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The aim of this paper is to construct a full spread .#” of length 17 such that (V,G, % ), is
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Keywords: Baer triple; partial spread

Mathematics subject classification: 12K10, 51A40

1. Introduction

Let V =V(2n,q) be an even dimensional vec-
tor space over a finite field IF, and %" a spread
onV i.e £ is a set of subspaces U <V with
dim(U) = 3dim(V), UNW = {0} for distinct
UWe X and V = U U. This work was

: Uex :
motivated by the following question. Can we

find for any finite group G*, a vector space V
with a spread % such that G* < G » where
G 1s the translation complement group G »
i.e Gy = {g € GL(V)|g leaves ¥ invariant
}. The fact that G » leaves a spread ¢ in-
variant, imposes quite strong restrictions on
the action of involution of G » on V and on
the elementary abelian 2-subgroups of G e.g
dimCy (j) = $dim(V) or dim(X NCy(j)) =
{0} for any X € %, or the elementary abelian
groups tend to act freely V, or that the G »
is quite “small”. This situation was demon-
strated with examples for £ < G 5, where E =
Z»r X Z», see Bani-Ata er al. (2014), Bani-Ata
(2011), Alazemi et al. (2015).

A Baer triple of type 2 is a triple
(V,G, % )F,, where G is an elementary abelian
2-group, G =22 and V is of free rank 2 over
a field K = F,, i.e. V is isomorphic as a

G-module to a direct sum of the regular G-
module F,[G] as a group ring, i.e. V = F,[G] @
[F»[G], and %" is a G-invariant spread on V and
if L € ', then Ng(L)/Cg(L) acts freely on
L, where Ng(L) and C;(L) are the normalizer
and the centralizer of L in G respectively. The
length of a spread 7" is defined to be the order
of the spread.

The importance of this study comes from
the fact that Baer triple of type 2 (i.e trans-
lation planes of order 16 admitting a Baer 4-
group) were done on computer, whereas our
construction is purely computational where no
computer programmes are being used.

2. Notations and earlier results

A Baer triple (V, G, % )y,, where G = 2", n >
2, is called a Baer triple of type n.

A group X acts freely on a vector space
V over a field K if V is isomorphic as an
X-module to a direct sum of the regular X-
module K[X], (K[X] is a group ring). It can be
easily seen that if X acts freely on V, then there
exists an element b € V such that {b%|g € X}
is a K-basis of V, see Bani-Ata (2011).

If (V,G,. %), is a Baer triple of type n.
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Then (V,G, % 8)y, is a Baer triple too, where
H8 = {Lg ’L € ji/} andg GNGL(V)(G)

Proposition 2.1 (Huppert & Blackburn
(2007)). Let G = 2" n > 1 be an elementary
abelian 2-group, and

R =T [G] ={Zzgg|zg G]Fz}.

geG

Then, R contains a unique maximal ideal Ry,
where

Ry = {deG lgé" deG Ag = 0} =
{xeR|x¥*=0} = {x|xe=0}, wheree =
deGg-

Theorem 2.1. Let G be a Baer triple of type n,
andV = R®R for R = F»[G]. Then

1. The G-invariant subspaces isomorphic
to R have the form vR, where v € (R®
R) — (Ro ®Ry).

2. If X < G, then dim(Cy (X)) = 2|G/X|,
where Cy(X) = {v € V[V* = v for all
xeX}.

3. Let Le % and X < G, then LX =L if
and only if LN Cy(X) # {0} if and only
if dim(LNCy(X)) = 3dim(Cy(X)) =
G/X|.

4. Let Vo = [V,G|, then Vo = Ry ® Ry and
ifV=V+U, then V = @Ug, where

geG
[V.G]={v—gvlgeG,veV}.

5. Let L be a subspace of V=R ® R such
that L& LE =V for some g € G, then
(a) V=1V,G|+L.
(b) If V =U @ |[V,G|,

P vs

g€NG(I)

then L =

Proof. See Bani-Ata et al. (2007).

Note 2.1. Let (V,G, % )r, be a Baer triple
of type n, and X < G. If dim(Cy (X)) = 2m
where m = |G /X | then | ¥ 9| = 2"+ 1, where
Hx ={{0} #LNCy(X)|L € X}

Remark 2.1. If |G| = 4, then |X| =
2*4+1=17. G fixes 3 components, hence
there are 3 orbits of length 1. If 1 # X <G,
then X fixes 5 components, so there are 5—3 =
2 components with stabilizer X, and there are
3 orbits of length 2. It remains 17 —3—2.2=28
components with trivial stabilizer. Hence there
are two orbits each of length 4.

3. Baer Triples of type 2

From Remark 2.1 above, it is clear that the ex-
istence of Baer triples of type 2 is equivalent
to the construction of a spread .#  of length
17 such that the triple (V, G, % ), satisfies the
following properties:

1. V is a vector space of dimension 2|G| =
8 over [F,.

2. G is an elementary abelian 2-group,
G =22 and G < GL(V), such that V =
F,[G] & F,|G] as a G-module.

3. G leaves a spread .# invariant, such
that for all subgroups X < G and all
L e % it holds: LNCy(X) = {0} or
dim(LNCy (X)) = 3dim(Cy (X)), where
Cv(X)={veV|yv'=vforallx e X}.

Our plane for the construction goes as fol-
lows: First: We construct a partial spread
{L,|0 # v € F3} of lengths 3. Second: We ex-
tend this partial spread to a partial spread of
length 9 denoted by % (X,Y,Z). Third: We
extend the partial spread %7 (X,Y,Z) to a full
spread of length 17.

3.1.  Orbits of length 1 and 2

Remark 3.1 (Bani-Ata er al. (2007)). We
can assume without loss of generality that G <
(0,7) 222, G < GLg(2), where

L 0 0
Iy | O S L I
Iy | Iy | N 0 L 0|
L b
hnl O
B 2 b
T = L 0L 0 and the 3

L L|L b




fixed components of & by G are L, =
{(/'le, ).zv, lgv, /14\)) ’/l, € Fz}, 0 75 Ve F%

Proposition 3.1. Let (V,G,. % )r, be a Baer
triple of type 2. Then:

(i) The subspaces U <V, such that U Gisa
partial spread of length 2 with U® = U,
UNL, = {0} for all 0 #v € F3 are

I 0 0

X 0 M I}

where X is an arbitrary 2 x 2 matrix,

M? +M +1 = 0 and there are 16 partial

spreads of length 2 fixed by ©.

precisely the subspaces

The subspaces U <V, such that U G g
a partial spread of length 2, with nor-
malizer (t) and U N L, = {0} for all
0#ve IF% are exactly the subspaces
U [M 0 10

Y M 0 I
bitrary 2 X 2 matrix, M?+M+1=0and
there are 16 partial spreads of length 2
fixed by T.

(ii)

], where Y is an ar-

The subspaces U <V, such that U Gisa
partial spread of length 2, with stabilizer
ot, UNU® ={0}, U°*  =U and UN
L, = {0} for all 0 # v € F3 are exactly
M 1 1 0}
Z M+1 0 I
where Z is an arbitrary 2 X 2 matrix,
M? +M +1 =0 and there are 16 partial
spreads of length 2 fixed by o'T.

(iii)

the subspaces U =

Proof. 1. As Ng(U) = (o), then by The-
orem 2.1, UNUT® = {0}, if and only if
UNCy(t) ={0}ifand only if V=U @
Cy(t), where Cy (1) = {(x,0,y,0) |x,y €
F3}.  From this it follows that all
subspaces U with U N Cy(t) = {0}
can be generated by matrices U =

A1 B O

C 0 D I
and D. This means that the rows of 4 x 8
matrices are a base of U, and U has a
base consisting of the matrix above. In
this case

for 2 x 2 matrices A, B, C,
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UG_[A+B I B o}

C+D I D I
_ A+B I B 0
“|A+B+C+D 0 B+D I|°

For convenience we identify matrices
with subspaces spanned by their rows if

no confusion occurs. Hence U = U° if
A I 0 O

cC 0 A I}

Moreover U NL, = {0}, forall 0 # v €
IF3, if and only if vA 5 v. This is equiva-
lentto A2 4+A+1 =0, where A € GL,(2),
and order A = 3. So, putting all to-
gether, the subspaces U < V such that
U° =U,U%={U,U%},0%#vecTF3 are
I 0 O
X 0 M I]

and only if U =

precisely the subspaces [

where M24+M+1=0ie. M = [1 1]

1 O
0 1
orM_1 1

subspaces is 32. But as

M I 0 0|°
X 0 M 1}

| M+1 T 0 0

B [X +1 0 M+1 1

there are exactly 16 partial spreads fixed

bv o.

The number of these

, 1t follows that

The proof of (ii) and (iii) can be argued
similarly. This completes the proof.

As a first step, we classify (up to conju-
gation in Cgy(y)(G)) partial spreads of length
9 in Baer triples of type 2 where these par-
tial spreads are invariant under G, and G has
3 fixed components and 3 orbits of length
2. So, let Vo = [V,G] = {(x1,x2,x3,0) : x; €
F3}. The subspaces U with V = Vo @ U are
of shape U = [A,B,C,I] for 2 x 2 matrices
A,B, and C. If LY is a partial spread with
Ng(L) = (o), then L = U + U (by Theorem

A B C I
O —
2.1), and U +L A+C B+I C I
lc 1 00

X 0 C I
matrix.

If LY is a partial spread with Ng(L) = (1),
then L = U + U* and if U = [A,B,C,I],

] , where X is an arbitrary 2 x 2

20
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A B C I
T _
then U U_{A+BBC+II -
lBOIO

Y B O I
matrix.

If LY is a partial spread with Ng(L) =
(0,7), then L = U + U°" and if U =
[A,B,C, 1], then
U+uer

} , where Y is an arbitrary 2 x 2

B A B c 1
-~ |A+B+C+1 B+I C+I 1

v I I 0 . .
=1z var o I] , where V is an arbitrary
2 x 2 matrix. Putting all these results together,

we get Proposition 3.2.

Proposition 3.2. (a) Partial spreads L°

with Ng(L) = (o) are generated by sub-
;} é 2 (I)},for2><2ma—
trices A and X.

spaces L =

(b) Partial spreads LS with Ng(L) =
(t) are generated by subspaces L =

B 0 I O .
{Y B 0 I],f0r2><2mamcesBand

(c) Partial spreads LY with Ng(L) =
(oT) are generated by subspaces L =

c I 10 .
{Z C+1 0 I] , for 2 X 2 matrices C
and Z.

Remark 3.2. In Theorem 2.1(a), it is proved
that if L <V is a G-invariant subspace such
that G acts freely on L, then L = vR for some
V\Vo. Furthermore, if Ly, Ly, and L3 are 3
such subspaces with Li\L;j = {0} for i # j,
then there exists x € Cgr(v)(G) = GL2(R) such
that L} = (1,0)R,L; = (0,1)R,L§ = (1,1)R.
In particular Cgrv)(G) is transitive on such
triples (L] ,L2,L3).

In our notation above, the subspaces
L, = {(llv, Aov, A3V, 7L4v) M,l c Fz}, 0#£ve
IE‘%, form a triple of such subspaces, this will be
fixed in our computations. In the next step, we
want to find all partial spreads of length 2, as
given above, which are compatible with spaces
L,, i.e. which have trivial intersection with the

, c 100
L,’s. So, a subspace [X 0 C I

patible if and only if vC # 0,v, for all v € F3,
which is equivalent to C?> +C +1 = 0.

A subspace {B 01 O] is compatible if

} is com-

Y B 0 I
and only if vB # 0, v, for all v € [F2, which is
equivalent to B> +B+1 =0.
A subspace [C I O} is compatible if
Z C+1 0 I
and only if vC # 0,v, for all v € F3, which is
equivalent to C?2+C+1 =0, and there exist
exactly 2 matrices M € GL,(2) with M? + M +
I1=0.

From Reamrk 3.2, it follows that we have
the following compatible candidates:

SX:[MIOO]
X 0 M I|
M+1 I 0 O]
X 0 M+I I
TY:[MOIO}
Y M 0 I|
M+1 0 I 0]
Y M+I 0 IJ
M I I 0
STZ:{Z M+1 0 I]

These subspaces must be also compatible
among themselves and hence we prove Lemma
3.1.

Lemma 3.1. (i) Sy and Ty are compatible
if and only if X +Y is non-singular.

(ii) Ty and ST; are compatible if and only if
Y 4+ Z is non-singular.

(iii) Sx and STz are compatible if and only if
X +Z+1 is non-singular.

Proof. We only do the proof of part (). Sy and
Ty are compatible if and only if the matrix

M I 0 O
X 0 M I
M 0 I O
Y M 0 I

is non-singular which is equivalent to

M I 0
M 01
X+Y 00



is non-singular. It follows that Sx and 7y are
compatible if X 4+ Y is non-singular.

Note 3.1. Let X +Y =g € GL,(2), Y +Z =
he€ GLy(2). Hence X =Y +g,Z=Y +h and
X+Z+1=g+h+1 or equivalently we need
to classify all pairs (g,h) € GLy(2) x GL,(2)
such that g+h+1 € GL(2). Hence we prove
Proposition 3.3.

Proposition 3.3. The admissible triples
(X,Y,Z) for which (g,h) € GLy(2) x GL,(2)
and g+h+1 € GLy(2) are: For a 2 X 2 matrix
Y, we have

(i) (Y+g,Y,Y+g) g€ GLy(2), and there
are 96 triples of this type.

(ii) (Y+LY,Y+h), I #hec GL(2), and
there are 80 triples of this type.

(iii) (Y +g,Y,Y +1I), I # g € GL(2), and
there are 80 triples of this type.

Proof. For the pairs (g, /), we have three types

Type 1: g = h, this implies that we have 6 pairs
(g,8) with g € GLy(2).

Type 2: g =1, h # [, this implies that there are 5
pairs (I,h), with h € GL,(2).

Type 3: g # I, h = I, this gives 5 pairs of this
type.

We claim that all solutions have been found.
To prove this, let m be the set of all 2 x 2 ma-
trices over [F», mg and m; are as follows:

a b
mO_{Lerb a} |a,b€IF2},and

a b
m1:{|:b a—|—b:| \a,bEFz}

From this it follows that |m;| =4, i = 1,2,
m=mqydmy, mgy,m; are closed under addition,
m; is closed under multiplication, m; = [F4 and
the 3 non-zero elements in m are precisely the
involutions in GL,(2).

Assume that we have a further solution
(g,h) with I # g # h # I such that g+ h+
I € GLy(2), it is clear that g € myUm, h €
moUmyp, and if 0 # My € my,0 #= M| € my,
then My + M is singular.
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e Case I: If I£Ag€my,then0#£ g+1 €
my, hence h must be in m as it is proved
above. Thus, I # g #* h # [ are con-
tained in m;. This implies that &4 = g?
and g+h+1=g+g>+1=0, a con-
tradiction. Likewise if & € m|, we get a
contradiction.

e Case2: If g,h € mg, then 0 # g+ h € my.
Hence, g + & is an involution in GL,(2)
and g + h+1 is singular because g+ h €
mo, I € M. Hence a contradiction.

So we have a complete classification (up to
conjugation in Cgy(y)(G)) of partial spreads of
length 9 which are invariant under G where G
has 3 fixed points and 3 orbits of length 2. [

The above observations can now be sum-
marized in the following theorem.

Theorem 3.1. Let G = (0,t) < GL(V) with
V= ]Fg, where

L 0

L
G:|:4 O],‘C— L I
Iy | Iy 0

0

L 0
L b

such that (V,G, % )
2, then

is a Baer triple of type

2

1. Up to conjugation in Ngiv)(G), the
three fixed components in & are the
subspace

L, = {(Mv, Aav, A3V, 14\/) |Al € Fz},
0#ve F%

2. & contains 3 partial spreads of length
2, US with Ng(Ug) = (o), US with
NG(Uz) = () and US, with Ng(Ugz) =
(07).

3. IfM € GLy(2) with M> +M +1=0, i.e.
M € GLy(2) of order 3, then there exist
X,Y,Z € Mat(2 x 2,F,) such that
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M I 0 0
G __ G _
'UG_U(X>__X OMI}
M I 0 0] —
and {X 0 I_,whereM—
M?=M+I,
M 0 I 0
G_
« Uy =UY _YMOI]

I
‘mdr M 0 1]’

M I I O
dM I I 0
adlz Moo 1

and the partial spreads US (X), US(Y)
and US_(Z) are compatible (i.e. distinct
elements have trivial intersection) if and
only if X+Y,Z+Y, and X +Z+1 are
non-singular.

4. The triples X,Y,Z satisfying these con-
ditions are precisely the triples:

X Y Z

Y+g Y Y+g, geGLy(2),
Y+I Y Y+h, I#heGLy)(2),
Y+g Y Y+Z, I+gcGLy(2).

This gives a total of 256 admissible par-
tial spreads invariant under G having
the prescribed orbit structure.

Note 3.2. Let H be the stabilizer of {L,|0 #
v} in Ngrv)(G). Then H acts on these par-
tial spreads constructed above, i.e. if Yy =
{L1,Ly,--- Ly} is a partial spread, as above,
and h € H, then Y= {L}l’,Lg, Lg} is also
a partial spread as bove.

The group H can be described explicitly as
follows: If Hy denotes the stabilizer of {L, | v #
0} in Cgrv)(G), then Hy = M : D where M
consists of all matrices

I 0

al 1 0
Xube = b 017 0 Jdfora,b,c € Fy,
cl bl|al 1

D consists of all matrices g = ,8 €

8
R 8
GLy(2), where L} = L, and X, fixes all

components L,. Hence H = Hy : K where K
consists of all matrices
1 0]0 O
(a+b-+1)I al | bl 0
(c+d+ DI cl|dl 0|’
0 010 I
a b
where L d} € GLy(2).
In particular, |H| = 288, G < X =

{Xupe |a,b,c € Fr} of index 2. To see the
action of H on the triples (X,Y,Z) we prove
Proposition 3.4.

Proposition 3.4. The action of H on the triples
(X,Y,Z) is generated by the permutations:

X,Y.Z) —» (X+LY+ILZ+I),
X.Y.Z) — (X8,Y8,Z8%) g € GLy(2),
X.,Y.Z) — (X.,Y,Z+1),

X,Y.Z) — (ZX+LY+I),

X.,Y.Z) = (Z,Y.X),

X,Y.Z) - (Z+1.X.Y),

X,Y.Z) — (Y+I,X+1,2).

I 000
Proof. The action of t = 8 é (I) 8 is as

I 00 1
follows:

Us(X)! = Us(X +1), Us(Y)' = Us(Y +1),
Ust(Z) =Ust(Z+1) and g acts as Ug (X )8 =
Us(X)%, Uz(Y)® = Uc(Y)S, _Ucr(z)g -

I 000
Ust(Z)%. The matrix J = 8 (I) (I) 8
000 I
acts as Ug(X)! = U(X), UT(Y_)J = Us(Y),
I 000
Use(2)! =Use(Z+1) and K= |9 O 10
000 1]
acts as Us(X)X = U (X + 1), U(V)K =
Ust(Y +1), Usz(Z)X = Us(Z). From these

actions the action of H follows.



Note 3.3. In order to complete the partial
spreads of length 9 to full spreads of length
17, we have to find a G-invariant set of 8 sub-
spaces which form a partial spread and de-
composes in 2 G-orbits of length 4, and must
be compatible with one of the partial spreads
of length 9 from above.

We can denote the partial spread above by

H(X,Y,Z) = {L,|v # 0} UUs(X)¢ U
U:(Y)° UUs+(Z)°.

In order to complete the spread % (X,Y,Z)
to a full spread %7 of length 17, we have to find
subspaces R, R such that [RS| = |RY| =4 and
A =2 (X,Y,Z)URSURS is a spread. In par-
ticular, RiG, i = 1,2, must be a partial spread of
length 4. So, we prove Observation 3.1.

Observation 3.1. For a subspace R of V, if 1 #
x € G, RNR*# {0} ifand only if R N Cy (x) #
{0}.

Proof. If RN Cy(x) # {0}, then there exists
0+# v e Rwithv* =vand hence v=v"*€ RNR"
so that RNR* # {0}. Assume D = RNR* #
{0}. As x> = 1, the space D is x-invariant, and
x fixes some non-zero v € D. Hence {0} #
DﬂCV(X) < RﬂCV(x).

From Observation 3.1, one has: If R< V
such that dim(R) = % dim(V'), then RY is a par-
tial spread if and only if RN R* = {0} for all
1 #x € G if and only if RNCy(x) = {0} for
all 1 £x e G.

Remark 3.3. For the subspaces R;, i =
1,2, it holds that R; N Cy(x) = {0} for all
1 #x € G if and only if V = R; ® Cy(x).
Hence Cy(o) = {(x,y,0,0)|x,y € F3} and
RNCy(o) = {0} if and only if R is of type

A B I O
c Do 1l &) ={x0y0)xye

F2} and RN Cy(t) = {0} if and only if
vB # 0 for all 0 # v € F3 and Cy(o7) =
{(x,3%,5,0)|x,y € F3} and RNCy(o7) = {0}
if and only iva;révforallO#veF%.

So, the subspaces R such that R is a partial
spread of length |G| are exactly the subspaces

|:1é ZDV[ (I) ([):| WithM2+M+[:0. There
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are 2(16)3 such subspaces and RY consists of
the subspaces
A M I O A+I M I O
cC D O I C D+I1 0 I)p

A+M M I 0
A+C+D+M D+M 0 Ip

A+M~+1 M I 0
A+C+D+M D+M+I1 0 I

and

Remark 3.4. Let m = mg @ m; where

moy = { [a—cil—b Z} |a,b€IF2}, and my =

{ [Z a—ll)—b} la,b e Fz}, then RS contains a

b Ay M I 0O
subspace | = o g

Proof. 1t is clear that m; is the field
{0,1,M,M}. 1f A € m, then A = My + M,
where My € my and M; € m;. Then A +
M, = My € my. So RC contains a subspace

{‘%9 AD4 (I) (I)] with Ag € mgy. Without loss

] with Ay € my.

of generality we can assume that A € mg, and
we have 2,048 such subspaces.

Proposition 3.5. All the vectors of shape
(x1,x2,x3,0) contained in a component of RS,

A M I O
whereR?:{C D O |

x3M and x| = x3A, where none of the vectors
(¥1,¥2,¥3,0) with y, = y3M = ng2 lies in a
component of R1G.

], if and only if x, =

Proof. Let X = (x1,x2,x3,0) be a nonzero vec-

tor. Then X € L, for some v # 0 if and only if

dim((xl,xz,X3)) =1.

X € Ug if and only if x3 =0 and x; = x, M,

X € UY if and only if x; = x3M and x, = 0,

X € UZ, if and only if x = x3 and x| = x,M.
In particular, if dim(xp,x3) = 2, then

(x1,x2,x3,0) is not contained in any compo-

nent of ¢ (X,Y,Z), hence X € Ry if and only

if Xy = X3M and X1 = X3A.

Corollary 3.1. Let R| = [129 AD/[ (I) (I)] and

let X = (0,vM,v,0), where v # 0, then X

is not contained in any component of RIG

where the spaces RIG are of the form U =

M I 0

/
[12; D 0 I]’ and the vectors (y1,y2,y3,0)

24
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in U are of shape (ZA',ZM,Z,0) for some
Z € F3. In particular, if (x1,x2,x3,0) is con-
tained in such space then x; = x3M. If x3 #£ 0,
then x3sM # x3M = x3M + x3. From this, we
get vectors X = (0,vM,v,0) for 0 # v € I3,
are not contained in components of R¢, and
they are also not contained in a component of
A (X,Y,Z). Hence X must be contained in
a component of RZG, This implies that R, =

"M 1 0
{C’ D 0 I ]

3.2. Orbits of length 4

In this section, we investigate the orbits R? and
Rg; of length 4.

c po m™
is of shape [A/ M-10

cC D 0 M
A,C,D,A’,C",D’ then R$ consists of the fol-
lowing spaces:

AsR?isofshape A M O] d RS

] for 2 x 2 matrices

AMTI O

C D 0 M|

I 0

C D+IOM
B A+M Mo 10|,
= |A+C+D+M D+M 0 1|2
A+M+1 M I 0

RG’L’
A+C+D+M D+M+1 0 I|°

Letm = Mat (2 x 2,IF,), then m = my+m;,
where

moz{ a—cil—b Z :a,bEFz}

= {O}U{x e Gl

mlz{ Z a—lf)—b :a,bEFz}

- {O,I,M,M} = ]F4

(2)|x* =1}, and

Spaces in RlG can be written in a form

A+f M I O
[Cf D+f 0 I]wherefemland

c._lc if f=0,1,
F=YA+C+D+M if f=MM.

Rf contains a unique {‘é AD/I (I) 18[] with

D = Dy+ D where Dy € mg and D; € my, take
f =Dy, then D+ f = Dg € my.

Now we find the conditions such that R? N
L,={0} forall g € G,v #0.

Note 3.4. If Ry NL, = {0} for all v # 0, then
RENL, = {0} for all v#0, as RiNL, =
Rgng (RiNL,)S forall g €G.

So we have to investigate only R; =

AU o] wnpem
Proposition 3.6. 1. Let
R — A M I O
'=lc D 0o M

with D € my. If D =0, then Ry is com-
patible with L, if and only if C = M

orC:Mandez[;a[ A(;[ (I) (I)} or

A M
Ri=13 0 0

0
Il

2. If D = j € GLy(2) is an involution and

A M I O
for all v # 0 if and only if

(a) v#0andvj=vimplies vC # 0,v,

(B) v#0Oandv(M+j) €
v(A+C) Z{0,v}.

{0,v} implies

Proof. 1. Ry contains all  vectors
(vC,vD,0,v) =[C D O I]. As D=0,
then R; contains all vectors (vC,0,0,v)
for all v # 0. As RiNL, = {0} and
(0,0,0,v) € L,, (v,0,0,0) € L, it fol-
lows that vC # 0,v for all v # 0. Hence
C=MorM.

Conversely if vC # 0,v for all v #

A M I O
0, then {C 0 0 I} NL, = {0} for

all v # {0} implies that vectors (xA -+
yC,xM,x,y) in Ry are in L, if x =0,
which implies that (yC,0,0,y) € L,, a
contradiction as yC # 0, y.



2. Elements in R; are of the form (xA +
yC,xM +yj,x,y). If such a vector is
in L,, then y # 0 and we have only to
check vectors (yC,yj,0,y) and (x(A +
C),x(M+ j),x,x).

The involution j has a unique fixed vec-
tor 0 # u € F3 such that

u(M+ j) =uM +u=uM,
uM(M + j) = uM?® +uM j = uM
=ujM =0,
uM (M + j) = uMM + uM j
=u+ujM = u-+uM = uM.

Hence the conditions (&) and (f) are
equivalent to

(o) uC #0,u,

(B uM(A +C) # 0,uM or uM(A +
C) € {u,uM}
uM(A + C) # 0,uM or uM(A +
C) € {u,uM}

As uM,uM are independent, there ex-
ist 4 matrices A + C which satisfy ('),
these matrices are M, M, j, j+1. Hence

. . A M I O
if D = j, then C DO I

patible with L,, v # 0 if and only if
uC #0,uforu#0,uD=uand A+C €
{M,M,D,D+1}.

is com-

For a given involution D there exist 8 ma-
trices C with uC # 0, u and for such C there ex-
ist exactly 4 - 8 = 32 compatible spaces R; =

A M 1T O
{C D 0 [
likewise for M.

The number of G-transitive partial spreads of
length 4 which are compatible with L, is then
28

] for a given involution D, and

A M I 0
M 0 0 0

M + 1 = 0 be a representative of a partial
spread of length 4, then

Lemma 3.2. Let L = M?* +

Abdullah Alazemi, Mashhour Bani-Ata

1. L is compatible with us and us if and
only if X + MA+M and X +MA +1 are
non-singular.

2. L is compatible with u; and ur; if and
only if Y +A and Y +MA + M are non-
singular.

3. L is compatible with us; and usy if
and only if Z+ A and Z + MA are non-
singular.

Proof. L is compatible with L,’s (by Proposi-
tion 3.6).

1. L is compatible with u; =
ol (I’} and  with @ =
MO DO it and onty if

M+Y M
non-singular which is equivalent to A +
YandM+Y+M(A+M)=MA+Y +M
are both non-singular, respectively.

[A+-M M A+M M
M4y M} and { } are both

2. L is compatible with us; =
{A}? (I) 181 (I)] and with us; =
B}’ - (1)] if and only if X +

MA + M and X + MA + [ are non-
singular respectively, for: Let (vM +
wX,vwM,w) € us, then (VM +
wX,vywM,w) € L if and only if
(WM + wX,vywM,w) = (WMA +
wM,wM? wM,w) if and only if v =
wM? and wM + wX = wMA + wM.
Hence L is compatible with us if and
only if X + MA + M is non-singular.
Also (VM + wX,v,wM,w) € tic N L
if and only if (VM + wX,v,wM,w) =
(WMA +wM,wMM, wM,w) if and only
if v=w and wM +wX = wMA +wM.
From this it follows that L is compati-
ble with i if and only if X +MA +1 is
non-singular.

Ut =

3. L is

[1‘24 ﬁ {) (I’} and  with Tigs =

compatible  with

26
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AZ4 1\14 é (I) if and only if
A+M A—/I and A+M M are non-
M+7Z M M+7Z M

singular which is equivalent to A + Z
A+M+M(M+Z) =A+ MZ are non-
singular, and A + MZ is non-singular if
and only if MA + Z is non-singular. Also
from Lemma 3.1, we have X +Y.,Y +Z
and X + Z + I are non-singular.

Lemma 3.3. L = []131 Ag (I) (I)] is compati-

ble with ug; = [Azd AI4 (I) (I)] and with ugr =

{AZ/I AI/[ (I) (I)} if and only if

1. A,Z €mgand Z # A,MA,
2. A,Zemyand Z # A, MA,

3. A=Ag+A with0#A; €m;fori=0,1
andZ:Ao —{-MAl 0rZ=MA0 +Aj.

Proof. As L is compatible with us; and ugz,
then A 4+ Z and Z + MA are non-singular by
Lemma 3.2. Let Z+A = (Zo+Ao) + (Z1 +A))
and Z+MA = (Zy+MAy) + (Z; + MA|) where
Zy,Ag € mgand Z1,A| € my, hence we have the
following cases

e Case 1: Zy+Ag=Zy+ MAy =0 im-
plies Zop = Ag = 0, then Z,A € m; and
Z # A MA.

e Case 2: Z1+A| = Z —I—MA] =0 im-
plies Z; = A; =0, then Z,A € my and
Z # A MA.

e Case 3: Zy = Ap # 0 implies Z; +A| #
0, Z; —l—MAl =0, Ay # Z; if and only
ifA] 75 0, Z = MAl 7§ 0. Thus, A =
Ao+ A with A; € m; fori = 0,1 implies
thatZ:]\_lA() +Aj.

e Cased: Zy # Ay, Z) :Al,Zo—{—MAO =0,
and Z; —|—MA1 # 0. Hence Ag # Zy =
MAg, Zy = Ay # MA;. From this it fol-
lows that Z = MA() +Aq with A; 75 0 for
i=0,1.

I 000
ope 001 0
Proposition 3.7. Let S = 0700 and
00 0 1[I
t = . Then,
(i) S,t € N(G),
(ii) 65 =1, 1° =0, and (67)° = oT,
(iii) us(X)S = (X) (V) = us(Y), and
MGT(Z)S (Z )
MA M I 0O
. S —
(iv) L°> = M 0 0 I where L =
A M I 0
M 0 0 I

(v) o' =0, =071, and (61) =71,

(vi) us(X)' =us(X +1),
(vii) uz(Y)' =ugc(Y),
(viii) ug(Z)" = u(Z),

(ix) L,:[AH M 1 o]

M 0 0 I

Proposition 3.8. Let d = St where S and t are
defined in Proposition 3.7. Then,

(i) MO'(X)d = uGT(X)’
(ii) ur(Y)? =us(Y +1),

(i) (4000))" = e (),

(iv) (uT(Y)>d = ug (Y +1),

(v) (M)d —u(Z+1),

(vi) L =

MA+I M I O
M 0 0 I
A M 1 0
o o i)

} where L =



Remark 3.5. L is compatible with us: if and
only if L is compatible with u...

Observation 3.2. If x = xo + x1, x; € m; for
i =0, 1 is non-singular, then xo =0 or x; = 0.

Corollary 3.2. Let x € m = mgUmy. Assume
that there exists i € {0,1} and a,b € m;, a # b
such that x+a and x+ b are non-singular, then
x € mi\{a,b}.

Proof. Letx = x; +xj, x; € m;, x; € mj where
{i,j} = {0, 1}, then it follows:

x+a=(x;+a)+x;, and

As a # 0 this implies that x; +a # 0 or x; + b #
0. Hence x; = 0. From this it follows that
x; € mi\{a,b} fori=0,1.

We summarize the results above by the fol-
lowing theorem.

Theorem 3.2. 7 (X,Y,Z) = {L,|v # 0} U
{uo(X),us(X),uc(Y),uc(Y),usc(Z),us<(2)}
form a partial spread if and only if X +7Y,
Y +Z7Z X+ Z+1 are non-singular and there
are exactly 256 suitable triples (X,Y,Z).

Next, we have to find subspaces L, such
that L is a partial spread of length 4, which
is compatible with ¢ (X,Y,Z).

We have shown that candidates for such L

A M I 0

may be chosen as [K 0 0 I] where M? +
M+1=K?>+K+1I=0or as {‘é AJ/I (I) (I)]

where M?> + M +1 =0, J € GL,(2) is an in-
volution, and A+C € {M+1,M,J,J +1} and
vC # 0,v for all v # 0 with vJ =v. For a
fixed M there are in both cases 32 possibilites
for such L. These spaces are compatible with
the fixed lines L,, v # 0. We first solve for

L_[A M 10
=M 0 0 I|

The case L = ]% A(;I (I)
diate consequence of the first case by applying
an element in N(G).

The last step is to find the admissible A’s,
X’s, Y’s, and Z’s for which the following nec-
essary and sufficient conditions hold

0| . .
7| 18 an imme-

x+b=(x;+b)+x;.
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1. X+MA+M and X + MA + 1 are non-
singular.
2. Y+AandY +MA +M are non-singular.
3. Z+A and Z+ MA are non-singular.

Alsowe have X+ Y1, Y1+ 71, X1 +Z+1 are
non-singular, where X; =X +A, Y1 =Y +A
andZ, =Z—+Aor

(1’) X; +M(A+1) and X; + MA +1 are non-
singular.

(2’) Y and Y| + M (A + 1) are non-singular

(3’) Z; and Z; + MA are non-singular

Theorem 3.3. 1 If A =0, then the admis-
sible X’s, Y’s, and Z’s are
X Y V4
0 I MM
0O M M
M I M

2 If A is non-singular and A € my, then the
admissible X’s, Y'’s, and Z’s are

X Y Z7
A MA A
MA+1 MA A

Proof. 1. AsY andY + M are non-singular,
this implies that Y € m;\{M}, and as Z,
Y, and Y + Z are non-singular, then by

Corollary 3.2 Y € m; and Z € m.

X +1 and X + M + 1 are non-singular im-
plies that X +7 € m; and X € m. Hence
X,Y,Z € my where X A1,M,Y # 0,M,
Z+0,X#£Y, YH#Z, Z#X+I1,Z#
0,Y,X + 1. Hence the claim.

2. AsZ and Z+ MA are non-singular, it fol-
lows that Z € mg. As Y and Y + Z are
non-singular, it follows that Y € mg and
Y+MA+1)=(Y+MA)+M is non-
singular which implies that ¥ = MA €
mg because Y +MA € mg and M € my;.
AsY = MA, Z € mg, then Z = kA where
ke m\{0,M}.

28
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Thus Z + MA = (k+ M)A implies that
k # M. Hence k # 0,M,M and thus
k=I1,Z=A,Y =MA, and
X+Y =X+MA=(xg+MA)+x
X+Z+I1=X+A+1
=(x0+A)+x;+1.
If xq; =0, then xo =A and X = A. If
x1 # 0, then x) = MA # A which implies
x1 = I and thus X = MA + 1. From this

it follows that we have the following ad-
missible X’s, Y’s, and Z’s

X Y Z
A MA A
MA+1 MA A

Corollary 3.3. Theorems 3.1, 3.2, and 3.3 im-
plies the full spread of length 17.
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