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Abstract

In this article, the nonlinear problem of Jeffery-Hamel flow has been solved analytically and numerically by using 
reliable iterative and numerical methods. The approximate solutions obtained by using the Daftardar-Jafari method 
(DJM), Temimi-Ansari method (TAM) and Banach contraction method (BCM). The obtained solutions are discussed 
numerically, in comparison with other numerical solutions obtained from the fourth order Runge-Kutta (RK4), Euler and 
previous analytic methods available in the literature. In addition, the convergence of the proposed methods is given based 
on the Banach fixed point theorem. The results reveal that the presented methods are reliable, effective and applicable to 
solve other nonlinear problems. The computational work to evaluate the terms in the iterative processeswascarried out 
using the computer algebra system MATHEMATICA®10.

Mathematical Subject Classifications (2010):34B15, 65L06, 65D99.
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1. Introduction

The theory of viscous fluid flow through convergent-
divergent channels has many applications in aerospace, 
chemical, civil, mechanical, biomechanical and 
environmental engineering. It also plays a role in 
understanding rivers and canals and in human anatomy 
in how capillaries and arteries are linked to each other. 
The mathematical formulations of the concerned problem 
were carried out in 1915 by George Barker Jeffery and in 
1916 by Georg Karl Hamel (Jeffery, 1915; Hamel,1916). 
The theory has been extensively discussed and studied 
by several authors. Many articles have been published 
on the topics of analytical structure of a solution and the 
properties of overall flow structure, including velocity 
field, flow reversal control, and bifurcations (Fraenkel, 
1962; Hamadiche et al., 1994; McAlpine & Drazin, 
1998; Makinde & Mhone, 2006; Moghimi et al., 2011). 
In particular, if the Navier-Stokes equations (of two-
dimensional flow through a channel with inclined walls) 
are simplified, one can finally obtain the Jeffery-Hamel 
equation (Rosenhead, 1940; Schlichting, 1955; Batchelor, 
1967; Sobey & Drazin, 1986).

Most of the scientific problems are primarily nonlinear, 
such as Jeffery-Hamel flow and other fluid mechanical 
problems. Except for a restricted number of such for most 
cases of them. This kind of problems can be analytically 

solved by using iterative methods and then comparing the 
solutions numerically by using other numerical solutions. 
For example, solving mechanical or heat problems by 
iterative and numerical methods (Bayat et al., 2015; 
Noroozi et al., 2017) are some solutions.

Recently, these types of problems have been resolved 
with known semi-analytical or numerical methods. These 
problems include: the Lattice-Boltzmann method (Házi & 
Farkas, 2003), He’s variational iteration method (VIM) 
with the HPM (Ganji et al., 2009), the homotopy analysis 
method (HAM) with the homotopy perturbation method 
(HPM) and the differential transformation method (DTM) 
(Joneidi et al., 2010), the Adomian decomposition method 
(ADM) (Esmaili et al., 2008; Sheikholeslami et al., 2012), 
the modified Adomian decomposition method (MADM) 
(Lu et al., 2016; Bougoffa et al., 2016; Patel & Meher, 
2016), and others (Marinca & Herişanu, 2011; Sushila et 
al., 2014).

In this study, three iterative methods will be used to 
obtain the approximate solutions of the Jeffery-Hamel 
flow problem. Varsha Daftardar-Gejji and Hossein 
Jafari presented the Daftardar-Jafari method (DJM) in 
2006. This is the first iterative method used. It has been 
implemented for solving different problems in many 
areas (Bhalekar & Daftardar-Gejji, 2008; Daftardar-Gejji 
& Bhalekar, 2010; Yaseenet al., 2013; Al-Jawary & Al-
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Qaissy, 2015; Al-Jawary & Abd-Al-Razaq, 2016b). The 
second iterative method that we will use is known as the 
Temimi-Ansari method (TAM) (Temimi& Ansari, 2011). 
It has been employed for finding the solutions for various 
problems (Ehsaniet al., 2013; Al-Jawary&Hatif, 2017; Al-
Jawary& Al-Razaq, 2016a; Al-Jawary & Raham, 2017; Al-
Jawary, 2017; Al-Jawaryet al., 2017). The third iterative 
method for solving the presented nonlinear problem was 
suggested by the Banach contraction method (BCM), and 
which was presented by Varsha and Sachin Bhalekar in 
2009 (Daftardar-Gejji&Bhalekar, 2009). This method is 
based on using what is known by the Banach contraction 
principle.

This paper has been organized as follows: Section 2 
shows the mathematical formulation of the Jeffery-Hamel 
equation. Section 3 presents the basic concepts of the 
three iterative methods. In section 4, the convergence of 
the proposed methods is presented. Section 5 presents the 
approximate solution of the problem by using the proposed 
methods. The numerical simulations and error analyses of 
the approximate solutions are shown in section 6. Finally, 
the conclusions are given in section 7.

2. The mathematical formulation of the governing 
equation

Consider the two-dimensional flow for some 
incompressible conducting viscous fluid flowing from 
some source or sink at the intersection between two plane 
walls. Let us assume the flow happens in a system of 
cylindrical polar coordinates , where the walls are 
intersecting in the axis of  as in Figure 1. Assume that the 
velocity is only in the radial direction and that it depends 
on  and , and bear in mind that there is no magnetic field 
in the -direction.

The continuity, Navier-Stokes, and Maxwell’s equations 
are in the following reduced forms (Schlichting, 2000):

                                                      (1)

                                                                (2)

                                         (3)

where  and  represent the 
electromagnetic induction, the fluid conductivity, the 
velocity along a radial direction, the pressure of the fluid, 
the kinematic viscosity parameter and the density of the 
fluid, respectively. By using the dimensionless parameters 
in equation  we have:

                                                           (4)

                                             (5)

When putting  in  and  and then eliminating , the 
following ODE for the normalized function profile  
can be obtained (Ganji, 2006):

                 (6)

with the boundary conditions:

                                                                      (7)

The following parameter represents the Reynolds 
number:

                     (8)

The corresponding Jeffery-Hamel equation above in Eq. 
 will be solved by implementing the three methods 

with the boundary conditions  and with the imposition 
of the following condition:

                                                                    (9)

where  will be evaluated later.

Fig. 1. The geometry of the problem.
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3. The fundamentals of the three iterative methods

The basic concepts of the three proposed iterative methods 
are introduced in this section.

3.1. The basic idea of the DJM

Let us begin by considering the general form of a functional 
equation (Daftardar-Gejji & Jafari, 2006)

                                                (10)

where  is the linear operator,  represents the nonlinear 
operator,  denotes a known function and  represents the 
unknown function that need to be evaluated and which 
is the solution for Eq. . It can be decomposed in the 
following series:

                                                                  (11)

Now, let us define the following forms:

                                                                (12)

                                (13)

The  equals to the following series:

        (14)

Also, the relation will be defined in the recurrent 
procedure

                                                                         (15)

                                                         (16)

                                                         (17)

      

                   (18)

Since the linear operator  satisfies  
, we have

                  (19)

Therefore,

                      (20)

Clearly the approximate solution of Eq.  is represented 
in the -term series approximate solution . 

3.2. The basic idea of the TAM

For verifying the standard steps of the TAM (Temimi 
& Ansari, 2011), let us re-consider Eq.  with the 
boundary conditions:

                                         (21)

where  denotes the boundary operator.

Primarily, the first step in the TAM is finding the initial 
approximation which is the function . This function 
represents the solution for the following initial problem

                                                 (22)

with

                                      
(23)

The second step is to obtain the next iterative functions. 
Hence, to find , the next problem should be solved

                                        (24)

with

                                      (25)

In general, the following problem will be used for finding 
the other iterations for 

                                    (26)
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with

                              (27)

Continuing in this iterative procedure, one can get 
the suitable function, which is the exact solution for 
Eq. . It is clear that each iterative function  
is alone considered some approximate solution for 
Eq. . By increasing the rank of , it will be 
convergent to the exact solution.

3.3. The basic idea of the BCM:

Let us first reconsider Eq.  (Daftardar-Gejji & 
Bhalekar, 2009), now we have to define some successive 
approximations as follows:

                                          (28)

                       (29)

If  is a contraction mapping for some positive 
integer , so  has a unique fixed point and thus 
the th sequence that is defined by  is convergent, see 
(Daftardar-Gejji & Bhalekar, 2009). Thus the obtained 
solution of Eq.  will be given by:

                                                                (30)

4. The convergence of the proposed techniques

The basic concepts and the fundamental theorem of the 
convergence for the proposed iterative techniques will be 
presented in this section.

In the following, the convergence for the DJM, TAM and 
BCM will be introduced. The iterations occurred from the 
DJM can be directly used to prove the convergence of 
this technique. But, to prove the convergence of the TAM 
or BCM, we should use the following approach, where 
it can be applied for handling Eq.  with the boundary 
conditions . We have the following terms

                                     (31)

where  is the operator that can be defined as

                             (32)

The term  represents the solution for one of the following 
problems:

For the TAM:

                (33)

For the BCM:

                                        (34)

The same given conditions with the used iterative 
method will be employed. Thus, in this way, we have

. So, by using  and
, we can get the following solution in a series form:

                                                    
(35)

According to the recursive algorithm of the DJM, TAM 
and BCM, the sufficient conditions for convergence 
of these techniques will be presented in the following 
theorems.

Theorem 4.1 Let  defined in , be an operator 
from a Hilbert space  to . The series solution

 converges if  such that  
  

(such that ) .

This theorem is just a special case of Banach’s fixed 
point theorem, which is a sufficient condition to study 
the convergence of our proposed iterative techniques. 
Moreover, the norm used in Theorem 4.1 is that induced 
by the inner product of H.

Proof: See (Odibat, 2010).

Theorem 4.2 If the series solution  
is convergent, then this series will represent the exact 
solution of the current nonlinear problem.

Proof: See (Odibat, 2010).

Theorem 4.3 Suppose that the series solution 
(which is defined in )is convergent to the solution

. If the truncated series  is used as an 
approximation to the solution of the current problem, then 
the maximum error  is estimated by
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(36)

Proof: See (Odibat, 2010).

Theorems 4.1 and 4.2 state that the solutions obtained 
by the DJM given in , the TAM given in  or 

, or the solution of the BCM given in  or  
for the nonlinear equation , converge to the exact 
solution under the condition  such that 

 
(that is . Also, for each , 
if we define the parameters:

                                       (37)

then the series solution   of  Eq.  converges to 
the exact solution , when   
In addition, as in Theorem 4.3, the maximum truncation 
error is estimated to be , 
where .

5. Solving the Jeffery-Hamel flow problem

In this section, the approximate solution for the nonlinear 
Jeffery-Hamel flow problem given in Eqs.  and 
is evaluated by the three previously presented iterative 
methods. The convergence condition is also examined for 
the obtained solution of these proposed methods. 

5.1. Solving the Jeffery-Hamel equation by the DJM

Consider the Jeffery-Hamel problem given by  and  
by the DJM. The following integral form will be obtained 
as in the following steps:

Let’s rewrite  as the following:

                                                     (38)

where 

Integrating  three times from  to , we get:

         (39)

where  as in . For simplicity, according to 
the rule of reducing multiple integrals (Wazwaz, 2011), 
the integral form given in Eq.  will be reduced to the 
following Volterra integral equation:

             (40)

So, according to the basic steps of the DJM, we have:

Then, we get

In general, for each , we have

                                 (41)

Hence,

and so on. Proceeding in this way, the components ,  
and  were also calculated but for brevity, they are not 
listed here.

In order to determine the value of , we solved 
, which provides better accuracy than 

other roots computed from others iterations 
with  and . Then we get the root 

. By substituting  with  
and    in  the  obtained  iterations  of  the  DJM,  we 
compute  the  values  of    by  using  the  second  norm 
for the Jeffery-Hamel problem as in , we get
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(42)

where for  the ’s, the values are less than one for 
all . Hence, this DJM approach is convergent 
according to the convergence condition.

5.2. Solving the Jeffery-Hamelequation by the TAM

To solve the current problem presented in Eqs.  and
 by the TAM according to the presented steps in the 

subsection 3.2, let us begin by solving the following 
initial problem:

               and                             (43)

we get,

The second step is solving the following problem:

                                         (44)

This produces:

                             (45)

The same step for finding , will be used, which 
means solving the following problem:

                                        (46)

We get

 (47)

and so on. Proceeding in this way, the components  ,  
and  were also calculated but for brevity are not listed 
here.

To prove the convergence analysis for the TAM, we 
have applied the approach given in . We get the 
following results

and so on. Clearly these iterations are the same iterations 
obtained by the DJM. In the same way, we use the  
iterations to prove the convergence condition, we must 
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find  by solving  with  and  
therefore, we get . By 
substituting  with  and  in the iterations above of the 
TAM and by computing the values of  for the problem 
as in , we get the same ’s of the DJM as in 
Hence, the condition of the convergence for the TAM has 
been carried out.

5.3. Solving the Jeffery-Hamel equation by the BCM

In this subsection, the BCM will be used to solve the 
nonlinear Jeffery-Hamel problem given in Eqs.  and 

. Let us start by the same integration operations in 
section 4 which got us the integral form . According 
to the BCM steps in 3.3.2, we have

We obtain,

In general, we have,

                              (48)

Hence,

and so on. Proceeding in this way, the components ,  
and  were also calculated but for brevity, they are not 
listed here.

To prove the convergence for the BCM, by applying the 
approch given in Eq. , we obtain the same iterations 
obtained by the TAM. Moreover, the same value of  is 
obtained for the same parameters. Thus the same  values 
of the DJM and TAM as in  are reached. Therefore, 
the condition of convergence is completed for the BCM. 

6. The numerical discussion

In order to assess the accuracy of the proposed methods 
the DJM, TAM and BCM for the approximate solution of 
the Jeffery-Hamel problem, one must examine the effect 
of the methods for the function . Thus, when selecting 
the values of  and  in our approximate solution, 
we can get several approximate appropriate solutions. 
According to the numerical investigations, we observed 
that the numerical results obtained by the three proposed 
iterative methods are similar to each other. To determine 
the value of   we solved for the given boundary condition 

 This provides better accuracy than other roots 
obtained by other iterations with  and  and 
we get the root  The other 
values for the root  were evaluated for the same values 
of  and  by solving the obtained iterations at the given 
boundary condition, i.e.  and then 
solving these relations at each iterate. Table 1 provides 
the best obtained real roots  among the other complex 
ones.

Table 1. The obtained real values for solving 

 

For the uniqueness of the solutions for the obtained 
condition; we refer to (Lasota & Yorke, 1972; Henderson 
& Jackson 1983) which stated at least one real root exists 
for such types of nonlinear BVP.
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Table 2 shows the values of  for different values of  
and . Figures 2 and 3 show the velocity function obtained 
by the proposed methods for several values of  and 

 Figures 4 and 5 show the root mean square function 
(RMS) for our obtained velocity function  The RMS 
function for any obtained iterations  can be defined by:

                 (49)

where  is the obtained approximate solution. The 
function  represents the numerical solution 
obtained by the classical fourth order Runge-Kutta method 
(RKM). The values for  are increased as  
Since the exact solution is unknown,  has 
been used as a benchmark to access the performance of 
the approximate solution. Furthermore, to estimate the 
accuracy of the obtained approximate solution, the error 
remainder function has been evaluated in the following 
form:

                                                                    (50)

with the following maximal error remainder parameter

                                             (51)

For  and , the maximal error remainder 
 values for the numerical solutions obtained by our 

proposed methods are plotted in Figure 6. It is important 
to note that we wrote the programs for the ADM (Esmaili 
et al., 2008) and the VIM (Ganji et al., 2009). One can 
clearly see that the  value for the proposed methods 
is less than the value for the ADM. This confirms that 
the proposed methods converge faster than the ADM. 
Figure 7 shows that the numerical solutions obtained by 
our proposed methods are in a good agreement with the 
results obtained by the ADM (Esmaili et al., 2008) and 
the VIM (Ganji et al., 2009), RK4 and Euler methods.

Table 2. The values of  for the approximate 
solution by using 5-iterations.

Fig. 2. The velocity solution obtained by proposed methods for various values of the Reynolds number and .
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Fig. 3. The velocity solution obtained by proposed methods for various values of the Reynolds number and .

Fig. 4. Logarithmic plots of the RMS function for different values of  when .

Fig. 5. Logarithmic plots of the RMS function for different values of  when .
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Fig. 6. The  values obtained by proposed methods, the ADM, and the VIM when  and .

Fig. 7. The numerical solutions obtained by our proposed methods, the ADM and the VIM at  and .

When comparing the proposed methods to other 
existing analytic and numerical methods, the main 
features of the proposed methods are that there is no 
need for linearization or discretization step-size for 
determining a sequence of subintervals over a large 
interval. Furthermore, the large computational work, 
the additional parameters, and the round-off errors are 
avoided without using any restricted assumptions for the 
nonlinear terms. We also overcome the difficulty that 
arises when calculating Adomian polynomials to handle 
the nonlinear terms in ADM. Our methods do not require 
calculating Lagrange multipliers as in VIM.

However, the limitation of our iterative methods is that 
by increasing the values of  or the Reynolds number  
the accuracy and convergence decreases.

7. Conclusion

In this paper, the approximate solutions for the Jeffery-
Hamel flow problem are obtained by using the three 
iterative methods (DJM, TAM and BCM). The obtained 
approximate solutions are presented in a convergent 
series without any restrictive assumptions in order to 
deal with the nonlinear terms. In a numerical simulation, 
we have shown that the values of the maximum error 
remainder decrease when the number of the iterations 
increases. Furthermore, the numerical results of the 
proposed methods were compared with those obtained 
by the Runge-Kutta method (RKM). This was carried out 
by evaluating the root mean square norm. In conclusion, 
the proposed methods are very accurate since they find 
reliable results.



Three iterative methods for solving Jeffery-Hamel flow problem11

References

Al-Jawary, M.A. (2017). A semi-analytical iterative 
method for solving nonlinear thin film flow problems. 
Chaos, Solitons and Fractals, 99: 52-56.

Al-Jawary, M.A. & Abd-Al-Razaq, S.G. (2016a). 
Analytic and numerical solution for Duffing equations. 
International Journal of Basic and Applied Sciences, 
5(2): 115-119.

Al-Jawary, M.A. & Al-Qaissy, H.R. (2015). A reliable 
iterative method for solving Volterraintegro-differential 
equations and some applications for the Lane-Emden 
equations of the first kind. Monthly Notices of the Royal 
Astronomical Society, 448: 3093-3104.

Al-Jawary, M.A. & Al-Razaq, S.G. (2016b). A semi 
analytical iterative technique for solving Duffing 
equations. International Journal of Pure and Applied 
Mathematics, 108(4): 871-885.

Al-Jawary, M.A. & Hatif, S. (2017). A semi-analytical 
iterative method for solving differential algebraic 
equations. Ain Shams Engineering Journal, 4(9):2581- 
2586.

Al-Jawary, M.A. & Raham, R.K. (2017). A semi-
analytical iterative technique for solving chemistry 
problems. Journal of King Saud University, 29(3): 320-
332.

Al-Jawary, M.A., Radhi, G.H. & Ravnik, J. (2017). 
Semi-analytical method for solving Fokker-Planck’s 
equations. Journal of the Association of Arab Universities 
for Basic and Applied Sciences, 24: 254-262.

Batchelor, K. (1967). An Introduction to Fluid Dynamics, 
Cambridge University Press,pp. 131-173.

Bayat, M., Pakar, I. & Bayat, M. (2015). Nonlinear 
vibration of mechanical systems by means of homotopy 
perturbation method. Kuwait Journal of Science 42(3): 
64-85.

Bhalekar, S. & Daftardar-Gejji, V. (2008). New iterative 
method: Application to partial differential equations. 
Applied Mathematics and Computation, 203: 778-783.

Bougoffa, L., Mziou S. & Rach R.C. (2016). Exact 
and approximate analytic solutions of the Jeffery-Hamel 
flow problem by the Duan-Rach modified Adomian 
decomposition method. Mathematical Modelling and 
Analysis, 21(2): 174-187.

Daftardar-Gejji, V. & Bhalekar, S. (2010). Solving 
fractional boundary value problems with Dirichlet 

boundary conditions using a new iterative method. 
Computers and Mathematics with Applications, 59: 
1801-180.

Daftardar-Gejji, V., & Jafari, H., (2006). An iterative 
method for solving nonlinear functional equations, Journal 
of Mathematical Analysis and Applications 316: 753-63.

Ehsani, F., Hadi, A., Ehsani, F. & Mahdavi, R. (2013). 
An iterative method for solving partial differential 
equations and solution of Korteweg-de Vries equations 
for showing the capability of the iterative method. World 
Applied Programming, 3(8): 320-327.

Esmaili, Q., Ramiar, A., Alizadeh, E. & Ganji, D.D. 
(2008). An approximation of the analytical solution of the 
Jeffery–Hamel flow by decomposition method. Physics 
Letters A, 372: 3434-3439.

Fraenkel, L.E. (1962). Laminar flow in symmetrical 
channels with slightly curved walls, I. On the Jeffery-
Hamel solutions for flow between planewalls. Proceedings 
of the Royal Society of London A, 267(1328): 119-138.

Ganji, D.D. (2006). The application of He’s homotopy 
perturbation method to nonlinear equations arising in heat 
transfer. Physics Letters A, 355(4-5): 337-341.

Ganji, Z.Z., Ganji, D.D., & Esmaeilpour, M. (2009). 
Study on nonlinear Jeffery-Hamel flow by He’s semi-
analytical methods and comparison with numerical 
results. Computers and Mathematics with Applications, 
58: 2107-2116.

Hamadiche, M., Scott, J. & Jeandel, D. (1994). 
Temporal stability of Jeffery–Hamel flow. Journal of 
Fluid Mechanics, 268: 71-88.

Hamel, G. (1916). Spiral förmige Bewegungen Zäher-
Flüssigkeiten. Jahresber Deutsche Math-Verein, 25: 34-
60.

Házi, G., & Farkas, I. (2003). The Jeffery-Hamel 
problem: A numerical Lattice-Boltzmann study. 
International Journal of Modern Physics B, 17(1-2): 139-
143.

Henderson J. & Jackson L. (1983). Existence and 
uniqueness of solutions of k-point boundary value 
problems for ordinary differential equations. Journal of 
Differential Equations, 48: 373-385.

Jeffery, G.B. (1915). The two-dimensional steady motion 
of a viscous fluid. Philosophical Magazine, 6: 455-465.

Joneidi, A.A., Domairry, G., & Babaelahi, M. (2010). 
Three analytical methods applied to Jeffery-Hamel flow. 



Majeed A. AL-Jawary, AL-Zahraa J. Abdul Nabi 12

Commun Nonlinear SciNumerSimulat, 15: 3423-3434.

Lasota A. & Yorke, J.A. (1972). Existence of solutions 
of two-point boundary value problems for nonlinear 
systems. Journal of Differential Equations, 11: 509-518.

Lu, L., Duan, J. & Fan, L. (2015). Solution of the 
magnetohydrodynamics Jeffery-Hamel flow equations by 
the modified Adomian decomposition method. Advances 
in Applied Mathematics and Mechanics, 7(5): 675-686.

Makinde, O.D. & Mhone, P.Y. (2006). Hermite-Padé 
approximation approach to MHD Jeffery-Hamel flows. 
Applied Mathematics and Computation, 181(2): 966-972.

Marinca, V. & Herişanu, N. (2011). An optimal 
homotopy asymptotic approach applied to nonlinear 
MHD Jeffery-Hamel flow. Mathematical Problems in 
Engineering 2011, Article ID 169056, 16 pages.

McAlpine,   A.   &   Drazin,   P.G.   (1998).   On   the  
spatio-temporal development of small perturbations of 
Jeffery-Hamel flows. Fluid Dynamics Research, 22(3): 
123-138.

Moghimi, S.M., Domairry, G., Soleimani, S. Ghasemi, 
E. & Bararnia, H. (2011). Application of homotopy 
analysis method to solve MHD Jeffery–Hamel flows in 
non-parallel walls. Advanced Engineering Software, 
42(3): 108-113.

Noroozi, M.J., Saedodin, S. & Ganji, D.D. (2017). A 
new approximate-analytical method to solve non-Fourier 
heat  conduction  problems.  Kuwait  Journal  of  Science, 
44(2):87-96.

Odibat, Z.M. (2010). A study on the convergence of 
variational iteration method. Mathematical and Computer 
Modelling, 51: 1181-1192.

Patel, H.S., & Meher, R. (2016). Analytical investigation 
of Jeffery-Hamel flow by modified Adomian 
decomposition method. Ain Shams Engineering Journal, 
9(4) :10.1016.

Schlichting, H. (1955). Boundary layer theory. McGraw-
Hill, New York, NY, USA, pp. 83-90.

Schlichting, H. (2000). Boundary-layer theory, McGraw-
Hill Press, New York, pp.51-79.

Sheikholeslami, M., Ganji, D.D., Ashorynejad, H.R., & 
Rokni, H.B. (2012). Analytical investigation of Jeffery-
Hamel flow with high magnetic field and nanoparticle by 
Adomian decomposition method, Applied Mathematics 
and Mechanics, 33(1): 25-36.

Sobey, I.J., &Drazin, P.G. (1986). Bifurcations of two-
dimensional channel flows. Journal of Fluid Mechanics, 
171: 263-287.

Sushila, Singh J. & Shishodia Y.S. (2014). A modified 
analytical technique for Jeffery–Hamel flow using sumudu 
transform. Journal of the Association of Arab Universities 
for Basic and Applied Sciences, 16: 11-15

Temimi, H. & Ansari, A.R. (2011). A semi-analytical 
iterative technique for solving nonlinear problems. 
Computers and Mathematics with Applications, 61: 203-
210.

Wazwaz, A.M. (2011). Linear and nonlinear integral 
equations: Methods and applications, Higher Education 
Press, Beijing and Springer-Verlag, Berlin, pp.19-21.

Yaseen, M., Samraiz, M. & Naheed, S. (2013). The DJ 
method for exact solutions of Laplace equation. Results in 
Physics, 3: 38-40.

Submitted : 06/04/2018
Revised     : 02/10/2018
Accepted   : 11/02/2019



Three iterative methods for solving Jeffery-Hamel flow problem13

q�U�≠ÍdHO� o�b� W�Q�� q( W�—«dJ� oz«d
 Àö�

w�M�« b�
 d�U� ¡«d�e�« ¨Í—«u'« bL�√ bO��

‚«dF�« ¨œ«bG� ¨œ«bG� WF�U� ¨©r�ON�« s�«® W�dB�« ÂuKFK� WO�d��« WOK� ¨ÈUO{U�d�« r��

h�K*«

 ÃU�M��«  - ÆW�u�u�  W�œb
Ë W�—«dJ�  oz«d
  Â«b���U�  ÎU�œb
Ë ÎUOKOK% WOD)« dO�  q�U�≠ÍdHO�  o�b�  W�Q��  q�  - ¨W�UI*«  Ác�  w�

 W��M��*« ZzU�M�« WA�UM� X9 ÆŒUM� hKI� WI�d
Ë ¨Í—UB�_«≠wLOL��« WI�d
 ¨ÍdHF�≠—«œ—U��«œ WI�d
 Â«b���U� WO��dI��« ‰uK(«

 WI�U� WOKOK% oz«d
Ë dK�Ë√ ¨WF�«d�« W��d�« È«– U�u�≠!«— oz«d
 s� ÎU�œb
 UNOK
 ‰uB(« - Èd�√ W�œb
 ‰uK� l� W�—UI*U� ¨ ÎU�œb


 W Ó� ÒbIÔ*« oz«dD�« Ê√ v�≈ ZzU�M�« dOA� ÆW��U��« WDIMK� ŒUM� W�dE� v�≈ Î«œUM��« W�d�I*« oz«dDK� »—UI��« ¡UD
« - ¨p�– v�≈ W�U{ùU� ÆW�U��

 œËb(« ÊU�� Ô( UJO�ULO�U� Z�U�d� Â«b���U� WO�u�U(« UM�UL
√ X9 ÆÈd�√ WOD� dO� qzU�� q( oO�D�K� WK�U�Ë WO�UF� È«–Ë ¨W�u�u�

ÆW�—«dJ��« ÈUOKLF�« w�


