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Abstract

By virtue of a variable transformation and a quadratic function approach, we generate rational analytical solutions to the
(3+1)-dimensional gBKP-Boussinesq equation and lump solutions to its three types of dimensionally reduced equations.
In addition, we derive quite a few conservation laws for those equations by employing the first homotopy method.
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1. Introduction

It is well known that soliton solutions to nonlinear partial
differential equations (NLPDEs), describing significant
wave phenomena, have been a popular research topic in
the field of nonlinear and modern mathematical physics.
Rational solutions (Zhang & Ma, 2015a; Zhang & Ma,
2015b; Shi et al., 2015) to NLPDEs have especially
attracted a great deal of attention in recent years. Lump
solutions, as a particular type of rational solutions, are
rationally localized in all directions in space. By taking
advantage of the variable transformations and quadratic
functions, a powerful novel approach has been presented
that seeks lump solutions, since a study (Ma, 2015a) by
one of the authors (Ma). By means of this method, a
sequence of NLPDEs has been investigated and shown
to possess lump solutions. These include the following
equations: the reduced p-gKP and p-gBKP equations
(Ma, Qin & Lii, 2016), the potential-YTSF equation (Lii
& Chen, 2015), the BKP equation (Yang & Ma, 2016),
the generalized B-type KP equation (Wu et al., 2017), the

generalized shallow water-like equation (Zhang et al.,
2017), the Jimbo-Miwa equation (Yang & Ma, 2017), the
asymmetrical Nizhnik-Novikov-Veselov equation (Zhao
et al., 2017), the Fokas equation (Cheng & Zhang, 2017),
the generalized KP-Boussinesq equation (Lii et al., 2016),
and so forth.

On the other hand, conservation laws play a
significant role in the study of integrability of NLPDEs,
for example, integrable reductions, well-possedness of
Cauchy problems, and various numerical techniques.
Conservation laws, closely related constants of motion,
are also used in attempting linearization problems to
explore integrability.

The so-called (3+1)-dimensional B-type of the KP
equation (Ma & Fan, 2011; Ma & Zhu, 2012) takes the
form

U, —U, —3u,) +3u, =0, (1)

where u is a function of the variables x, y, z and ¢. Recently,



via adding one extra term of second order in time 7 to the
B-type of the KP Equation (1), a new (3+1)-dimensional
gBKP-Boussinesq equation (Wazwaz & El-Tantawy,
2017)

u, —u, —3wu,) +u, +3u, =0 2)
was proposed. This equation is used as a mathematical
model to describe both right and left-going waves as the
Boussinesq equation. By use of the simplified Hirota’s
approach, the general phase shift and one- and two-soliton
solutions for Equation (2) were derived.

The purpose of this article is twofold. First, the focus
is on the construction of rational solutions to the (3+1)-
dimensional gBKP-Boussinesq Equation (2) and lump
solutions to three types of dimensionally reduced equations
utilizing the quadratic function method. Second, the focus
is on deriving some conservation laws of Equation (2)
and its dimensionally reduced equations using the first
homotopy method.

2. Rational solutions to the gBKP-Boussinesq
equation

This section is devoted to seeking rational analytical
solutions to Equation (2). Under the relation between f
and u

u=2(nf),, (3)

where f=f{x,y,z,¢) is a real unknown function, the gBKP-
Boussinesq Equation (2) can be cast into the following
form:

21 12 = fe S =4S S

+2f o f OS2 0k ]

+ fofuf +3fof f+6F S

~6f for S+ Fuf S 4)
+ o dif + fawn S = Fud

3 =S =21 S,

+2f S =6f S Sy =0.

Thus, it is obvious that if f solves Equation (4), then
u=2(In f) presents a solution to Equation (2). For the
derivation of the quadratic function solutions to Equation
(4), we assume that
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f=g"+h+0,
g =ox+fy+uz+wv, (5)
h=ax+by+cz+dt,

where a,f3,ut,v,a,b,c,d and 0 are some real undetermined
parameters. Inserting (5) into Equation (4) directly gives
rise to a set of algebraic equations for the parameters,
from which we obtain

2 2
a:—M,b:—d,c:O,
3uv
2 2 2
a:—d +v ,ﬂ:d
3u 1%

Here u,v,d,0 are arbitrary parameters and MVF0.
Therefore, we arrive at the positive quadratic function
solutions for Equation (4)

d’+v: d’

f=( X+ — y+uz+wvr)’
oo ©)
2 2

c WD) a4+,
3uv

provided that the parameter 0 is positive. The resulting
class of quadratic function solutions, in turn, leads to a
class of rational solutions to the (3+1)-dimensional gBKP-
Boussinesq equation (2)

d>+v: d’

u=4a(- X+—y+uz+vt)
v

d* +v?

_d(d’+v?) .
3u

+a(

x—dy—i—dt)]/[(

d? d(d* +v?)
3uv

_Ty_m_w)u( x+dy—dt) +68] (7)

which is a class of rational solutions, involving four
arbitrary parameters, for Equation (2). The solutions are
similar to the results (Yan et al. 2018). With regard to (7),
through taking particular values of the parameters as

d=15u=2,v=4,5=10,

the following specific solution is

U= @[(333.0625x ~1927
144

18.25
— X
6

2.25

—438t)]/[( -y —2z-41)°

9.125

+( x+1.5y—1.5¢)> +10] (8)
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According to Solution (8), some plots are depicted (Figures /

and 2) to show localized characteristics and dynamic behaviors.
Figure / displays the localized structures of Solution (8) in the

(x,y)-, (»z)- and (x,z)-planes respectively. It is clear that the
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wave possesses two adjacent humps in opposite directions:

one is above the plane and the other is below. From Figure
2, It is evidently seen that the wave in (x,y)-plane propagates

towards the positive direction of the x-axis as time evolves,

and it retains its shape during the propagation.

In this subsection, we consider the case of z=x, then a

dimensionally reduced form of Equation (2) is

(©

Fig. 1. Graphs of rational solution (8). (a) z =¢#=0; (b) x
t=0; (c)y =t=0. Curved lines drawn in the horizontal

planes are contour lines.



u, —u. —3uun,), +u,+3u, =0. C))

A direct substitution of the relation (3) and this
assumption

f=g"+h"+6,
g=ox+py+ut, (10)

h=ax+by+dt,

into Equation (9) generates the constraining equations

_3a’v—6aad -3a’v—d’v—-v’

p d*+v? ’
b__3a2d +6aav-3a’d+d’ +dv?
d*+v? ’
5=—;2(3an +3atav+6a’a’d
(av—ad)

+a’d® +a’dv +6a*a’y + dlad’v
+a’av’ +3aatd + aa’d® + aa’dv?

+3a’v+a’d’v + a3v3),

where a,a,v,d are arbitrary parameters and &®+’#0. By
imposing av— ad# 0 and the positivity condition 0>0, it
follows that

f=(ax+

I (3a’v —6aad -3a’v
+v

1
—dv-v)y+u) +(ax - ——
)y +vi)”+( FER
(3a’d +6aav—-3a’d +d’ +dv*)y

(11)

+dt) -
(av—oad)

- (3a’d +3a*av
+6a’a’d +a’d® +a*dv? +6a*a’y
+a*ad*v+ad*av’ +3aa’d +aa’d’

+aatdv: +3a’v+a’dv+a’vd),

which gives rise to a class of lump solutions to Equation (9)
= 4(ag +ah)
f

b

Zhou-Zheng Kang, Tie-Cheng Xia, Wen-Xiu Ma 4

where f'is expressed by (11) and

g=ax+ P (Ba’v —6aad —3a’v
+v
—dzv—v3)y+vt,

(Ba’d +6aav—3a’d

h=ax—-
d* +v?

+d’+dv?)y+dt.

3.2 The reduction of z=y
For the reduction with z=y, Equation (2) is changed into

u, —u.. —3wu), +u, +3u =0. (12)

Carrying (3) and (10) into Equation (12), we derive the
constraining equations

a= L(3aﬁ2 +prd +d?),

3dp
B s
v =—E(3a+d),b =?(3a+d),
1
o= W(%fﬂ4 +9a’Bd* +6ap*d

+6apB’d’ + pld’ +2p%d" +d°),
where f,a,d are free parameters, df#0 and 0>0. We can

therefore write a class of lump solutions to Equation (12)
as follows

u=4(ag +ah),
in which
2 2 3
f:(3a,8 +p°d+d x+ﬁ'y—mt)2
3dp d
+(ax+’8—2(3a+d)y+dt)2+ ! 9a’p*
d? 9d° j*
+9a’B*d* +6apB'd +6ap’d’ + p'd’
+2B%d* +d°),
and
2 2 3
gZSaﬂ +p°d+d x+ﬁy—ﬂ(3a+d)t,
3dp d

2
h:ax+ﬁL2+d)y+dt.

3.3 The reduction of z=t

If we let z=¢, then Equation (2) is turned into

(13)

u, —u.. —3wu,), +u,+3u, =0.
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The substitution of (3) and (10) into Equation (13) yields
the constraining equations

,8:—3a—v,b:g(3a+v),
a

d= —l(3a2 +3a’+av),
a

where &,V are free parameters, a0 and 0>0. Hence, we
obtain a class of lump solutions to equation (13)

= 4(ag +ah)
f

b

where

F=(ax—Ga+v)y+u) +(ax+ L Ga+v)y
a

—l(3a2 +3a’+av)t)’ +9,
a

and
g=ax—CBa+v)y+w,

h=ax+

aBa+v) 3a’ +3a? tav,
a a '

4. Conservation laws for the gBKP-Boussinesq
equation

In this section, we find the conservation laws for the gBKP-
Boussinesq Equation (2). Until now, there are a variety of
systematic approaches for obtaining conservation laws of
NLPDEs, including the Noether theorem (Olver, 1993),
the symmetry and adjoint symmetry method (Ma, 2015b;
Ma, 2018), the multiplier method (Moleleki et al., 2017),
the first homotopy method (Cheviakov, 2010; Volterra,
1913; Flanders, 1963), and so on. The method used here
for computing conservation laws is the first homotopy
method. We first give a brief review on the main steps
of the first homotopy method. For more details, we
recommend that readers refer to (Cheviakov, 2010).
Without loss of generality, we consider a given nonlinear
differential equation with independent variables

x:('xl :taxga“',-xn)

and dependent variables

u(x)=@w"u?, - u")(x):

®(x,u,0u,---) =0, (14)

where the symbol Odu denotes the set of the first-order
derivatives of u with respect to the independent variables
t and x;, 2<i<n. A conservation law for Equation (14) is
a divergence expression
DivT[U]=D,T'[U]+ ZDZ.TX" [U]=0,
i=2

which vanishes for all solutions of Equation (14). Here
T'[U] is referred to as a conserved density, and T [U ]
as spatial fluxes of the conservation law (15).

15)

The main steps of the first homotopy method can be
summarized as follows:

Step 1. Computation of the conservation law multipliers

One first needs to solve multiplier determining equations

E, (AD(x,U,0U,---,0"U)) =0, (16)

with
A=AWU,0U,---,0'U)

holding for arbitrary function U(x), which yields the
set of linear determining equations to obtain all sets of
conservation law multipliers of Equation (14).

Step 2. Calculation of the n-dimensional Euler operator

After finding multipliers for Equation (14), one can
calculate the n-dimensional Euler operator through the
formula given by

E;]Sw'“’m = i i (li...(k"ijﬂl

ky=s, k,=s, sl sn
k,—s, a
n aU(k1+"'+k”) ’
ky+-+k,
o 4tk 0 U
where U ) =

k k, .
0"x,---0"x,

Step 3. Determination of the n-dimensional homotopy
operator

The n-dimensional homotopy operator associated with
the respective independent variable x, can be derived via
the formula

) _['NOye0 g da
H (f[U])—joglj SOV,
where for j=1,...,m,

OTD =Y 3Dy

50 a0 Lttty

Dfln (ﬁjE;ﬂ;‘I/’“Jr*I RARURPN) (f[lj]))



Based on the above steps, one can write a conserved
density T’[U] and fluxes 7 [U] as

T'[UI=H"(fIUD,T*[U]=H"(fIU.

Therefore, one can completely determine the conserved
density and fluxes in a conservation law on the solutions
U(x) = u(x) of the considered equation.

In order to derive conservation laws for Equation
(2), we first compute multipliers, which are also adjoint
symmetries (Ma, 2015b; Ma, 2018). Here we search for
conservation laws arising from multipliers of the form

A=At x,y,z,u,u,)

Then the determining equations about A can be generated
from (16) as
A v = _Atf s

Ayu}. = Azu,. = Atu}. = Aurur = Ax = Au = 0
Now, a direct calculation leads to

A=cu +F(z,y)+F(z,t—y),

where ¢ is an arbitrary constant and F',(z, y) denotes an
arbitrary function of the variables z and y, while F(z,
t-y) depends on z and 7—y freely. It is noted that in the
following statement, the conserved density 7" denotes the
density of the medium, whereas the associated fluxes 7,
P, T*represent the spatial fluxes. It turns out that we can
find the multiplier A=u_and its corresponding conserved
density and fluxes

T 1 1
——5 uu ., + Eu,ux + Euxuy,
3 1
X _ 2
T =-uuu,—2uu, + E”x”z -5 U,

1 1
+—u u, ——uu

1 1
5 Walhyy =5ty m,+§uu”+§uuy,
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5. Conservation laws for dimensionally reduced
gBKP-Boussinesq equations

Here we apply the first homotopy method to three
dimensionally reduced equations and present multipliers
and their corresponding conserved density and fluxes. We
suppose that the multipliers take the form A=A, x, y, u, u ).

5.1 The reduction of z=x

As to Equation (9), we can determine the multipliers via
direct computation as follows

A=cu +E()+FE{-y),

where ¢ is an arbitrary constant, while F,(y) and F,(t-y)
represent arbitrary functions of y and ¢—y, respectively.

Case 1. Corresponding to the multiplier A = u , we have

; 1 1
I =——uu , +—uu +—u
2 2 2

xuy’
x _ 2
IV =-uuu, —2uu +—u ——u, i
1 1
+5Mxxl/lxy —Euxuwy +—uu, +—I/llxlyt
1
—Euumy,
T’ !
| T uuu,, —uly, + Euuxxxx'

Case 2. Corresponding to the multiplier A=F (t-y), we
have

T, = —uF}(t = y)+u,F,(t = y) +u,F,(t—y),

TFZ = _BMXM}'FZ(t_ y)+3u F,(t—y)
_uxxyFZ(t_y)’

T; =—uF)(t—y).

5.2 The reduction of z=y
As to Equation (12), the multipliers we are looking for are

A=cu +E()+FEE-y),

where ¢ is an arbitrary constant, while F,(y) and F,(t-y)
represent arbitrary functions of y and ¢—y, respectively.

Case 1. Corresponding to the multiplier A = u, we find
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xPyo

T =—=uu, +lu,ux+lu u
2 2 2
Tlx = —uuu, _2uf_uy +%uxuy —%M_Wuy
+lu u —luu +luu +luu
PR R R R
3
Ul iy Euuxy,
3 1

y — - — —
T’ =uuu_ > uu., ) uu  +—uu .

2
Case 2. Corresponding to the multiplier A=F',(#—y), we find
Ty, =—uF,(t—y)+u,F,(t—y)+u,F,(t-y),
T;; =—3uu F,(t—y)+3u F,({-y)
_umsz(t_ )’),
Ty, = —ufFy(1=y).
5.3 The reduction of z=t

As to Equation (13), the multipliers have the following
expression

A=cu +F(y)+F(t-y),

where c is an arbitrary constant, while F,(y) and F,(t-y)
represent arbitrary functions of y and -y, respectively.

Case 1. Corresponding to the multiplier A = u , we have

1 1 1
T =——uu, +—uu +—-uu,,
2 2 2
1
I =-uuu, —Zufuy +§ ui—i U,
1 1
+ U U, — U U, Ul
2 T2 2 2
1
_Euumy

. 1
T =uuu ——uu, +—uu__.
2 2

Case 2. Corresponding to the multiplier A=F (t-y), we have
Ty, =—uF)(t— y)+u,F,(t— y)+3u F,(t - y)

+u F,(t-y),
Ty ==3uu F,(t—y)=-3uF(t-y)

- uxxyFZ (t - y)a
T, =—uF,(t—y).

6. Concluding remarks

In summary, based on a variable transform and a quadratic
function method, we first examined the (3+1)-dimensional
gBKP-Boussinesq equation and derived a class of rational
solutions to this equation. Some graphs were made to
show the localized characteristics and dynamic behaviors
of the obtained solutions. Similarly, three classes of
lump solutions were also presented for the dimensionally
reduced forms ofthe (3+1)-dimensional gBKP-Boussinesq
equation with Z = x, Z = y and Z = ¢, respectively. These
lump solutions contain a set of free parameters. If different
values are selected for these parameters, the spatial
structures of the solutions will changed accordingly.
Furthermore, upon applying the first homotopy method,
we constructed quite a few conservation laws for both the
(3+1)-dimensional gBKP-Boussinesq equation and its
dimensionally reduced equations.

There are also some systematic studies on lump
solutions in any dimensions (Ma, Zhou & Dougherty,
2016; Ma & Zhou, 2018). Diversity of interaction solutions
between lumps and solitons (or periodic waves) would be
a very interesting problem (Ma et al., 2017; Zhao & Ma,
2017; Zhang & Ma, 2017).
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