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Abstract

The inverse degree index of a graph G = (V,E) without isolated vertices is defined as
ID(G) =Y, ,cv %, where dv is the degree of the vertex v in G. In this paper, we show a relation
between the inverse degree of a graph and the inverse degree indices of the primary subgraphs
obtained by a general decomposition of G, we establish some relations between the inverse degree
index and other known indices and an application to a specific chemical structure is given.

Keywords: Decomposition; inverse degree index; polyethylene graph; topological indices.

1. Introduction

The study of topological indices becomes increa-
singly important due to the information they pro-
vide about the chemical structure of molecules
in terms of graph theory. Topological indices
condense information of some properties of a
molecule into a real number that is computed
from the representative graph of the molecule,
through parameters of vertices, edges or matri-
ces associated to the graph (the adjacency ma-
trix A(G), the distance matrix D(G) or the in-
cidence matrix T(G)). A graph invariant is a
graph-theoretic property which is preserved un-
der isomorphisms (Harary 1969; Read & Corneil
1977), and topological indices are precise exam-
ples of graph invariants. Some molecules, such
as alkanes, can be seen as graphs in which the
atoms are represented by vertices and the cova-
lent chemicals bonds by the edges of a simple
graph. The later are called molecular graphs in
mathematical chemistry. In this way, graphs are
models of the spacial structure of a molecule and
the molecular topology (the pattern of connect-
edness of atoms).

Topological indices have been studied in or-
der to improve the understanding of the chemical
structures of molecules. Gutman (2013) investi-
gated some familiar topological indices. Xu et
al. (2014) researched the first and second Za-
greb indices and coindices of connected graphs.
In addition, the authors gave closed formulae for
the Zagreb coindices as functions of Zagreb in-
dices and their orders and sizes. Other authors
have established bounds for topological indices.
Elumalai et al. (2018), for example, obtained
several lower and upper bounds for inverse de-
gree and compared it to other topological indices.

Researchers are interested in the study of two-
dimensional structures formed by atoms because
they make up carbon nanotubes, structures for-
med by sheets of graphite with the thickness of
an atom. Nanotube technology is in its infancy
but is a promising field because of increasing ap-
plications. These include but are not limited to,
electronics and batteries, medical applications,
purification and oil cleanup. This research pre-
sents grid and cylinder results that may represent
nanotube structures
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One of the best known indices is the Randié¢
connectivity index R (Randi¢ 1975). Several pa-
pers on this index include those by Gutman &
Furtula (2008); Li & Gutman (2006); Rodriguez
& Sigarreta (2005); Gutman (2013). Since its in-
troduction, there have been many efforts to im-
prove this index, and other chemical and mathe-
matical indices have been proposed. The Randi¢
index is defined as

1
ZeE Vdudy’

where du and dv denote the degrees of vertices
u and v, respectively.

The inverse degree index of G, denoted by
ID(G) is defined by the following formula

R(G) =

1
DG) =Y —, (1)
ucVv du
but it can be equivalently defined in terms of

edges as follows

du?* + dv?

du?dv? 2)

ID(G) =)

uvekE

Formula (1), is called the vertex-definition for
the inverse degree and (2) the edge-definition.

The general forgotten index Fy (G) is defined
by

Fo(G) =Y du®.
ucV
Note that ID(G) is a particular case (with o =
—1) of the general forgotten index.

Throughout this paper, our graphs G = (V. E)
are non-oriented, finite, simple (without multiple
edges or loops) and connected, we consider that
a graph G’ = (V' E') is a subgraph of G = (V,E)
if V cVand E' CE. Forv €V, dv denotes its
degree, N(v) is its set of neighbors, that is,

N(v)={ueV:ueckE}
and Ng (v) is its set of neighbors in G’

Nog(v)={ueV':uvekE'}.

For a graph G, n is its order (|V|), m its size (|E|),
and 6 and A are its minimum and maximum de-
grees, respectively.

2. Examples of computing the inverse degree
index of some families of graphs

Now we use the edge-definition for computing
the inverse degree index for some known graph
families. To make easier our computations, we
use the following identity for any real numbers
a,b:

a+b* 11

2 2R

Proposition 2.1. The inverse degree indices of
the following graphs are

i. If P,isthe path graph of ordern(m=n—1),
then ID(P,) = 2 = mi3,

2 2
ii. if G is a k—regular graph (2m = kn), then
ID(G) =4 =724,

iii. if Sy, is the star graph of order n+1 (m =n),
ID(S,) = 2ol — miil

m )
iv. for the wheel graph W, of order n+1 (m =
2n), ID(W,) = 13 — mt6

3n = 3m

v. for the grid graph Gy = P, X P; (m = 2rs —

r—s), ID(G;) = W,

vi. for the cylinder graph C.; = C, X Py (m =
r(2s—1)), ID(Cy,) = "3,

Proof. Every proof is elementary, we show only
three cases, the others are analogous.

For P,, note that there are two edges whose
endpoint vertices have degree 1 and 2 and m — 2
edges with endpoints of degree 2. Thus

ID(P) = Y, <#+ﬁ>

5 1 m+3
If G is k—regular, every vertex of G has de-

gree k. Hence

1 1
ID(G) = —+—
() u;E (d“2+d"2)
2 2m
uveE
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The grid graph G, s has four kinds of edges
uv: eight of degrees 2 and 3 (on the corners),
2(r—3)+2(s—3) of degrees 3 and 3 (on the
borders), 2(r —2) +2(s — 2) of degrees 3 and 4
(exactly one endpoint on the border), and (r —
3)(s—2)+(r—2)(s—3) edges of degrees 4 and
4. Thus

ID(G) = ) (#—i—#)

uveE
1 1 1 1
) _ a4z
8(4 9)+ (r+s 3)(9+9)
124y (Lot
rs 9" 16

+ (2(rs+6) —5(r+y)) (%6 + 1_16>

_ 3rs+2(r+s)+4
N 12 '

0

3. The inverse degree index and its relation
with other indices

In this section we give some relations between
the inverse degree index and other indices.

3.1 The inverse degree and Randi¢ indices

The Randi¢ index (Randi¢, 1975) has proved to
be the most prominent of all topological indices
as it is vital in applications for modeling the che-
mical properties of organic molecules. Recall
that for a graph G without isolated vertices, the
Randi¢ index is defined as

1

R(G) = "
©) ME‘E Vdudv
There is a generalization to the last expression
R1(G) = Y (dudv)*,
uvekE

which is known as the generalized Randi¢ index
(Gutman 2013). Note that R(G) =R _, »(G).

To compare the inverse degree and Randié
indices, the following elementary lemma will be
useful.

Lemma 3.1. Let a,b,l and L be positive real
numbers such that 1 <1 <a,b < L. Then

20— <
L3ab —

and the equality in each bound is attained if and
onlyifl =a=b=L.

Proposition 3.2. Let G be a graph without iso-
lated vertices. Then

2 iR(G) <ID(G) <2 %

5 R(G).

The equalities in each bound are attained if and
only if G is regular.

Proof. Since 6 < du,dv < A, the above relations

imply
[/ O [ A
< .
2 Addudv — =2 63dudy

Summing over all edges of G, we obtain
Z du?® +dv?

ugE dudv uvekE du2 dv2
< 2\ /
MVEE dM dV

2 %R(G)SID(G)§2 A—ZR(G).

du® + dv?
du? dv?

SO we get

The equalities are attained in each bound if and
only if G is regular. U

3.2 The inverse degree and harmonic indices

Insofar as we know, the harmonic index appeared
for the first time in S. Fajtlowicz (1987) as a vari-
ant of the Randi¢ index. Since its introduction
several papers have presented min and max val-
ues for it. The Harmonic index of G is defined

as
1

du+dv’

H(G) = ),

uvekE

Proposition 3.3. Let G be a graph. Then

m(4A — §2)
282A

m(48 — A?)

H(G)+ TSA2

<ID(G) <H(G)+
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The equalities are attained in each inequality if
and only if G is regular.

Proof. Since 6 < du,dv < A, we have

du? +dv? - 2 and 1 - 1
dudv? — 62 du+dv 2A
Thus,
DG) <2 and —H(G) < -
- 52 2A
obtaining
m(4A — 8%)

<
ID(G) <H(G) +— 7
Analogously, we obtain the other inequality. The
equalities are attained in each bound if and only
if G 1s regular. U

3.3 The inverse degree and second Zagreb
indices

Formerly known as “Zagreb group indices” the
first and second Zagreb indices, M| and Mj, have
mostly been studied in regards to lower and up-
per bounds or for determining graphs for which
these values are extremal. Furtula et al. (2010)
proposed a modified version of these indices na-
med “the augmented Zagreb index”. Other au-
thors have established properties thereto. See
Ali, Raza & Bhatti (2016). Gutman & Trina-
jsti¢ (1972) proposed the structure-dependency
of total w—electron energy. The authors proved
that the value depends on the sums ¥, dv? and
Y,y dv? of the molecular graph (the first Zagreb
index and the forgotten index, respectively). This
sum showed notable applications. Finally, work
by Abdo, Dimitrov & Gutman (2017) examined
the trees extremal with respect to the index.

The second Zagreb index of G is defined as
the sum of the products of the degrees of pairs
of adjacent vertices of G, that is

= Z dudv.

uveE
Proposition 3.4. Let G be a graph. Then

m(2— &%)
R

m(2 —A*)

M(G)+ A2

<ID(G) < My(G) +

The equalities are attained in each inequality if
and only if G is regular.

Proof. Since 0 < du,dv < A, we have
and 8% < dudv < A

. . . . 2 2
Considering the identity 4520 — L 4 1 and

adding up over all edges, we obtain

2m 2m
2 <ID(G) < < and m8? < My(G) < mA?.
Thus,

ID(G) < My (G) +m (% - 52)

Analogously, we obtain the other inequality. The
equalities are attained in each bound if and only
if G is regular. L]

Example 3.1. We show explicit computations of
the indices considered in the last sections for the
Polyethylene graph.

Figure 1 shows the associated graph of polye-
thylene. Polyethylene is the most common plas-
tic which has many forms. Most have the chem-
ical formula (C2Hy),,.

L

Fig. 1. A polyethylene graph

First note that the polyethylene graph has four
types of edges: two whose endpoints vertices
have degrees 4 and 3, n — 3 with vertices of de-
grees 4 and 4, four of degrees 3 and 1 and 2(n —
2) of degrees 4 and 1. Thus, we get

ID(G)= ) <#+ﬁ>

uvekE

1 1 1 1
2<9+16>+(l’l 3)<E+_6>
1 1 1
*4(1 ) (T —6)
9]
4"
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1
u;E vV dudy

i) o0 k)

+4<\/%>+2(n—2) (%)
5 5 11
MY AT w

1
H(G) = R
(C) Mé‘E\/du+dv

RS ES
+4(ﬁ)+2(n_2) (ﬁ)

a3t
4 280
M,(G) = Z dudv

uveE
=2(4-3)+ (n—3)(4-4)
+4(3-1)+2(n—2)(4-1)
=24n —28.

R(G) =

N

For the polyethylene graph, we have 3n vertices,
3n—1edges, § = 1 and A = 4. Notice that the in-
equalities obtained in the last sections are strict.

&

4. The inverse degree index and decomposi-
tions

Given a graph G, we say that a family of sub-
graphs {Gy,...,G,} is a (primary) decomposi-
tion of G if the following conditions hold:

o G=G1U---UG, and

¢ the intersection of any two of these sub-
graphs is at most a vertex, that is

0, or;

G’ﬂGj:{ {v}, forsomeveV.

These subgraphs are called primary subgraphs
of the decomposition of G.

Note that for any graph G, we can always
construct a decomposition, at least the trivial one

G=G1U---UGy,

where G; is an edge with its two endpoints being
vertices of G.

Hernandez-Gomez et al. (2017) used the
T — decomposition concept for finding some relations
between geometric-arithmetic index of a graph
and of its components. A T —decomposition is a
particular case of a primary decomposition, since
the intersection of any two of the induced sub-
graphs is at most a cut-vertex. v € V is a cut-
vertex if removing it disconnects the graph.

In this section, we use a (primary) decom-
position of a graph to show a relation between
the inverse degree of the graph and the inverse
degree indices of the primary subgraphs induced
by this decomposition.

Given a decomposition {Gy,...,G,} of G,
we use the following notation: % is the set of
vertices v € G belonging to at least to two G;’s,
for v € #, we can assume without loss of gen-
erality that Gy, ..., Gy are the primary subgraphs
containing v. We denote by d; the number of
neighbors of v in G; (thus dv = dy +--- + dy,
since an edge belongs to a unique primary sub-
graph). For v € %/, we define the function W
as

du? +dv?
W)=Y ——5
ueN(v)—#' du? dv?

_ i djuz +djV2

Sluen o dtdp?
where N;(v) = Ng;(v).

Let & be the set of edges in G with both
endpoints in 7. If e =uv € Z, then e € G; for
aunique i. For e = uv € 2, we define a function
Z by the rule

B di? +dv?  du’ +dp?
durdv? du?dp*

Z(e)

The following result allows to compute the pre-
cise value of the inverse degree index of G in
terms of the inverse degrees indices of the pri-
mary subgraphs in any decomposition.

18
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Theorem 4.1. Let G be a graph and {G1,. ..
a decomposition of G. Then,

+ZW —l—ZZ(e)

i=1 vew ee

,Gr}

Proof. Let uv € E be an edge of G. We have
three cases.

a. u,v ¢ W . For this case uv belongs to a unique
primary subgraph G|, so the term in ID(G)
corresponding to uv in G is equal to its corre-
sponding term in ID(G).

b. u ¢ # and v € #'. Here there are two sub-
cases.

b. 1 u e Gj, forsome 1 <i<k. Thus, u,v €

. 2 rdn?
G;, the edge uv gives the term dé’fuztf’vg
1 1

in ID(G;), and for W (v) the term

diuz + d,’Vz
dil/tz divz

du? +dv? _
du? dv?

when adding these terms, we obtain the
term given in ID(G).
b.2 u¢ G, fori=1,... k. Thus the edge uv
gives the term
du? + dv?
du?dv? ’
in W(v), which is the term in ID(G).

c. u,v € #. The edge uv belongs to a unique
primary subgraph G;. The corresponding term

dduﬂ This edge

does not give any term for W (v) and

given by uv in ID(G;) is

dil/lz + d;vz
a’,‘u2 d,-vz

du? + dv?

Zwv) = d?dv?

Again, adding these terms, we get the corre-
sponding term in ID(G).

O

For a more precise estimation of the differ-
ence between ID(G) and Y/, ID(G;), the next
result provides bounds for W (v) and Z(uv). First
observe thatif 0 </ <x<a<Land0<I[<y<
b <L, then

1 1 1 1 1 1
0= () (w52) 22 (5 5) @

Proposition 4.2. Let {Gy,...,G,} be a decom-

position of G. Then
(i) —2<2 (ﬁ - %) < Z(e) < 0, for every
edgee € Z,

(ii) 2dv <é — %) <W(v) <0, for every ver-
texvew.

Proof. Since 6 < diu <du<Aand 6 <dyv <
dv < A, relation (3) gives

0> 1 " 1 1 4 1

—\du?  dv? diu? = dp?
1 1

>2< o 52)’

Hence, (i) is true.
Now note that W(v) can be written as a sum of
differences

diu® + div*
d,uz divz ’

du? + dv?
du? dv?

one for each edge uv. Thus, we obtain (ii). [J

As a consequence of this proposition we get
the following corollary.

Corollary 4.3. If {Gy,...,
tion of G, then

G,} is a decomposi-

< Xr:ID(G)
i=1

Proof. We know, by Theorem 4.1 that

= Xr‘iID(Gi) +Y W)+ Y Z(e)

vew ece?

butW(v),Z(e) <0forve # ande € 2. Hence,
ID(G) < ) ID(G)).

0

Example 4.1. Figure 2 shows a decomposition
for the polyethylene graph, defined in example
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3.1. Note that the decomposition considered is

{Gy,...,G,},

where Gy, ...,G,_ are star graphs S3, and G, is
a P; graph. Considering the notation in figure 2,
we have

W = {VZ,V3,...
¥ = {62 = V2V3,€63 = V3V4,...

,vn} and

y€n—1 = anlvn}-

ul ug Up—1
vl%vz 1}2}»1}3 vnl%vn

w1 wa Wn—1
Fig. 2. A decomposition for the polyethylene
graph

Forv € #', we defined
du? + dv? B
du? dv?
dju2 —i-djv2
2 b

2
i=tuen (- djudjy

and observe that v; € G;_| N G;. Thus,

W(VZ):K; 412) (11 4l) (% l?)
AGr) (Erw)+ (5s)]

9
144"
Analogously, we obtain
7 .
W(v;) = ) fori=3,...,n—1 and
5
W) =——.
(va) = —1¢
This implies
149 7 5 7 49
LWO === g =5 gy

vew
Now recall that if e = uv then

di® +dp*
a d,uz d,~v2

du® + dv?
du? dv?

Z(e) =

20

where G; is the unique component such that e €
G;. Thus, we have

1\ 71

12) 72

1 1 1
Z(ei) = o) + 2) \» +
1 1 1 1 15

fori=2,...,n—2and
Hence,

71 15 71 +97
16 72" T4

And computing the values ID(G;), fori=1,...,n
we obtain

3241 10
ID(G,): ;_ :?, forizl,...7l’l—1
342 5
ID(G,)="—==1=
(Gn)="5==3
Then,

YIDG)=(n—-1)7—+5=—n—=.

i=1
Finally, we may observe that the formula ob-
tained in theorem 4.1 holds for this construction

21D(G,-)+ Y W)+ ¥ Z(e) =

vew ec?
10 5 7 49 71 419

3" MmN i

9 1
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