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Abstract

In this paper, we introduce the concepts of central Boolean rings and near-rings. We obtain

conditions under which central Boolean near-rings are commutative. We study derivations

in central Boolean rings and near-rings. Finally, we introduce Boolean type fuzzy ideals of

left, right and central Boolean rings and near-rings.

Keywords: Boolean near-ring; Boolean ring; fuzzy ideal; near-ring; Ring.

Mathematics Subject Classification (2010) :16Y30

1. Introduction

An algebraic system N along with binary
operations addition and mutiplication that
satisfies the axioms of a ring, with an exception
of commutativity of addition and one of the
distributive laws is a near-ring. In this paper,
N denotes a right near-ring.

A ring R that satisfies the condition 2? = x
for all z € R is a Boolean ring. A Boolean
near-ring is a near-ring where all the elements
are idempotent. (Reddy, 2017) studied recent
developments in Boolean near-rings.
(Kedukodi et al., 2009) studied equiprime,
3-prime and c-prime fuzzy ideals of near-rings.
(Jagadeesha et al., 2016) studied homomorphic
images of interval-valued L-fuzzy ideals and
proved isomorphism theorems. (Nayak et al.,
2018) introduced left and right Boolean rings
and near-rings and discussed derivation of them.

(Ma & Zhan, 2014) studied concepts of fuzzy
soft I'-hemirings.

For more information on recent developments
in near-rings and Boolean near-rings research,
see (Kedukodi et al., 2017), (Bhavanari et al.,
2010), (Nayak et al., 2018), (Koppula et al.,
2018), (Davvaz & Sadrabadi, 2014) and (Zulfiqar
& Shabir, 2015). These authors provide basic
definitions. (Bhavanari & Kuncham, 2013),
(Pilz, 1996), (Jagadeesha et al., 2016) and
(Jagadeesha et al., 2016).

The paper is divided into three sections.
In Section 3, we introduce central Boolean
near-rings with motivating examples, and we
obtain interrelations with left (resp. right) Boolean
near-rings. In Section 4, we study derivations
on central Boolean rings and near-rings. In
Section 5, we introduce Boolean type fuzzy
ideals of central Boolean rings and near-rings.



2. Preliminaries

Definition 2.1 (Nayak et al., 2018) Let N
be a near-ring. N is called a left (resp. right)
Boolean near-ring if there exists n € N such
that 22 = nx (resp. 2 = zn) forallz € N. If
N is a ring satisfying 22 = nx (resp. x? = xn)
for all x € N, then N is called a left (resp.
right) Boolean ring.

For computations in near-rings, we use the
GAP package SONATA (Aichinger et al., 2012).

Example 2.1 (Nayak et al., 2018)

_ z  (0,0)
LetM{{(O,O) .
(N,+) & Zy X Zy. Take (0,0) = e,(0,1) =
a,(1,0) = b and (1,1) = ¢. Let - be defined

on N as follows

x-y—{ a if ze{bclandy=c

] |z € N}, where

e otherwise.

Then M is a left Boolean near-ring with
n = [ Z i ] Note that M is neither a right

Boolean near-ring nor a commutative near-ring.

Definition 2.3 (Plasser, 1974) An ideal
I of N is said to be IFP ideal if for every
a,b € N, ab € I implies anb € [ foralln € N.
N is called an IFP near-ring if for a,b € N,
ab = 0 implies anb = 0 for all n € N. N
is said to have strong IFP if all ideals N are
IFP ideals.

Theorem 2.4 (Kedukodi et al., 2009) Let
1 be a fuzzy ideal of N. Then p is an equiprime
(3-prime and c-prime, respectively) fuzzy ideal
of N if and only if for every ¢t € («, 3], the
level subset p; is an equiprime (3-prime and
c-prime, respectively) ideal of N.

Corollary 2.5 (Kamal & Al-Shaalan, 2012)
Let R be a 3-prime near-ring with a non-zero
semigroup right (left) ideal U and a non-zero
semigroup ideal V. If R admits a non-zero
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derivation d such that d(vu) = d(uv) for all
v €V, u € U, then R is a commutative ring.

Corollary 2.6 (Kamal & Al-Shaalan, 2012)
Let R be a 3-prime near-ring with a non-zero
derivation d and a non-zero semigroup ideal
U.

(i) If d(uy) = —d(yu) for all u € U, y € A,
where A is a subgroup of R, then A C Z(R)
and R is of characteristic 2 or d(A) = {0}.
(ii) If d(vu) = —d(uv) for allv € V, u € U,
where V' is a non-zero semigroup left ideal of
R, then R is a commutative ring.

(iii) If d(vu) = —d(uv) for all v € V, u € U,
where V' is a non-zero right R-subgroup of R,
then R is a commutative ring of characteristic
two.

3. Central Boolean rings
and near-rings

Definition 3.1 Let N be a near-ring. N
is called a central Boolean near-ring if there
exist n,m € N, such that 22> = nam for all
x € R. If N is a ring satisfying 22 = nam for
all z € N, then N is called a central Boolean
7ing.

We give an example of a central Boolean
ring which is not a Boolean ring.

Example 3.2 Consider (R, +) = Zy X Zs.
Let - be defined on N as follows

(1,0) ifz € {(1,0),(1,1)}
and

y €{(1,0), (1,1}

(0,0) otherwise.

Ty =

Let n = (1,0) and m = (1,1). Then R is a
central Boolean ring.

We have (0,1)? = 0 # (0,1). Hence, R is not
a Boolean ring.

Example 3.3 Let R be a central Boolean
ring. In R?*, define addition componentwise
and multiplication by
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(xlv Y1, 21,5 wl)(x27 Y2, 22, w2)
= (2122,0,0,y120—y221). Then R*is a central
Boolean ring.

Example 3.4 Let (N,+) = D, =
{e,r,r% r3 s,rs,7%s,r3s}. For the purpose of
completeness, we explicitly mention 4+ and -
operations in the following tables, wherein we
take e = 0,7 = 3,72 = 5,1 = 6,5 = 1,75 =
7,125 = 4,135 = 2.

+/0 1 2 3 4 5 6 7
0j01 2 3 4 5 6 7
111 0 3 2 5 4 7 6
212 6 04 3 71 5
313 71 5 2 6 0 4
414 5 6 701 2 3
5|5 4 7 6 1 0 3 2
6/6 2 4 0 7 3 5 1
7|7 3 5 1 6 2 40
101 2 3 4 5 6 7
0j0 0000 0 00
110 0 56 5 0 0 5 5
2/0 50 55 0 5 0
310 5 5 0 5 0 0 5
410 0 5 5 0 0 5 5
5(0 0 0000 0 O
6/0 5 5 0 5 0 0 5
7/0 5 0 55 0 5 0

In this example, we see that N is both a
left and right Boolean near-ring for n = 5,
and N is a central Boolean near-ring for all
n,m e N.

Remark 3.5 (i) Every zero square ring is
a central Boolean ring for all n,m € R.
(ii) Near-ring M defined in Example 2.1 is
a left Boolean near-ring and not a central
Boolean near-ring.
(iii) A left(resp. right) Boolean near-ring with
right(resp. left) identity is a central Boolean
near-ring.

Now, we give an example of a central Boolean
near-ring which is not a right Boolean near-ring.

Example 3.6 Let (N,+) = Zy X Z,. Let -
be defined as follows:

- 1(0,0) ] (0,

0
0
07
0
0

Y

0,0
0,0
0,0
0,0

)

bl

jew] New] Nen) New) ol
||| —

)

) | (
) | (
)| (
) | (
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Then N is a central Boolean near-ring with
n = (1,1) = m. N is also a left Boolean
near-ring with n = (1,1). However, N is not
a right Boolean near-ring.

Proposition 3.7 Let R be a central Boolean

ring. If n,m are not zero divisors then R is
commutative.
Proof. We have (z + y)* = n(z + y)m =
nezm~+nym. Then (z+y)(z+y) = nem+nym
= z(r +y) +ylx +y) = nem + nym =
22 + a2y + yr + ¥ = nzm + nym = nrxm +
ry+yr+nym = nem+nym = xy+yr = 0=
ry = —yx....(1). Also, (z+2)? = n(z+z)m =
nxm + nxm = 2* + 2% + 2% + 2% = nam +
nzm = n(r+z)m =0 =z = —z...(2). By
(1) and (2), we get zy = yz.

Proposition 3.8 Let R be a central Boolean
ring with |[R| > 3. If 0 # n,0 # m are
not zero divisors, then R has a proper zero
divisor.

Proof. Let x,y € R such that 0 # x # y # 0.
Note that z +y # 0. If xy = 0, then z is

a proper zero divisor. Let zy # 0. (zy)(z +

y) = zyxr + xyy = yr? + xy*(because R is
commutative when n and m are not zero-divisors)
= ynxm + znym = znym + xnym = 0. Thus

xy is a proper zero-divisor.

Proposition 3.9 Let f : Ry — Ry be an
onto ring homomorphism. If R; is a central
Boolean ring then Ry is a central Boolean
ring.



Proof. The proof is obvious.

Proposition 3.10 Let R # 0 be a domain
with no zero divisors and a central Boolean
ring. Then nm = 1.

Proof. The proof is obvious.

Theorem 3.11 Let IV be a central Boolean
near-ring and P be a c-prime ideal of N. If n
and m are not zero divisors then P is maximal.
Proof. We have, 2% = nzm = x> — nzm =
0 € P= xz(x —nam) € P = x € P or
r—nxm e P =x€ Porx €nem+ P =
N/P = {P,nzm + P} = N/P is a field.
Hence P is maximal.

Corollary 3.12 Let N be a central Boolean
near-ring and P be an equiprime ideal that
has IFP. If n and m are not zero divisors then
P is maximal.

Proof. Proof follows from Theorem 3.21 of
(Kedukodi et al., 2009) and Theorem 3.11.

Definition 3.13 Let I be an ideal of N. [
is called a central Boolean type if there exist
n,m € N such that 22 — nzm € I for all
r€N.

Proposition 3.14 Let I be an ideal of N.
Then N/I is a central Boolean near-ring if
and only if [ is a central Boolean type.
Proof. We have 2> —nam € [ & 22+ 1 =
nzm+1I & (z+1)*=n+1)(z+I1)(m+1).
Hence, N/I is a central Boolean near-ring if
and only if [ is a central Boolean type.

Remark 3.15 If I = {0} is a central Boolean
type, then N is a central Boolean near-ring.

Theorem 3.16 Let R be a central Boolean
near-ring. If n is a distributive element and
has a left identity e, then R is a zero symmetric
near-ring. Furthermore, if there exists a left
ideal I such that e € I and (i) nem € I =
x e Iy (ii) [X,Y]NnI = {0}, then R is a
commutative ring.
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Proof. Since e is left distributive, the equation
(e +e)* = n(e+e)m = nem = nem = (e +
e)(e+e) =nem+nem = e(e+e)+e(et+e) =
nem-+nem = e?+e?+e*+e* = nem-+nem =
nem+nem =0 = n(e+e)m =0 = e+e = 0.
If zisin R, then x + 2 = (e +e)z = 0.0 =
O=z+z=0.

Let w be an arbitrary element in R. Then
(e + w)? = n(e + w)m = nem + nwm =
(e + w)(e + w) = nem + nwm = e(e + w) +
w(e+w) = nem+nwm = e*+w+w(e+w) =
nem + nwm = w(e + w) = —w + nwm =
w+w? = (e +w)w.

w(e+w)— (e+w)w=0—-——(1)

Now, w(e+w)0 = (e4+w)w0 = w(e0+w0) =
ew( + wwl = wwl = ewl + wwld = w0 = 0.
Thus R is a zero symmetric near-ring.
Replacing w = ab and w = ba in equation (1),
we get (e +ab)ab = ab(e+ ab) = ab+ (ab)? =
ab(e + ab). Now we have
ab = ab(e + ab) — nabm.
Similarly, ba = ba(e + ba) — nbam.

Hence ab — ba = ab(e + ab) — nabm — [ba(e +
ba) — nbam] € I.

We have ab — ba € [X,Y]| = {zy — yx|z €
X,yeY}andab—ba €I = ab—ba=0=
ab = ba.

Corollary 3.17 Let R be a central Boolean
near-ring. Let n be a distributive non zero
divisor of R, and let I be a left ideal such that
[X,Y] NI ={0}. Then (R, <) is a partially
ordered set with < defined by = < y if zy =
nxm. In addition, if nom € I = x € |
and R has a left identity e such that e € I,
then (R, <) is a lattice with meet and join
operations given respectively by z Ay = zy
and zVy =2x+y+ 2y.

Proof. 1t is straightforward to verify that
(R,<) is a partially ordered set. The rest
of the proof follows from Theorem 3.16.

Definition 3.18 Let N be a central Boolean
near-ring and I be an ideal of N. N is said
to satisfy a weak commutative property with
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respect to ideal I, if for all a,b,c € N, abc —
ach € 1.

Lemma 3.19 Let N be central Boolean
near-ring. If there exists an ideal I in N such
that (i) nem € [ = v € I and (ii) zlx C [
forallz € N, thenab—aba € I foralla,b € I.
Proof. We have (ab — aba)* = n(ab — aba)m.
Now (ab — aba)* = (ab — aba)(ab — aba) =
ab(ab— aba) — aba(ab— aba) = ab(ab—1iy) — iy
[where i; = aba and iy = aba(ab — aba)] =
i3 + abab — iy € I = n(ab — aba)m € I =
ab—aba € 1.

Theorem 3.20 Let N be a central Boolean
near-ring. If there exists an ideal I in N
such that (i) nem € I = x € [ and (ii)
xlx C I for all x € N, then N satisfies the
weak commutative property with respect to
I.

Proof. We have abc — acb = abc — a(cbe +
iy)[because ¢b — cbc € I = cb = cbe + iy
= abc — iy — acbc = abc — acbe — iy = (a —
ac)be — iy = ((a —ac)b(a —ac) +iz)c — iz € I.

Corollary 3.21 Let N be a central Boolean
near-ring with ideals I such that (i) nzm €
I = x €I and (ii) zlz C I for all z € N.
Then N has a strong IFP.

Proof. Let ab € I. By Theorem 3.20, azb =
abr 41 € I. This implies N has a strong IFP.

Theorem 3.22 Let N be a central Boolean
near-ring, and I be an ideal of N such that
(i) nam € I = x € I; (ii) zlx C I for all
x € N. If L is any left ideal of N containing
I, then L is an ideal of N.

Proof. Let L be a left ideal of N. To show
that L is an ideal, it suffices to show that
LN C L Letl e Line N. |l =1+
and n = ng + n. are Pierce decompositions,
where ly, ng € Ny; le,n. € N-(1). Since L is a
left ideal, we have that NoL C L, for mol =
mo(0 + 1) — mo0 € L for all mg € Ny,l €
L-(2). Now, nlm = 1> = (lp+1.)l = lol + 1.l =
lol+1.. By (2) I, 1ol € L, and it follows [. € L,

and hence, Iy € L. We have In = (lg+ l.)n =
lon+1l.n = lon+1. = lo(ng+n.) +1. = lo(no+
ne)lo +i+ 1. = lo(nolo + ne) + 1+ .. We have
lone = lgn0 = lp0n. +i = 0+ € 1. Since
no, lp € L, we have lo(noly + n.) = lone + iz €
I C L. Thus, In = ly(nely + ne) + 1. € L.
Hence, L is an ideal of N.

4. Derivations

Definition 4.1 (Bell, 1987) A derivation
on N is defined as an additive endomorphism
satisfying the product rule

D(zy) = xD(y) + D(z)y
for all x,y € N.

Theorem 4.2 Let R be a central Boolean
ring and D be the derivation on R with D(nzm) =
0 for all z € R. Then D(zy) = —D(yx).
Proof. Let R be a central Boolean ring. Then
z? = nzm. We have D(z?) = D(nzm) =
0. = zD(x)+D(x)r =0 = D(z)xr = —xD(x).
Now we have (z + y)?> = n(z +y). Then
D(z 4+ y)* = D(n(x +y)m) = 0 = D((z +
y)(z+y) =0= (x+y)Dx+y)+ D+
y)(x+y) =0= zD(z)+xD(y) + yD(z) +
yD(y) + D(x)x + D(y)x + D(x)y + D(y)y =
0= 2D(y) +yD(x)+ D(y)x+ D(z)y =0 =
D(zy) = —D(yx).

Corollary 4.3 1. If z+xz = 0, then D(xy) =
D(yzx).
2. If R is a zero square ring, then D(xy) =
—D(yzx).

Theorem 4.4 Let R be a central Boolean
ring without zero divisors. Let D be the commuting
derivation on R. Then either D(n) = D(m)
or D(n+m)=n—m.

Proof. We have 22 = nxm. Then we have the
following: (D(n))?* = nD(n)m and D(m)?* =
nD(m)m. We get D(n)D(n)— D(m)D(m) =
(nD(n) —nD(m))m

= (D(n)=D(m))(D(n)+D(m)) = n(D(n)—
D(m))m. Since D is commuting,

(D(n) — D(m))(D(n) + D(m) —n+m) = 0.



Hence, D(n) = D(m) or D(n+ m) =n — m.

Corollary 4.5 Let R be a central Boolean
ring without zero divisors. Let D be the comm
uting derivation on R. Then,

1. D(n) =0 or D(n) = nm.
2. D(m) =0 or D(m) = nm.
Proof. The proof is obvious.

Theorem 4.6 Let R be a central Boolean

ring without zero divisors. Let n? + m? # 0
and D be the derivation. If D(n) # 0 and
D(m) # 0 then D is one-one.
Proof. We have ? = nzm. Then D(z?)
D(nzm) = xD(z) + D(z)zr = nD(zm)
xmD(n) = n(zD(m)+mD(z))+xzmD(n)
0 = nxD(m) + nmD(z) + amD(n) = 0 =
nD(z)m = nzD(m) + mazD(n) = (D(z))* =
(nD(m) + D(n)m)x = (nnm + nmm)r =
(n? + m*)z. Now if D(z) = 0 = (D(z))? =
0= (n>+m?)x =0 = 2 =0. Hence, D is
one-one.

=+

Definition 4.7 A near-ring N is said to be
2-torsion if x +x =0 for all x € N.

Theorem 4.8 Let N be a 2 torsion central
Boolean near-ring without zero divisors. Let
n?> +m? # 0 and D be the derivation. If
D(n) # 0 and D(m) # 0, then D is one-one.

Proposition 4.9 Let N be a central Boolean
near-ring with a nilpotent element x.
1. If nis not a zero divisor, n?> = 0 and n = m,
then z0 = 0.
2. If N is a near-field and m = n~!, then
n0 = 0.
Proof. 1. We have (%)% = 0. Now (z)* =
(nzn) = nz0. As n is not a zero divisor, we
get 20 = 0.
2. We have (2%)2 = 0. Also, (22)*

(nzn=Hk = (nan=1)(nan=1)...

k 1 1

(nzn™t) = na*n™t = nOn~

n0 = 0.

= n0. Hence,
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Example 4.10 Let N be a near-ring defined
in Example 3.4. Define D : N — N by
D(xz) = 2z for all x € N. Then D is a
derivation on N. Note that in Example 3.4,
n0 = 0.

Remark 4.11 In Example 3.4, as
rNy = 0, we observe that D(z) = 22 is a
derivation on N.

Theorem 4.12 Let R be a 3-prime central
Boolean ring. If D is the derivation on R
with D(nzm) = 0 for all x € R, then R is a
commutative ring.

Proof. Proof follows from Corollary 4.4 (ii)
of (Kamal & Al-Shaalan, 2012) and Theorem
4.2.

Corollary 4.13 Let R be a 3-prime central
Boolean ring with x +2 =0 for all x € R. If
D is the derivation on R such that D(nzm)
= 0, then R is a commutative ring.

Proof.  Proof follows from Corollary 3.2 of
(Kamal & Al-Shaalan, 2012) and (1) of Corollary
4.3.

5. Boolean type fuzzy ideals

Definition 5.1 (Davvaz, 2006) Let «, 5 €
[0,1] and a < (. Let p be a fuzzy subset
of a near-ring N. Then g is called a fuzzy
ideal with thresholds of N, if V x,y,i € N
the following holds:

(1) aVpulz+y) = BAp@)Auy),

(2) aVvpu(—z) = BAp(z),

(3) aVuly+z—y) = BAu@),

(4) aVpu(zy) = BA p(z),

(5) aV pu(z(y + i) —xy) = B A pi),
wherein A and V denote the usual meet and

join operations on the lattice (chain) L =
0, 1].

—~ o~~~

Definition 5.2 A left (resp. right, resp.
central) Boolean type ideal I of near-ring N is
called a strong left (resp. right, resp. central)
Boolean type ideal if for alln € N, 2> —nx €
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implies z € 1.

Definition 5.3 Let N be a near-ring and
i be a fuzzy ideal of N. Let a and [ be lower
and upper thresholds, respectively. Then p is
called a strong left (resp. right, resp. central)
Boolean type if for n € N, for all x € N,
a, € [0,1] and o < S,

aVu(z) > B ANinfu(z? — nr)
neN

resp. aV p(x) > B Ainfu(x? — xn)
neN

resp. aV pu(x) > BA inf u(z® —nwrm)

n,meN

Definition 5.4 (Kedukodi et al., 2009) Let
i be a fuzzy subset of near-ring N. For t €
[0,1], the set p; = {z € N|u(z) >t} is called
a level subset of V.

Example 5.5 Consider
Zi; = {0,1,2,...,11}. Let @« = 0.1 and 8 =
0.7. Define a fuzzy subset p : Zio — [0, 1] by

09 if 2=6
08 if x=0
0.7 if ze€{3,9}
0.1 elsewhere

pz) =

Then p is a left as well as right Boolean
type fuzzy ideal of Zi
(Take n = 3). Also, p is a central Boolean
type fuzzy ideal of Zis
(Take n = 3 and m = 1).

Theorem 5.6 Let 1 be a fuzzy subset of V.
Then p is a strong left (resp. right) Boolean
type fuzzy ideal of N if and only if the level
subset 1 is a strong left (resp. right) Boolean
type ideal of N for all ¢t € (o, f].

Proof. Let p be a strong left Boolean type
fuzzy ideal of N. Take t € («, 8],z € N such
that 22 — nx € y; for all n € N. Then

p(z?—nx) > tforalln € N. Hence, infu(z*—
neN

nx) > t. By definition of a Boolean type fuzzy

ideal, we have a V p(z)
> BAinfu(z? —nx)

neN
> BAt =t. Hence, we get pu(z) >t = x € .
Therefore, pu; is a strong left Boolean type
ideal of V.
Conversely, assume that there exists x € N
such that

aVu(z) < B <infu(z® —nx).
neN

Choose t such that

aVu(r) <t < BAinfu(z® —nx).
neN

This implies p(z) < t and
infu(z? —nx) >t
neN
=& p; and 22 —nx € p; for alln € N, a
contradiction to the assumption that p, is a
strong Boolean type fuzzy ideal of N for every
t € (o, B]. The proof is similar for a strong
right Boolean type fuzzy ideal.

Theorem 5.7 Let 1 be a fuzzy subset of
N. Then p is a strong central Boolean type
fuzzy ideal of N if and only if level subset
is a strong central Boolean type ideal of N for
all t € (o, f].

Proof. Let u be a strong central Boolean type
fuzzy ideal of N. Take t € («, ],z € N such
that
2?2 — nam € p, for all n,m € N. Then
wu(z* — nxm) > t for all n,m € N. Hence
inf p(xr? —nxm)
n,meN

> t. By definition of Boolean type fuzzy ideal,
we have
aVu(z) > BA inf u(x* — nam)

n,meN

> BAt=t.

This implies p(z) > t. Hence, x € p;. Therefore,
11 18 a strong central Boolean type ideal of N.
Conversely, assume that there exists x € N
such that

aVu(z) < B < inf p@* —nrm).
nmenN



Choose t such that
aVu(z) <t<BA inf pla® —nxm).

n,meN
This implies p(x) < t and

inf p(z? —nazm) >t = v ¢ p and 2% —
n,meN

nxm € p; for all n,m € N, a contradiction
to the assumption that p; is a strong Boolean
type fuzzy ideal of N for every ¢ € («, ).
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