 − q

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

q−2k−1/2[−qa4k i + a4k+2k] , n = 4k
q−2k−1[qa4k+1 − a4k+3j] , n = 4k + 1

q−2k−3/2[qa4k+2i − a4k+4k] , n = 4k + 2
q−2k−2[−qa4k+3 + a4k+5j] , n = 4k + 3

and

Kn =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

q−2k−1[qb4k − b4k+2j] , n = 4k
q−2k−3/2[qb4k+1i − b4k+3k] , n = 4k + 1
q−2k−2[−qb4k+2 + b4k+4j] , n = 4k + 2

q−2k−5/2[−qb4k+3i + b4k+5k] , n = 4k + 3

.

Linearization. Let α2q = −1. From the Binet
formulæ (2.1), for any integers n ≥ 1 we have

Qn − (αq)Qn−1 =
αnα − (αq)nγ

α(1 − q)

− (αq)
αn−1α − (αq)n−1γ

α(1 − q)

=
αnα − (αq)αn−1α

α(1 − q)

=
αn−1(α − (αq))α
α(1 − q)

= αn−1α (2.2)

and

Qn − αQn−1 =
αnα − (αq)nγ

α(1 − q)
−

α
αn−1α − (αq)n−1γ

α(1 − q)

=
α(αq)n−1γ − (αq)nγ

α(1 − q)

=
(αq)n−1(α − (αq))γ

α(1 − q)
= (αq)n−1γ. (2.3)

Multiplying equation (2.2) by α and equation
(2.3) by αq we obtain the linearization of {Qn}

αnα = αQn +Qn−1,

(αq)nγ = αqQn +Qn−1.

Now we give some summation identities,
including the quantum quaternions Qn and Vn.
For brevity, only the identities related to Qn and
Vn are discussed.

Theorem 3 Let m, k ∈ N. Then,

(i)
m∑

n=0

(
m
n

)
(−α2q)m−nQ2n+k

=

{ �m/2Qm+k , m is even
�(m−1)/2Vm+k , m is odd ,

(ii)
m∑

n=0

(
m
n

)
(−α2q)m−nV2n+k

=

{ �m/2Vm+k , m is even
�(m+1)/2Qm+k , m is odd ,

where � = [α(1 − q)]2.

Proof. By using the Binet formulæ (2.1), we
have

S =

m∑
n=0

(
m
n

)
(−α2q)m−nQ2n+k

=

m∑
n=0

(
m
n

)
(−α2q)m−n �	

α2n+kα − (αq)2n+kγ

α(1 − q)


� .

Observe that
m∑

n=0

(
m
n

)
(−α2q)m−n(α2)n =

(
α2 − α2q

)m
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and
m∑

n=0

(
m
n

)
(−α2q)m−n((αq)2)n =

(
α2q2 − α2q

)m
.

Since α2 − α2q = α
√� and α2q2 − α2q =

−αq
√�, we obtain

S = (α
√�)m αkα

α(1 − q)
− (−αq

√�)m
(αq)kγ

α(1 − q)
.

If m is even, then

S = �m/2 �
	
αm+kα − (αq)m+kγ

α(1 − q)


�

= �m/2Qm+k .

If m is odd, then

S = �(m−1)/2
(
αm+kα + (αq)m+kγ

)
= �(m−1)/2Vm+k .

Theorem 4 For m, k ∈ N, we have

(i)
m∑

n=0

(
m
n

)
(−1)n(−α2q)m−nQ2n+k

= [−α(1 + q)]mQm+k,

(ii)
m∑

n=0

(
m
n

)
(−1)n(−α2q)m−nV2n+k

= [−α(1 + q)]mVm+k .

Proof. Applying Binet’s formulæ (2.1), we ob-
tain

S =

m∑
n=0

(
m
n

)
(−1)n(−α2q)m−nQ2n+k

=

m∑
n=0

(
m
n

)
(−1)n(−α2q)m−n �	

α2n+kα − (αq)2n+kγ

α(1 − q)


�

= (−α2 − α2q)m
αkα

α(1 − q)
−

(−(αq)2 − α2q)m
(αq)kγ

α(1 − q)

= [−α(1 + q)]m �
	
αm+kα − (αq)m+kγ

α(1 − q)


�

= [−α(1 + q)]mQm+k .

Theorem 5 Let m ∈ N. Then,

(i)
m∑
n=0

(
m
n

)
[α(1 + q)]n(−α2q)m−nQn = Q2m,

(ii)
m∑
n=0

(
m
n

)
[α(1 + q)]n(−α2q)m−nVn = V2m.

Proof. Using Binet’s formulæ (2.1), we have

S =

m∑
n=0

(
m
n

)
[α(1 + q)]n(−α2q)m−nQn

=

m∑
n=0

(
m
n

)
[α(1 + q)]n(−α2q)m−n �	

ααn − γ(αq)n

α(1 − q)


�

= �
	

m∑
n=0

(
m
n

)
[α2(1 + q)]n(−α2q)m−n
�

α

α(1 − q)

− �	
m∑
n=0

(
m
n

)
[α2q(1 + q)]n(−α2q)m−n
�

γ

α(1 − q)

= (α2)m
α

α(1 − q)
− (α2q2)m

γ

α(1 − q)
= Q2m.

3. q−Quaternion polynomials
In this section, we derive quan-
tum quaternion polynomials (q−qu-
aternion polynomials) Qn(z) and Vn(z). We
also derive the Binet formulæ, the generating
functions of these type of polynomials. We
then obtain some results of q−quaternion poly-
nomial sequences. However, first Qn(z) and
Vn(z) must be defined.

Definition 2 Let p(z) and q(z) be polynomials
with complex coefficients. The q−polynomials
Qn(z) and Vn(z) are defined by the recurrence
relation

Qn+2(z) = p(z)Qn+1(z) − q(z)Qn(z)

Vn+2(z) = p(z)Vn+1(z) − q(z)Vn(z)
(3.1)

with the initial conditions Q0(z) = 0,Q1(z) = 1
and V0(z) = 2, V1(z) = p(z), respectively.
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Example 3 (i) Constant type:
Let p(z) = α(q + 1) and q(z) = α2q, we
obtain the polynomials

Qn+2(z) = α(q + 1)Qn+1(z) − α2qQn(z)

and

Vn+2(z) = α(q + 1)Vn+1(z) − α2qVn(z).

(ii) Nonconstant type:
Now let p(z) = h(x) be a polynomial with
real coefficients and q(z) = −1. Then we
get

Qn+2(x) = h(x)Qn+1(x) +Qn(x)

with the initial conditions

Q0(x) = 0, Q1(x) = 1.

We see that this recurrence gives
the h(x)−Fibonacci polynomials. For
h(x) = k, k any real number, we obtain
the k−Fibonacci numbers. In particular,
for k = 1 and k = 2, we have Fibonacci
numbers Fn and Pell numbers Pn, respec-
tively.

Let the roots of the characteristic equation

w2 − p(z)w + q(z) = 0

of the recurrences (3.1) be

α(w) =
p(z) +

√
p(z)2 − 4q(z)

2
and

β(w) =
p(z) − √p(z)2 − 4q(z)

2
.

Then the Binet formulæ for q−polynomials
Qn(z) and Vn(z) are

Qn(z) =
α(w)n − β(w)n

α(w) − β(w)

and
Vn(z) = α(w)n + β(w)n.

Now we will define two q−quaternion se-
quences with components taken from the se-
quences defined above.

Definition 3 The q−quaternion polynomials
Qn(z) and Vn(z) are defined by the recurrence
relation

Qn(z) = Qn(z) +Qn+1(z)i +Qn+2(z)j +Qn+3(z)k,
Vn(z) = Vn(z) + Vn+1(z)i + Vn+2(z)j + Vn+3(z)k.

The initial conditions of the q−quaternion
polynomial sequence Qn(z) are

Q0(z) = Q0(z) +Q1(z)i +Q2(z)j +Q3(z)k
= i + p(z)j + (p(z)2 − q(z))k

and

Q1(z) = Q1(z) +Q2(z)i +Q3(z)j +Q4(z)k
= 1 + p(z)i + (p(z)2 − q(z))j +

(p(z)3 − 2p(z)q(z))k.

For the q−quaternion polynomial sequence
Vn(z), the initial conditions are

V0(z) = V0(z) + V1(z)i + V2(z)j + V3(z)k
= 2 + p(z)i + (p(z)2 − 2q(z))j +

(p(z)3 − 3p(z)q(z))k

and

V1(z) = V1(z) + V2(z)i + V3(z)j + V4(z)k
= p(z) + (p(z)2 − 2q(z))i +

(p(z)3 − 3p(z)q(z))j
+(p(z)4 − 4p(z)2q(z) + 2q(z)2)k.

Example 4 Let p(z) = h(x) be a polynomial
with real coefficients. As we have seen in Ex-
ample 3, we get the h(x)− Fibonacci polynomi-
als from the q−polynomials Qn(z), and thus we
obtain h(x)−Fibonacci quaternion polynomials
from the q−quaternion polynomials Qn(z).
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Theorem 6 The generating functions for the
q−quaternion polynomials Qn(z) and Vn(z)
are

QF (t) =
Q0(z) + [Q1(z) − p(z)Q0(z)]t

1 − p(z)t + q(z)t2

and

VF (t) =
V0(z) + [V1(z) − p(z)V0(z)]t

1 − p(z)t + q(z)t2 ,

respectively.

Proof. The form of the generating func-
tion QF (t) for the q−quaternion polynomial
Qn(z) is

∞∑
n=0

Qn(z)tn. Then the power se-

ries expansion of −p(z)t and q(z)t2 will be
∞∑

n=0
−p(z)Qn(z)tn+1 and

∞∑
n=0

q(z)Qn(z)tn+2, re-

spectively. Thus we obtain that

(1 − p(z)t + q(z)t2)QF (t)
= Q0(z) + [Q1(z) − p(z)Q0(z)]t,

and so

QF (t) =
Q0(z) + [Q1(z) − p(z)Q0(z)]t

1 − p(z)t + q(z)t2 .

Similarly, the generating functions for the
q−quaternion polynomial Vn(z) is

VF (t) =
V0(z) + [V1(z) − p(z)V0(z)]t

1 − p(z)t + q(z)t2 .

We can get also the Binet formulæ for these
quaternion polynomial sequences.

Theorem 7 The Binet formulæ of the
q−quaternion polynomials Qn(z) and Vn(z)
are

Qn(z) =
α(w)nα(w) − β(w)n β(w)

α(w) − β(w)
(3.2)

and

Vn(z) = α(w)nα(w) + β(w)n β(w), (3.3)

where

α(w) = 1 + α(w)i + α(w)2j + α(w)3k,
β(w) = 1 + β(w)i + β(w)2j + β(w)3k.

The following relations can be obtained af-
ter some calculations

Q1(z) − α(w)Q0(z) = β(w),
Q1(z) − β(w)Q0(z) = α(w),
V1(z) − α(w)V0(z) =

(
β(w) − α(w)

)
β(w),

V1(z) − β(w)V0(z) =
(
α(w) − β(w)

)
α(w).

Now we give some summation formulæ, in-
cluding the quaternions Qn(z) and Vn(z).

Theorem 8 For Qn(z) and Vn(z), n ≥ 0, we
have the following summation formulæ

(i)
m∑
n=0

(
m
n

)
(−q(z))m−np(z)nQn(z) = Q2n(z),

(ii)
m∑
n=0

(
m
n

)
(−q(z))m−np(z)nVn(z) = V2n(z).

Proof. For (i), applying Binet’s formulæ (3.2)
we get

m∑
n=0

(
m
n

)
(−q(z))m−np(z)nQn(z)

=

m∑
n=0

(
m
n

)
(−q(z))m−np(z)n

α(w)nα(w) − β(w)n β(w)

α(w) − β(w)

= �
	

m∑
n=0

(
m
n

)
(−q(z))m−np(z)nα(w)n
�

α(w)

α(w) − β(w)

− �	
m∑
n=0

(
m
n

)
(−q(z))m−np(z)n β(w)n
�

β(w)

α(w) − β(w)

=
(−q(z) + p(z)α(w)

)m α(w)

α(w) − β(w)

−(−q(z) + p(z) β(w))m
β(w)

α(w) − β(w)

=
α(w)2mα(w) − β(w)2m β(w)

α(w) − β(w)
= Q2n(z).

Using Binet formulæ (3.3), (ii) can be reached
in the same way.
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4. Applications of the Fibonacci quaternions
In this section we give some applications of
time evolution and rotation, including Hamil-
ton’s quaternions with components from some
special integer sequences.

4.1 Time evolution
Quaternion differentiation’s formula connects
the time derivative of the component of quater-
nion q(t) with the component of the angular
velocity w(t). For a more in depth discussion,
see Rotella (2014). We can write the angular
velocity w(t)

w(t) = wx (t)i + wy (t)j + wz (t)k
= (0,wx (t),wy (t),wz (t))

as a quaternion with zero scalar part. Then the
derivative of unit quaternion q(t) will be

dq(t)
dt
=

1
2

w(t)q(t). (4.1)

We will now derive a relation between the ve-
locity vector

w(t) = (sin θt, sin θt, sin θt)

and the quaternion

q1(t) = (tFn, tFn+1, tFn+2, tFn+3)

time derivative. By (4.1), we have

dq1(t)
dt

=
1√

N (q1(t))

�����
	

−tFn+3 sin θt
t
2 Fn+2 sin θt
− t

2 Fn+1 sin θt
tFn sin θt







�

T

=
1√

N (Qn)

�����
	

−Fn+3 sin θt
1
2 Fn+2 sin θt
−1

2 Fn+1 sin θt
Fn sin θt







�

T

,

where

Qn = Fn + Fn+1i + Fn+2j + Fn+3k

is the nth Fibonacci quaternion. For

w(t) = (sin θt, sin θt, sin θt)

and the quaternion

q2(t) = (tFn, Fn+1, Fn+2, Fn+3) ,

we have

dq2(t)
dt

=
1√

N (q2(t))

������
	

−Fn+3 sin θt
1
2 (Fn+1 sin θt + tFn sin θt)
1
2 (Fn+2 sin θt + tFn sin θt)

1
2 (Fn sin θt + tFn sin θt)








�

T

.

4.2 Rotation

Quaternions with zero real parts are used to rep-
resent vectors inR3. So a vector v is represented
by v0 = (0, v). For a unit quaternion q, consider
the transformation

Lq(v) = qvq∗.

It can be easily seen that the operator Lq(v) is
linear over R3. For any vector v, the action of
this operator on v is equivalent to a rotation of
the vector through an angle θ about û as the axis
of rotation. We can see that q is preserved by
the rotation and hence is along the axis of rota-
tion û. After some calculations q can be written
as

q = cos
θ

2
+ û sin

θ

2
.

Rotating a vector v about the axis û through the
angle θ we obtain that

Lq (v) = (cos θ)v + (1− cosθ)(û · v)û + sinθ(û × v).
(4.2)

Note that
(−q
)

represents the same rotation
and composition of rotations that correspond to
the multiplication of quaternions.
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1. For a real number r and the general-
ized Fibonacci sequence Wn(a, b; p, q),
let q = (r, r, r, r) and

Qn = Wn +Wn+1i +Wn+2j +Wn+3k.

Then

qQnq−1 = (Wn,Wn+2,Wn+1,Wn+3).

2. For the Fibonacci sequence {Fn}n>0 , let
Qn = Fn + Fn+1i + Fn+2j + Fn+3k. We
want to find the resulting quaternion after
rotation, that is

QkQnQ−1
k

for all nonnegative integers n and k . Let
QkQnQ−1

k = (a, b, c, d). Then it can be
seen that

a = Fn,

b =
1

k!3F2k+3

dk f (n, x)
dx

|x=0

for

f (n, x) =
Un,1 + Vn,1x + Tn,1x2

1 − 2x − 2x2 + x3

with Fibonacci sequences Un,1, Vn,1 and
Tn,1, where

Un,1 = 6Fn+2,

Vn,1 = Wn(−5,−9; 1, 1),
Tn,1 = −Fn+1,

c =
1

k!3F2k+3

dkg(n, x)
dx

|x=0

for

g(n, x) =
Un,2 + Vn,2x + Tn,2x2

1 − 2x − 2x2 + x3

with Fibonacci sequences Un,2, Vn,2 and
Tn,2, where

Un,2 = 6Fn+1,

Vn,2 = Wn(13, 18; 1, 1),
Tn,2 = Wn(−7,−10; 1, 1),

and

d =
1

k!3F2k+3

dk h(n, x)
dx

|x=0

for

h(n, x) =
Un,3 + Vn,3x + Tn,3x2

1 − 2x − 2x2 + x3

with Fibonacci sequences Un,3, Vn,3 and
Tn,3, where

Un,3 = 6Fn+3,

Vn,3 = Wn(2, 9; 1, 1),
Tn,3 = Wn(−2,−5; 1, 1).

3. Let v = (F4k+2, F4k+3, F4k+4), where k is
a nonnegative integer. We consider a ro-
tation about an axis defined by (1, 1, 1)
through an angle of π. So it will also
hold for π + 2nπ. We define a unit vec-
tor û = 1√

3
(1, 1, 1). Then by (4.2), we have

Lq (v)

= (F4k+4 − 1
3

F4k, F4k+2 +
1
3

F4k+4,
1
3

F4k+4)

=
1
3

(3F4k+4 − F4k, 3F4k+2 + F4k+4, F4k+4).

For θ = π2 and v = (F4k+2, F4k+3, F4k+4), a
rotation about an axis defined by (1, 1, 1)
through θ will be
Lq (v)

=
2
3

F4k+4(1, 1, 1)+
1√
3

(F4k+2,−F4k+3, F4k+1).
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