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1 Introduction
The concept of an r-Toeplitz matrix was introduced by
Gover and Barnett in the eighties (Gover & Barnett, 1985),
which also established many of its properties (Gover & Bar-
nett, 1985; Gover, 1989). They defined an r-Toeplitz matrix
as an n× n matrix An, such that [An]k+r,ℓ+r = [An]k,ℓ for
all k, ℓ = 1,2, . . . ,n− r. Following this idea, we say that an
n×n matrix Bn is an r-Hankel matrix if [Bn]k+r,ℓ−r = [Bn]k,ℓ
for every k = 1,2, . . . ,n− r and ℓ = r+ 1, . . . ,n. Note that
when r = 1, the matrix Bn becomes a Hankel matrix.

Let us point out that Hankel matrices appear not only
in engineering problems of system and control theory (Ol-
shevsky & Stewart, 2001 and the references therein), but
also in computational mathematics (Bultheel & Van Barel,
1997).

In this note, we shall consider a particular type of anti-
tridiagonal 2-Hankel matrices of even order, concretely, real
2n×2n matrices of the form

H2n =




0 . . . . . . . . . 0 b1 c
... . .

.
a2 d a1

... . .
.

. .
.

c b2 0
... . .

.
. .
.

. .
.

. .
.

. .
. ...

0 a2 d . .
.

. .
. ...

b1 c b2 . .
. ...

d a1 0 . . . . . . . . . 0




(1.1)

with cd = 0. It is our goal to obtain an explicit expression
for the characteristic polynomial of H2n as well as a rep-
resentation of its eigenvectors for eigenvalues given a pri-
ori. As a consequence, sufficient conditions are announced
to get an orthogonal diagonalization of anti-tridiagonal 2-

Hankel matrices of even order having null northeast-to-
southwest diagonal. We emphasize that, in general, H2n
is not a persymmetric matrix, which makes some recent
approaches concerning this issue unfeasible (Akbulak, da
Fonseca & Yilmaz, 2013; Wu, 2010). Therefore, our re-
sults emerge as a complement for these and other papers
about spectral properties of anti-tridiagonal matrices.

2 Main results
For any integer p � −1, we shall denote by Up(x) the pth
degree Chebyshev polynomial of the second kind

Up(x) =
sin[(p+1)arccosx]

sin(arccosx)
, −1 < x < 1,

with Up(±1) = (±1)p(p + 1) (Mason & Handscomb,
2003). This expression as a sum of powers of x can, of
course, be evaluated for any x. The symbols ⌊x⌋ and ⊗ will
be used to indicate the largest integer not greater than x and
the Kronecker product, respectively. The Euclidean norm
will be denoted by || · ||.

Let ξ ,b1,b2 be real numbers such that b1b2 �= 0.
Throughout, we shall consider the sequence of polynomi-
als {Qk(x,ξ )}k�0 defined by

Qk(x,ξ ) :=





x(b1b2)
k−1

2 Uk−1
2

�
x2−b2

1−b2
2

2b1b2

�
, k odd

(b1b2)
k
2 U k

2

�
x2−b2

1−b2
2

2b1b2

�
+

ξ 2(b1b2)
k
2−1U k

2−1

�
x2−b2

1−b2
2

2b1b2

�
, k even

(2.1)

as well as the n×n matrix Qn

�
b 3+(−1)n

2

�
whose (k, ℓ)-entry

1
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1 Introduction
The concept of an r-Toeplitz matrix was introduced by
Gover and Barnett in the eighties (Gover & Barnett, 1985),
which also established many of its properties (Gover & Bar-
nett, 1985; Gover, 1989). They defined an r-Toeplitz matrix
as an n× n matrix An, such that [An]k+r,ℓ+r = [An]k,ℓ for
all k, ℓ = 1,2, . . . ,n− r. Following this idea, we say that an
n×n matrix Bn is an r-Hankel matrix if [Bn]k+r,ℓ−r = [Bn]k,ℓ
for every k = 1,2, . . . ,n− r and ℓ = r+ 1, . . . ,n. Note that
when r = 1, the matrix Bn becomes a Hankel matrix.

Let us point out that Hankel matrices appear not only
in engineering problems of system and control theory (Ol-
shevsky & Stewart, 2001 and the references therein), but
also in computational mathematics (Bultheel & Van Barel,
1997).

In this note, we shall consider a particular type of anti-
tridiagonal 2-Hankel matrices of even order, concretely, real
2n×2n matrices of the form

H2n =


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0 . . . . . . . . . 0 b1 c
... . .

.
a2 d a1

... . .
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... . .
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. ...
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


(1.1)

with cd = 0. It is our goal to obtain an explicit expression
for the characteristic polynomial of H2n as well as a rep-
resentation of its eigenvectors for eigenvalues given a pri-
ori. As a consequence, sufficient conditions are announced
to get an orthogonal diagonalization of anti-tridiagonal 2-

Hankel matrices of even order having null northeast-to-
southwest diagonal. We emphasize that, in general, H2n
is not a persymmetric matrix, which makes some recent
approaches concerning this issue unfeasible (Akbulak, da
Fonseca & Yilmaz, 2013; Wu, 2010). Therefore, our re-
sults emerge as a complement for these and other papers
about spectral properties of anti-tridiagonal matrices.

2 Main results
For any integer p � −1, we shall denote by Up(x) the pth
degree Chebyshev polynomial of the second kind

Up(x) =
sin[(p+1)arccosx]

sin(arccosx)
, −1 < x < 1,

with Up(±1) = (±1)p(p + 1) (Mason & Handscomb,
2003). This expression as a sum of powers of x can, of
course, be evaluated for any x. The symbols ⌊x⌋ and ⊗ will
be used to indicate the largest integer not greater than x and
the Kronecker product, respectively. The Euclidean norm
will be denoted by || · ||.

Let ξ ,b1,b2 be real numbers such that b1b2 �= 0.
Throughout, we shall consider the sequence of polynomi-
als {Qk(x,ξ )}k�0 defined by

Qk(x,ξ ) :=
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as well as the n× n matrix Qn

�
b 3+(−1)n

2

�
whose (k, ℓ)-entry
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(2)

as well as the n × n matrix Qn                      whose (k,ℓ)-entry 
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


−b⌊
ℓ−k

2 ⌋
3−(−1)k

2

b⌊
ℓ−k+1

2 ⌋
3+(−1)k

2

Qk−1(λ ,b2)Qn−ℓ
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�
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−b⌊
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2 ⌋
3−(−1)ℓ
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b⌊
k−ℓ+1

2 ⌋
3+(−1)ℓ

2

Qℓ−1(λ ,b2)Qn−k

�
λ ,b 3+(−1)n
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�

Qn(λ ,b2)
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(2.2)
and the n×n matrix Sn

�
x,b 3+(−1)n

2
,b2

�
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Qn

�
b 3+(−1)n

2

�
−

b 3+(−1)n
2

Qn(x,b2)

Qn(x,b2)−b 3+(−1)n
2

Qn−1(x,b2)
·

qn

�
b 3+(−1)n

2

�
qn

�
b 3+(−1)n

2

�⊤
(2.3)

with qn

�
b 3+(−1)n

2

�
the last column of Qn

�
b 3+(−1)n

2

�
. Further,

we shall suppose the n×n matrix Tn(x,y) defined by







0 x 0 . . . . . . . . . 0

x 0 y 0
...

0 y 0 x
. . .

...
... 0 x

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . . 0 x

0 . . . . . . . . . 0 x y




, n even


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0 x 0 . . . . . . . . . 0

x 0 y 0
...

0 y 0 x
. . .

...
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. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . . 0 y

0 . . . . . . . . . 0 y x




, n odd.

(2.4)

Set

Jn :=
�
δk+ℓ,n+1

�
k,ℓ ,

En :=
�

1+(−1)k

2 δk,ℓ

�
k,ℓ

,

Kn :=
�

1−(−1)k

2 δk,ℓ

�
k,ℓ

where δ is the Kronecker delta. For ab �= 0, let un(x,a,b)
be the n-dimensional vector whose the kth component is




Uk−1
2

�
x2−a2−b2

2ab

�
+ b

aUk−3
2

�
x2−a2−b2

2ab

�
, k odd

x
aU k

2−1

�
x2−a2−b2

2ab

�
, k even

(2.5)

In what follows, we shall assume the anti-tridiagonal 2-
Hankel matrix H2n defined in (1.1) with d = 0. Notwith-
standing, similar results hold for any real number d and
c = 0, mutatis mutandis.

Theorem 1 Let n be a positive integer, c a real num-
ber, {Qk(x,ξ )}k�0 the sequence of polynomials (2.1) and
Tn(a1,a2), Tn(b1,b2) the matrices defined by (2.4) for
nonzero reals a1,a2,b1,b2.

(a) If n is even, then the eigenvalues of H2n in (1.1) are pre-
cisely the zeros of

f (x) = (a1a2b1b2)
n
2 ·

�
Un

2

�
x2−a2

1−a2
2

2a1a2

�
+ a2−x

a1
Un

2−1

�
x2−a2

1−a2
2

2a1a2

��
·

�
Un

2

�
x2−b2

1−b2
2

2b1b2

�
+ b2−x

b1
Un

2−1

�
x2−b2

1−b2
2

2b1b2

��
(2.6)

Moreover, if λ is an eigenvalue of Tn(a1,a2), μ is an
eigenvalue of Tn(b1,b2), Qn(λ ,b2) �= b2Qn−1(λ ,b2) and
det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0, then

P⊤
2n

�
un(λ ,a1,a2)

−cSn(λ ,b2,b2)un(λ ,a1,a2)

�
(2.7)

and

P⊤
2n

�
0

un(μ ,b1,b2)

�
(2.8)

are eigenvectors of H2n associated to λ and μ , respectively,
where P2n is the 2n×2n permutation matrix

P2n :=

�
En JnEn

Kn JnKn

�
(2.9)

un(λ ,a1,a2), un(μ ,b1,b2) are the n-dimensional vectors
defined by (2.5) and Sn(λ ,b2,b2) is the n× n matrix given
in (2.3).

(b) If n is odd, then the eigenvalues of H2n in (1.1) are pre-
cisely the zeros of

f (x) = (a1a2b1b2)
n−1

2 ·
�
(x−a1)Un−1

2

�
x2−a2

1−a2
2

2a1a2

�
−a2Un−3

2

�
x2−a2

1−a2
2

2a1a2
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·

�
(x−b1)Un−1
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�
x2−b2
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2b1b2

�
−b2Un−3
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�
x2−b2

1−b2
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2b1b2
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(2.10)

Furthermore, if λ is an eigenvalue of Tn(a1,a2), μ is an
eigenvalue of Tn(b1,b2), Qn(λ ,b2) �= b1Qn−1(λ ,b2) and
det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0, then

P⊤
2n

�
−cSn(λ ,b1,b2)un(λ ,a1,a2)

un(λ ,a1,a2)

�
(2.11)

and

P⊤
2n

�
un(μ ,b1,b2)

0

�
(2.12)

2

(3)
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�
k,ℓ

,

Kn :=
�

1−(−1)k

2 δk,ℓ

�
k,ℓ

where δ is the Kronecker delta. For ab �= 0, let un(x,a,b)
be the n-dimensional vector whose the kth component is




Uk−1
2

�
x2−a2−b2

2ab

�
+ b

aUk−3
2

�
x2−a2−b2

2ab

�
, k odd

x
aU k

2−1

�
x2−a2−b2

2ab

�
, k even

(2.5)

In what follows, we shall assume the anti-tridiagonal 2-
Hankel matrix H2n defined in (1.1) with d = 0. Notwith-
standing, similar results hold for any real number d and
c = 0, mutatis mutandis.

Theorem 1 Let n be a positive integer, c a real num-
ber, {Qk(x,ξ )}k�0 the sequence of polynomials (2.1) and
Tn(a1,a2), Tn(b1,b2) the matrices defined by (2.4) for
nonzero reals a1,a2,b1,b2.

(a) If n is even, then the eigenvalues of H2n in (1.1) are pre-
cisely the zeros of

f (x) = (a1a2b1b2)
n
2 ·

�
Un

2

�
x2−a2

1−a2
2

2a1a2

�
+ a2−x

a1
Un

2−1

�
x2−a2

1−a2
2

2a1a2

��
·

�
Un

2

�
x2−b2

1−b2
2

2b1b2

�
+ b2−x

b1
Un

2−1

�
x2−b2

1−b2
2

2b1b2

��
(2.6)

Moreover, if λ is an eigenvalue of Tn(a1,a2), μ is an
eigenvalue of Tn(b1,b2), Qn(λ ,b2) �= b2Qn−1(λ ,b2) and
det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0, then

P⊤
2n

�
un(λ ,a1,a2)

−cSn(λ ,b2,b2)un(λ ,a1,a2)

�
(2.7)

and

P⊤
2n

�
0

un(μ ,b1,b2)

�
(2.8)

are eigenvectors of H2n associated to λ and μ , respectively,
where P2n is the 2n× 2n permutation matrix

P2n :=

�
En JnEn

Kn JnKn

�
(2.9)

un(λ ,a1,a2), un(μ ,b1,b2) are the n-dimensional vectors
defined by (2.5) and Sn(λ ,b2,b2) is the n× n matrix given
in (2.3).

(b) If n is odd, then the eigenvalues of H2n in (1.1) are pre-
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2 ·
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·
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�
− b2Un−3

2

�
x2−b2

1−b2
2

2b1b2

��

(2.10)

Furthermore, if λ is an eigenvalue of Tn(a1,a2), μ is an
eigenvalue of Tn(b1,b2), Qn(λ ,b2) �= b1Qn−1(λ ,b2) and
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(4)

is


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3−(−1)k

2

b⌊
ℓ−k+1

2 ⌋
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(2.2)
and the n×n matrix Sn
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�
given by
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−
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�
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�⊤
(2.3)

with qn
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�
the last column of Qn
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b 3+(−1)n
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�
. Further,

we shall suppose the n× n matrix Tn(x,y) defined by
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
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


, n even




0 x 0 . . . . . . . . . 0

x 0 y 0
...

0 y 0 x
. . .

...
... 0 x

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . . 0 y
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
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, n odd.

(2.4)

Set
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k,ℓ ,

En :=
�

1+(−1)k

2 δk,ℓ

�
k,ℓ

,

Kn :=
�

1−(−1)k

2 δk,ℓ
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where δ is the Kronecker delta. For ab �= 0, let un(x,a,b)
be the n-dimensional vector whose the kth component is



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x2−a2−b2

2ab

�
+ b

aUk−3
2

�
x2−a2−b2

2ab

�
, k odd

x
aU k

2−1
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�
, k even

(2.5)

In what follows, we shall assume the anti-tridiagonal 2-
Hankel matrix H2n defined in (1.1) with d = 0. Notwith-
standing, similar results hold for any real number d and
c = 0, mutatis mutandis.

Theorem 1 Let n be a positive integer, c a real num-
ber, {Qk(x,ξ )}k�0 the sequence of polynomials (2.1) and
Tn(a1,a2), Tn(b1,b2) the matrices defined by (2.4) for
nonzero reals a1,a2,b1,b2.

(a) If n is even, then the eigenvalues of H2n in (1.1) are pre-
cisely the zeros of

f (x) = (a1a2b1b2)
n
2 ·

�
Un

2

�
x2−a2

1−a2
2

2a1a2

�
+ a2−x

a1
Un

2−1
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x2−a2
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2

2a1a2
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·

�
Un

2

�
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Un
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(2.6)

Moreover, if λ is an eigenvalue of Tn(a1,a2), μ is an
eigenvalue of Tn(b1,b2), Qn(λ ,b2) �= b2Qn−1(λ ,b2) and
det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0, then

P⊤
2n

�
un(λ ,a1,a2)

−cSn(λ ,b2,b2)un(λ ,a1,a2)

�
(2.7)

and

P⊤
2n

�
0

un(μ ,b1,b2)

�
(2.8)

are eigenvectors of H2n associated to λ and μ , respectively,
where P2n is the 2n×2n permutation matrix

P2n :=

�
En JnEn

Kn JnKn

�
(2.9)

un(λ ,a1,a2), un(μ ,b1,b2) are the n-dimensional vectors
defined by (2.5) and Sn(λ ,b2,b2) is the n× n matrix given
in (2.3).

(b) If n is odd, then the eigenvalues of H2n in (1.1) are pre-
cisely the zeros of

f (x) = (a1a2b1b2)
n−1

2 ·
�
(x−a1)Un−1

2

�
x2−a2

1−a2
2

2a1a2

�
−a2Un−3

2

�
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·

�
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�
−b2Un−3

2
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(2.10)

Furthermore, if λ is an eigenvalue of Tn(a1,a2), μ is an
eigenvalue of Tn(b1,b2), Qn(λ ,b2) �= b1Qn−1(λ ,b2) and
det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0, then
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2n

�
−cSn(λ ,b1,b2)un(λ ,a1,a2)

un(λ ,a1,a2)

�
(2.11)

and

P⊤
2n

�
un(μ ,b1,b2)

0

�
(2.12)

2

we shall suppose the n × n matrix Tn(x,y) defined by

is




−b⌊
ℓ−k

2 ⌋
3−(−1)k

2

b⌊
ℓ−k+1

2 ⌋
3+(−1)k

2

Qk−1(λ ,b2)Qn−ℓ

�
λ ,b 3+(−1)n

2

�

Qn(λ ,b2)
, k � ℓ

−b⌊
k−ℓ

2 ⌋
3−(−1)ℓ

2

b⌊
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2 ⌋
3+(−1)ℓ

2

Qℓ−1(λ ,b2)Qn−k

�
λ ,b 3+(−1)n

2

�

Qn(λ ,b2)
, k > ℓ

(2.2)
and the n×n matrix Sn

�
x,b 3+(−1)n

2
,b2

�
given by

Qn

�
b 3+(−1)n

2

�
−

b 3+(−1)n
2

Qn(x,b2)

Qn(x,b2)−b 3+(−1)n
2

Qn−1(x,b2)
·

qn

�
b 3+(−1)n

2

�
qn

�
b 3+(−1)n

2

�⊤
(2.3)

with qn

�
b 3+(−1)n

2

�
the last column of Qn

�
b 3+(−1)n

2

�
. Further,

we shall suppose the n× n matrix Tn(x,y) defined by







0 x 0 . . . . . . . . . 0

x 0 y 0
...

0 y 0 x
. . .

...
... 0 x

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . . 0 x

0 . . . . . . . . . 0 x y




, n even




0 x 0 . . . . . . . . . 0

x 0 y 0
...

0 y 0 x
. . .

...
... 0 x

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . . 0 y

0 . . . . . . . . . 0 y x




, n odd.

(2.4)

Set

Jn :=
�
δk+ℓ,n+1

�
k,ℓ ,

En :=
�

1+(−1)k

2 δk,ℓ

�
k,ℓ

,

Kn :=
�

1−(−1)k

2 δk,ℓ

�
k,ℓ

where δ is the Kronecker delta. For ab �= 0, let un(x,a,b)
be the n-dimensional vector whose the kth component is




Uk−1
2

�
x2−a2−b2

2ab

�
+ b

aUk−3
2

�
x2−a2−b2

2ab

�
, k odd

x
aU k

2−1

�
x2−a2−b2

2ab

�
, k even

(2.5)

In what follows, we shall assume the anti-tridiagonal 2-
Hankel matrix H2n defined in (1.1) with d = 0. Notwith-
standing, similar results hold for any real number d and
c = 0, mutatis mutandis.

Theorem 1 Let n be a positive integer, c a real num-
ber, {Qk(x,ξ )}k�0 the sequence of polynomials (2.1) and
Tn(a1,a2), Tn(b1,b2) the matrices defined by (2.4) for
nonzero reals a1,a2,b1,b2.

(a) If n is even, then the eigenvalues of H2n in (1.1) are pre-
cisely the zeros of

f (x) = (a1a2b1b2)
n
2 ·

�
Un

2

�
x2−a2

1−a2
2

2a1a2

�
+ a2−x

a1
Un

2−1

�
x2−a2

1−a2
2

2a1a2

��
·

�
Un

2

�
x2−b2

1−b2
2

2b1b2

�
+ b2−x

b1
Un

2−1

�
x2−b2

1−b2
2

2b1b2

��
(2.6)

Moreover, if λ is an eigenvalue of Tn(a1,a2), μ is an
eigenvalue of Tn(b1,b2), Qn(λ ,b2) �= b2Qn−1(λ ,b2) and
det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0, then

P⊤
2n

�
un(λ ,a1,a2)

−cSn(λ ,b2,b2)un(λ ,a1,a2)

�
(2.7)

and

P⊤
2n

�
0

un(μ ,b1,b2)

�
(2.8)

are eigenvectors of H2n associated to λ and μ , respectively,
where P2n is the 2n×2n permutation matrix

P2n :=

�
En JnEn

Kn JnKn

�
(2.9)

un(λ ,a1,a2), un(μ ,b1,b2) are the n-dimensional vectors
defined by (2.5) and Sn(λ ,b2,b2) is the n× n matrix given
in (2.3).

(b) If n is odd, then the eigenvalues of H2n in (1.1) are pre-
cisely the zeros of

f (x) = (a1a2b1b2)
n−1

2 ·
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(x− a1)Un−1
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�
x2−a2

1−a2
2

2a1a2

�
− a2Un−3

2

�
x2−a2
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2
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��
·

�
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�
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2

2b1b2

�
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�
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2
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��

(2.10)

Furthermore, if λ is an eigenvalue of Tn(a1,a2), μ is an
eigenvalue of Tn(b1,b2), Qn(λ ,b2) �= b1Qn−1(λ ,b2) and
det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0, then
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�
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un(λ ,a1,a2)
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and
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0
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(2.12)

2

(5)

where δ is the Kronecker delta. For        , let un(x,a,b) 
be the n-dimensional vector whose the kth component is
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

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2 ⌋
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2 ⌋
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where δ is the Kronecker delta. For ab �= 0, let un(x,a,b)
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(2.5)

In what follows, we shall assume the anti-tridiagonal 2-
Hankel matrix H2n defined in (1.1) with d = 0. Notwith-
standing, similar results hold for any real number d and
c = 0, mutatis mutandis.

Theorem 1 Let n be a positive integer, c a real num-
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In what follows, we shall assume the anti-tridiagonal 2-
Hankel matrix H2n defined in (1.1) with d = 0. Notwith-
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c = 0, mutatis mutandis.
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In what follows, we shall assume the anti-tridiagonal 2-
Hankel matrix H2n defined in (1.1) with d = 0. Notwith-
standing, similar results hold for any real number d and
c = 0, mutatis mutandis.

Theorem 1 Let n be a positive integer, c a real num-
ber, {Qk(x,ξ )}k�0 the sequence of polynomials (2.1) and
Tn(a1,a2), Tn(b1,b2) the matrices defined by (2.4) for
nonzero reals a1,a2,b1,b2.

(a) If n is even, then the eigenvalues of H2n in (1.1) are pre-
cisely the zeros of
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Moreover, if λ is an eigenvalue of Tn(a1,a2), μ is an
eigenvalue of Tn(b1,b2), Qn(λ ,b2) �= b2Qn−1(λ ,b2) and
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un(λ ,a1,a2), un(μ ,b1,b2) are the n-dimensional vectors
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In what follows, we shall assume the anti-tridiagonal 2-
Hankel matrix H2n defined in (1.1) with d = 0. Notwith-
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un(λ ,a1,a2), un(μ ,b1,b2) are the n-dimensional vectors
defined by (2.5) and Sn(λ ,b2,b2) is the n× n matrix given
in (2.3).

(b) If n is odd, then the eigenvalues of H2n in (1.1) are pre-
cisely the zeros of

f (x) = (a1a2b1b2)
n−1

2 ·
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�
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2
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·
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(2.10)

Furthermore, if λ is an eigenvalue of Tn(a1,a2), μ is an
eigenvalue of Tn(b1,b2), Qn(λ ,b2) �= b1Qn−1(λ ,b2) and
det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0, then
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�
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P⊤
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�
un(μ ,b1,b2)

0
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2

(8)

(9)

is
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

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2 ⌋
3−(−1)k

2
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2 ⌋
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2

Qk−1(λ ,b2)Qn−ℓ

�
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2

�
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, k � ℓ

−b⌊
k−ℓ

2 ⌋
3−(−1)ℓ

2

b⌊
k−ℓ+1
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�
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, k > ℓ
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and the n×n matrix Sn

�
x,b 3+(−1)n

2
,b2

�
given by

Qn

�
b 3+(−1)n

2

�
−

b 3+(−1)n
2

Qn(x,b2)

Qn(x,b2)−b 3+(−1)n
2

Qn−1(x,b2)
·
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2

�
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�
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2

�⊤
(2.3)

with qn

�
b 3+(−1)n

2

�
the last column of Qn

�
b 3+(−1)n

2

�
. Further,

we shall suppose the n×n matrix Tn(x,y) defined by


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. . .
...

...
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. . .
. . .

. . . 0
...

. . .
. . . 0 x

0 . . . . . . . . . 0 x y




, n even
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, n odd.

(2.4)

Set

Jn :=
�
δk+ℓ,n+1

�
k,ℓ ,

En :=
�

1+(−1)k

2 δk,ℓ

�
k,ℓ

,

Kn :=
�

1−(−1)k

2 δk,ℓ

�
k,ℓ

where δ is the Kronecker delta. For ab �= 0, let un(x,a,b)
be the n-dimensional vector whose the kth component is

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Uk−1
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�
+ b
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�
, k odd

x
aU k
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�
x2−a2−b2

2ab

�
, k even

(2.5)

In what follows, we shall assume the anti-tridiagonal 2-
Hankel matrix H2n defined in (1.1) with d = 0. Notwith-
standing, similar results hold for any real number d and
c = 0, mutatis mutandis.

Theorem 1 Let n be a positive integer, c a real num-
ber, {Qk(x,ξ )}k�0 the sequence of polynomials (2.1) and
Tn(a1,a2), Tn(b1,b2) the matrices defined by (2.4) for
nonzero reals a1,a2,b1,b2.

(a) If n is even, then the eigenvalues of H2n in (1.1) are pre-
cisely the zeros of

f (x) = (a1a2b1b2)
n
2 ·
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·
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Moreover, if λ is an eigenvalue of Tn(a1,a2), μ is an
eigenvalue of Tn(b1,b2), Qn(λ ,b2) �= b2Qn−1(λ ,b2) and
det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0, then
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are eigenvectors of H2n associated to λ and μ , respectively,
where P2n is the 2n×2n permutation matrix

P2n :=

�
En JnEn

Kn JnKn
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(2.9)

un(λ ,a1,a2), un(μ ,b1,b2) are the n-dimensional vectors
defined by (2.5) and Sn(λ ,b2,b2) is the n× n matrix given
in (2.3).

(b) If n is odd, then the eigenvalues of H2n in (1.1) are pre-
cisely the zeros of
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(2.10)

Furthermore, if λ is an eigenvalue of Tn(a1,a2), μ is an
eigenvalue of Tn(b1,b2), Qn(λ ,b2) �= b1Qn−1(λ ,b2) and
det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0, then
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and
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un(λ,a1,a2), un(µ,b1,b2) are the n-dimensional vectors 
defined by (6) and Sn(λ,b2,b2 ) is the n × n matrix given 
in (4).

(b) If n  is odd,  then  the eigenvalues of  H2n in (1)  are 
precisely the zeros of
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and the n×n matrix Sn

�
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2
,b2

�
given by

Qn

�
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2
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−
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2

Qn(x,b2)
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2

Qn−1(x,b2)
·
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2

�
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�
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(2.3)

with qn

�
b 3+(−1)n

2

�
the last column of Qn

�
b 3+(−1)n

2

�
. Further,

we shall suppose the n× n matrix Tn(x,y) defined by
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x 0 y 0
...

0 y 0 x
. . .

...
... 0 x

. . .
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. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . . 0 x

0 . . . . . . . . . 0 x y




, n even



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0 . . . . . . . . . 0 y x




, n odd.

(2.4)

Set

Jn :=
�
δk+ℓ,n+1

�
k,ℓ ,

En :=
�

1+(−1)k

2 δk,ℓ

�
k,ℓ

,

Kn :=
�

1−(−1)k

2 δk,ℓ

�
k,ℓ

where δ is the Kronecker delta. For ab �= 0, let un(x,a,b)
be the n-dimensional vector whose the kth component is




Uk−1
2

�
x2−a2−b2

2ab

�
+ b

aUk−3
2

�
x2−a2−b2

2ab

�
, k odd

x
aU k

2−1

�
x2−a2−b2

2ab

�
, k even

(2.5)

In what follows, we shall assume the anti-tridiagonal 2-
Hankel matrix H2n defined in (1.1) with d = 0. Notwith-
standing, similar results hold for any real number d and
c = 0, mutatis mutandis.

Theorem 1 Let n be a positive integer, c a real num-
ber, {Qk(x,ξ )}k�0 the sequence of polynomials (2.1) and
Tn(a1,a2), Tn(b1,b2) the matrices defined by (2.4) for
nonzero reals a1,a2,b1,b2.

(a) If n is even, then the eigenvalues of H2n in (1.1) are pre-
cisely the zeros of

f (x) = (a1a2b1b2)
n
2 ·

�
Un

2

�
x2−a2

1−a2
2

2a1a2

�
+ a2−x

a1
Un

2−1

�
x2−a2

1−a2
2

2a1a2

��
·
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Un

2
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x2−b2

1−b2
2

2b1b2

�
+ b2−x

b1
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x2−b2

1−b2
2

2b1b2
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(2.6)

Moreover, if λ is an eigenvalue of Tn(a1,a2), μ is an
eigenvalue of Tn(b1,b2), Qn(λ ,b2) �= b2Qn−1(λ ,b2) and
det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0, then

P⊤
2n

�
un(λ ,a1,a2)

−cSn(λ ,b2,b2)un(λ ,a1,a2)

�
(2.7)

and

P⊤
2n

�
0

un(μ ,b1,b2)

�
(2.8)

are eigenvectors of H2n associated to λ and μ , respectively,
where P2n is the 2n×2n permutation matrix

P2n :=

�
En JnEn

Kn JnKn

�
(2.9)

un(λ ,a1,a2), un(μ ,b1,b2) are the n-dimensional vectors
defined by (2.5) and Sn(λ ,b2,b2) is the n× n matrix given
in (2.3).

(b) If n is odd, then the eigenvalues of H2n in (1.1) are pre-
cisely the zeros of

f (x) = (a1a2b1b2)
n−1

2 ·
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1−a2
2
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�
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·
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�
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(2.10)

Furthermore, if λ is an eigenvalue of Tn(a1,a2), μ is an
eigenvalue of Tn(b1,b2), Qn(λ ,b2) �= b1Qn−1(λ ,b2) and
det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0, then
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(2.11)

and
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0

�
(2.12)

2

are eigenvectors of H2n associated to λ and µ , 
respectively, where P2n is the 2n × 2n permutation matrix
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2 ⌋
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(2.2)
and the n×n matrix Sn
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x,b 3+(−1)n

2
,b2

�
given by
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�
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2
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−

b 3+(−1)n
2

Qn(x,b2)
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2
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·
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2
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(2.3)

with qn
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2

�
the last column of Qn
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b 3+(−1)n

2

�
. Further,

we shall suppose the n×n matrix Tn(x,y) defined by

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, n odd.

(2.4)

Set

Jn :=
�
δk+ℓ,n+1
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k,ℓ ,

En :=
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1+(−1)k

2 δk,ℓ

�
k,ℓ

,

Kn :=
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1−(−1)k

2 δk,ℓ
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where δ is the Kronecker delta. For ab �= 0, let un(x,a,b)
be the n-dimensional vector whose the kth component is

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�
, k odd

x
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�
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(2.5)

In what follows, we shall assume the anti-tridiagonal 2-
Hankel matrix H2n defined in (1.1) with d = 0. Notwith-
standing, similar results hold for any real number d and
c = 0, mutatis mutandis.

Theorem 1 Let n be a positive integer, c a real num-
ber, {Qk(x,ξ )}k�0 the sequence of polynomials (2.1) and
Tn(a1,a2), Tn(b1,b2) the matrices defined by (2.4) for
nonzero reals a1,a2,b1,b2.

(a) If n is even, then the eigenvalues of H2n in (1.1) are pre-
cisely the zeros of

f (x) = (a1a2b1b2)
n
2 ·
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2
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Moreover, if λ is an eigenvalue of Tn(a1,a2), μ is an
eigenvalue of Tn(b1,b2), Qn(λ ,b2) �= b2Qn−1(λ ,b2) and
det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0, then
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2n

�
un(λ ,a1,a2)
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(2.7)

and
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�
0

un(μ ,b1,b2)

�
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are eigenvectors of H2n associated to λ and μ , respectively,
where P2n is the 2n×2n permutation matrix

P2n :=

�
En JnEn

Kn JnKn

�
(2.9)

un(λ ,a1,a2), un(μ ,b1,b2) are the n-dimensional vectors
defined by (2.5) and Sn(λ ,b2,b2) is the n× n matrix given
in (2.3).

(b) If n is odd, then the eigenvalues of H2n in (1.1) are pre-
cisely the zeros of
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(2.10)

Furthermore, if λ is an eigenvalue of Tn(a1,a2), μ is an
eigenvalue of Tn(b1,b2), Qn(λ ,b2) �= b1Qn−1(λ ,b2) and
det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0, then

P⊤
2n

�
−cSn(λ ,b1,b2)un(λ ,a1,a2)

un(λ ,a1,a2)

�
(2.11)

and

P⊤
2n

�
un(μ ,b1,b2)

0

�
(2.12)

2

(10)

Furthermore, if λ is an eigenvalue of Tn(a1,a2), 
µ is an eigenvalue of Tn(b1,b2), Qn(λ,b2)           
and then

is




−b⌊
ℓ−k

2 ⌋
3−(−1)k

2

b⌊
ℓ−k+1

2 ⌋
3+(−1)k

2

Qk−1(λ ,b2)Qn−ℓ

�
λ ,b 3+(−1)n

2

�

Qn(λ ,b2)
, k � ℓ

−b⌊
k−ℓ

2 ⌋
3−(−1)ℓ

2

b⌊
k−ℓ+1

2 ⌋
3+(−1)ℓ

2

Qℓ−1(λ ,b2)Qn−k

�
λ ,b 3+(−1)n

2

�

Qn(λ ,b2)
, k > ℓ

(2.2)
and the n× n matrix Sn

�
x,b 3+(−1)n

2
,b2

�
given by

Qn

�
b 3+(−1)n

2

�
−

b 3+(−1)n
2

Qn(x,b2)

Qn(x,b2)−b 3+(−1)n
2

Qn−1(x,b2)
·

qn

�
b 3+(−1)n

2

�
qn

�
b 3+(−1)n

2

�⊤
(2.3)

with qn

�
b 3+(−1)n

2

�
the last column of Qn

�
b 3+(−1)n

2

�
. Further,

we shall suppose the n× n matrix Tn(x,y) defined by







0 x 0 . . . . . . . . . 0

x 0 y 0
...

0 y 0 x
. . .

...
... 0 x

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . . 0 x

0 . . . . . . . . . 0 x y




, n even




0 x 0 . . . . . . . . . 0

x 0 y 0
...

0 y 0 x
. . .

...
... 0 x

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . . 0 y

0 . . . . . . . . . 0 y x




, n odd.

(2.4)

Set

Jn :=
�
δk+ℓ,n+1

�
k,ℓ ,

En :=
�

1+(−1)k

2 δk,ℓ

�
k,ℓ

,

Kn :=
�

1−(−1)k

2 δk,ℓ

�
k,ℓ

where δ is the Kronecker delta. For ab �= 0, let un(x,a,b)
be the n-dimensional vector whose the kth component is




Uk−1
2

�
x2−a2−b2

2ab

�
+ b

aUk−3
2

�
x2−a2−b2

2ab

�
, k odd

x
aU k

2−1

�
x2−a2−b2

2ab

�
, k even

(2.5)

In what follows, we shall assume the anti-tridiagonal 2-
Hankel matrix H2n defined in (1.1) with d = 0. Notwith-
standing, similar results hold for any real number d and
c = 0, mutatis mutandis.

Theorem 1 Let n be a positive integer, c a real num-
ber, {Qk(x,ξ )}k�0 the sequence of polynomials (2.1) and
Tn(a1,a2), Tn(b1,b2) the matrices defined by (2.4) for
nonzero reals a1,a2,b1,b2.

(a) If n is even, then the eigenvalues of H2n in (1.1) are pre-
cisely the zeros of

f (x) = (a1a2b1b2)
n
2 ·

�
Un

2

�
x2−a2

1−a2
2

2a1a2

�
+ a2−x

a1
Un

2−1

�
x2−a2

1−a2
2

2a1a2

��
·

�
Un

2

�
x2−b2

1−b2
2

2b1b2

�
+ b2−x

b1
Un

2−1

�
x2−b2

1−b2
2

2b1b2

��
(2.6)

Moreover, if λ is an eigenvalue of Tn(a1,a2), μ is an
eigenvalue of Tn(b1,b2), Qn(λ ,b2) �= b2Qn−1(λ ,b2) and
det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0, then

P⊤
2n

�
un(λ ,a1,a2)

−cSn(λ ,b2,b2)un(λ ,a1,a2)

�
(2.7)

and

P⊤
2n

�
0

un(μ ,b1,b2)

�
(2.8)

are eigenvectors of H2n associated to λ and μ , respectively,
where P2n is the 2n×2n permutation matrix

P2n :=

�
En JnEn

Kn JnKn

�
(2.9)

un(λ ,a1,a2), un(μ ,b1,b2) are the n-dimensional vectors
defined by (2.5) and Sn(λ ,b2,b2) is the n× n matrix given
in (2.3).

(b) If n is odd, then the eigenvalues of H2n in (1.1) are pre-
cisely the zeros of

f (x) = (a1a2b1b2)
n−1

2 ·
�
(x−a1)Un−1

2

�
x2−a2

1−a2
2

2a1a2

�
−a2Un−3

2

�
x2−a2

1−a2
2

2a1a2

��
·

�
(x−b1)Un−1

2

�
x2−b2

1−b2
2

2b1b2

�
−b2Un−3

2

�
x2−b2

1−b2
2

2b1b2

��

(2.10)

Furthermore, if λ is an eigenvalue of Tn(a1,a2), μ is an
eigenvalue of Tn(b1,b2), Qn(λ ,b2) �= b1Qn−1(λ ,b2) and
det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0, then
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2n

�
−cSn(λ ,b1,b2)un(λ ,a1,a2)

un(λ ,a1,a2)

�
(2.11)

and

P⊤
2n

�
un(μ ,b1,b2)

0

�
(2.12)

2

is




−b⌊
ℓ−k

2 ⌋
3−(−1)k

2

b⌊
ℓ−k+1

2 ⌋
3+(−1)k

2

Qk−1(λ ,b2)Qn−ℓ

�
λ ,b 3+(−1)n

2

�

Qn(λ ,b2)
, k � ℓ

−b⌊
k−ℓ

2 ⌋
3−(−1)ℓ

2

b⌊
k−ℓ+1

2 ⌋
3+(−1)ℓ

2

Qℓ−1(λ ,b2)Qn−k

�
λ ,b 3+(−1)n

2

�

Qn(λ ,b2)
, k > ℓ

(2.2)
and the n×n matrix Sn

�
x,b 3+(−1)n

2
,b2

�
given by

Qn

�
b 3+(−1)n

2

�
−

b 3+(−1)n
2

Qn(x,b2)

Qn(x,b2)−b 3+(−1)n
2

Qn−1(x,b2)
·

qn

�
b 3+(−1)n

2

�
qn

�
b 3+(−1)n

2

�⊤
(2.3)

with qn

�
b 3+(−1)n

2

�
the last column of Qn

�
b 3+(−1)n

2

�
. Further,

we shall suppose the n× n matrix Tn(x,y) defined by







0 x 0 . . . . . . . . . 0

x 0 y 0
...

0 y 0 x
. . .

...
... 0 x

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . . 0 x

0 . . . . . . . . . 0 x y




, n even




0 x 0 . . . . . . . . . 0

x 0 y 0
...

0 y 0 x
. . .

...
... 0 x

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . . 0 y

0 . . . . . . . . . 0 y x




, n odd.

(2.4)

Set

Jn :=
�
δk+ℓ,n+1

�
k,ℓ ,

En :=
�

1+(−1)k

2 δk,ℓ

�
k,ℓ

,

Kn :=
�

1−(−1)k

2 δk,ℓ

�
k,ℓ

where δ is the Kronecker delta. For ab �= 0, let un(x,a,b)
be the n-dimensional vector whose the kth component is




Uk−1
2

�
x2−a2−b2

2ab

�
+ b

aUk−3
2

�
x2−a2−b2

2ab

�
, k odd

x
aU k

2−1

�
x2−a2−b2

2ab

�
, k even

(2.5)

In what follows, we shall assume the anti-tridiagonal 2-
Hankel matrix H2n defined in (1.1) with d = 0. Notwith-
standing, similar results hold for any real number d and
c = 0, mutatis mutandis.

Theorem 1 Let n be a positive integer, c a real num-
ber, {Qk(x,ξ )}k�0 the sequence of polynomials (2.1) and
Tn(a1,a2), Tn(b1,b2) the matrices defined by (2.4) for
nonzero reals a1,a2,b1,b2.

(a) If n is even, then the eigenvalues of H2n in (1.1) are pre-
cisely the zeros of

f (x) = (a1a2b1b2)
n
2 ·

�
Un

2

�
x2−a2

1−a2
2

2a1a2

�
+ a2−x

a1
Un

2−1

�
x2−a2

1−a2
2

2a1a2

��
·

�
Un

2

�
x2−b2

1−b2
2

2b1b2

�
+ b2−x

b1
Un

2−1

�
x2−b2

1−b2
2

2b1b2

��
(2.6)

Moreover, if λ is an eigenvalue of Tn(a1,a2), μ is an
eigenvalue of Tn(b1,b2), Qn(λ ,b2) �= b2Qn−1(λ ,b2) and
det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0, then

P⊤
2n

�
un(λ ,a1,a2)

−cSn(λ ,b2,b2)un(λ ,a1,a2)

�
(2.7)

and

P⊤
2n

�
0

un(μ ,b1,b2)

�
(2.8)

are eigenvectors of H2n associated to λ and μ , respectively,
where P2n is the 2n×2n permutation matrix

P2n :=

�
En JnEn

Kn JnKn

�
(2.9)

un(λ ,a1,a2), un(μ ,b1,b2) are the n-dimensional vectors
defined by (2.5) and Sn(λ ,b2,b2) is the n× n matrix given
in (2.3).

(b) If n is odd, then the eigenvalues of H2n in (1.1) are pre-
cisely the zeros of

f (x) = (a1a2b1b2)
n−1

2 ·
�
(x−a1)Un−1

2

�
x2−a2

1−a2
2

2a1a2

�
−a2Un−3

2

�
x2−a2

1−a2
2

2a1a2

��
·

�
(x−b1)Un−1

2

�
x2−b2

1−b2
2

2b1b2

�
−b2Un−3

2

�
x2−b2

1−b2
2

2b1b2

��

(2.10)

Furthermore, if λ is an eigenvalue of Tn(a1,a2), μ is an
eigenvalue of Tn(b1,b2), Qn(λ ,b2) �= b1Qn−1(λ ,b2) and
det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0, then

P⊤
2n

�
−cSn(λ ,b1,b2)un(λ ,a1,a2)

un(λ ,a1,a2)

�
(2.11)

and

P⊤
2n

�
un(μ ,b1,b2)

0

�
(2.12)

2

(11)

(12)

(13)

 are eigenvectors of H2n associated to λ and µ ,
respectively, where P2n is the 2n × 2n permutation matrix

are eigenvectors of H2n associated to λ and μ , respectively,
where P2n is the 2n×2n permutation matrix

P2n :=

�
Kn EnJn

En KnJn

�
(2.13)

un(λ ,a1,a2), un(μ ,b1,b2) are the n-dimensional vectors
defined by (2.5) and Sn(λ ,b1,b2) is the n× n matrix given
in (2.3).

Remark It is worthwhile to note that by taking c = 0 and
a2 = b1, a1 = b2 in (2.6) or (2.10), we recover the expres-
sions obtained in section 4 of da Fonseca (2018) for the
matrices of even order analysed therein.

The previous result leads us to an orthogonal diago-
nalization for anti-tridiagonal 2-Hankel matrices (1.1) with
null northeast-to-southwest diagonal, i.e. for matrices of the
form

H∗
2n =




0 . . . . . . . . . 0 b1 0
... . .

.
a2 0 a1

... . .
.

. .
.

0 b2 0
... . .

.
. .
.

. .
.

. .
.

. .
. ...

0 a2 0 . .
.

. .
. ...

b1 0 b2 . .
. ...

0 a1 0 . . . . . . . . . 0




(2.14)

Put

Vn :=
�

un(λ1,a1,a2)
||un(λ1,a1,a2)||

. . .
un(λn,a1,a2)
||un(λn,a1,a2)||

�

Wn :=
�

un(μ1,b1,b2)
||un(μ1,b1,b2)||

. . .
un(μn,b1,b2)
||un(μn,b1,b2)||

� (2.15)

where un(λk,a1,a2) and un(μk,b1,b2) are the n-
dimensional vectors whose kth components are defined
by (2.5).

Corollary 1 Let n be a positive integer, a1,a2,b1,b2
nonzero real numbers, H∗

2n the 2n × 2n matrix (2.14),
Tn(a1,a2) and Tn(b1,b2) matrices defined by (2.4) having
eigenvalues λ1, . . . ,λn and μ1, . . . ,μn, respectively. Suppose
that det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0 and the se-
quence of polynomials {Qk(x,ξ )}k�0 given by (2.1) satis-
fies Qn(λk,b2) �= b 3+(−1)n

2
Qn−1(λk,b2) for each k = 1, . . . ,n.

(a) If n is even, then

H∗
2n = U2ndiag(λ1, . . . ,λn,μ1, . . . ,μn)U⊤

2n, (2.16)

where

U2n = P⊤
2n

�
Vn O
O Wn

�
, (2.17)

P2n is the permutation matrix (2.6) and Vn,Wn are the n×n
matrices in (2.15).

(b) If n is odd, then

H∗
2n = U2ndiag(λ1, . . . ,λn,μ1, . . . ,μn)U⊤

2n (2.18)

where

U2n = P⊤
2n

�
O Wn

Vn O

�
,

P2n is the permutation matrix (2.13) and Vn,Wn are the
n×n matrices in (2.15).

Remark More generally, Theorem 1 also leads to an eigen-
decomposition for H2n in (1.1) with d = 0, taking eigen-
vector matrices formed by the column vectors (2.7), (2.8)
or (2.11), (2.12) according to whether n is even or odd, re-
spectively.

3 Lemmata and proofs
In order to prove Theorem 1, we will need some auxiliary
results. The first one is well-known in the literature (Akbu-
lak, da Fonseca & Yilmaz, 2013) and locates the eigenval-
ues of tridiagonal matrices having the form (2.4). Indeed,
the characteristic polynomial of Tn(a,b) is

(ab)
n
2
�
Un

2

�
x2−a2−b2

2ab

�
+ b−x

a Un
2−1

�
x2−a2−b2

2ab

��
,

when n is even and

(ab)
n−1

2
�
(x−a)Un−1

2

�
x2−a2−b2

2ab

�
−bUn−3

2

�
x2−a2−b2

2ab

��

whenever n is odd. Next, we shall provide a representation
of its eigenvectors.

Lemma 1 Let n be a positive integer and Tn(a,b) the n×n
matrix (2.4) with a,b nonzero reals. If λ is an eigenvalue of
Tn(a,b), then un(λ ,a,b) given in (2.5) is an eigenvector of
Tn(a,b) associated to λ .

Proof. Suppose a positive integer n and reals a,b such that
a �= 0, b �= 0. Consider the three-term recurrence relation,





P−1(x)≡ 0,
P0(x)≡ 1,
Pk(x) = x−βk

αk
Pk−1(x)−

γk−1
αk

Pk−2(x), 1 � k � n

with γ0 = αn = 1,

αk = γk =

�
a, k odd
b, k even

and

βk =





0, k < n
b, k = n and n even
a, k = n and n odd.

Hence, Pk(x) is expressed by




U k
2

�
x2−a2−b2

2ab

�
+ b

aU k
2−1

�
x2−a2−b2

2ab

�
, k even

x
aUk−1

2

�
x2−a2−b2

2ab

�
, k odd

for each 0 � k � n− 1 and [P0(λ ),P1(λ ), . . . ,Pn−1(λ )]
⊤ is

an eigenvector of Tn(a,b) associated to the eigenvalue λ
(da Fonseca, 2005). The thesis is established. ⊓⊔

3

(14)

un(λ,a1,a2), un(µ,b1,b2) are the n-dimensional vectors 
defined by (6) and Sn(λ,b1,b2) is the n × n matrix given in 
(4).
Remark It is worthwhile to note that by taking c = 
0 and a2 = b1, a1 = b2 in (7) or (11), we recover the 
expressions obtained in section 4 of da Fonseca 
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1 Introduction
The concept of an r-Toeplitz matrix was introduced by
Gover and Barnett in the eighties (Gover & Barnett, 1985),
which also established many of its properties (Gover & Bar-
nett, 1985; Gover, 1989). They defined an r-Toeplitz matrix
as an n× n matrix An, such that [An]k+r,ℓ+r = [An]k,ℓ for
all k, ℓ = 1,2, . . . ,n− r. Following this idea, we say that an
n×n matrix Bn is an r-Hankel matrix if [Bn]k+r,ℓ−r = [Bn]k,ℓ
for every k = 1,2, . . . ,n− r and ℓ = r+ 1, . . . ,n. Note that
when r = 1, the matrix Bn becomes a Hankel matrix.

Let us point out that Hankel matrices appear not only
in engineering problems of system and control theory (Ol-
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(1.1)

with cd = 0. It is our goal to obtain an explicit expression
for the characteristic polynomial of H2n as well as a rep-
resentation of its eigenvectors for eigenvalues given a pri-
ori. As a consequence, sufficient conditions are announced
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Hankel matrices of even order having null northeast-to-
southwest diagonal. We emphasize that, in general, H2n
is not a persymmetric matrix, which makes some recent
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Fonseca & Yilmaz, 2013; Wu, 2010). Therefore, our re-
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as well as the n×n matrix Qn
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whose (k, ℓ)-entry
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(2018) for the matrices of even order analysed therein.
The previous result leads us to an orthogonal 

diagonalization for anti-tridiagonal 2-Hankel 
matrices (1) with null northeast-to-southwest 
diagonal, i.e. for matrices of the form

are eigenvectors of H2n associated to λ and μ , respectively,
where P2n is the 2n×2n permutation matrix

P2n :=

�
Kn EnJn

En KnJn

�
(2.13)

un(λ ,a1,a2), un(μ ,b1,b2) are the n-dimensional vectors
defined by (2.5) and Sn(λ ,b1,b2) is the n× n matrix given
in (2.3).

Remark It is worthwhile to note that by taking c = 0 and
a2 = b1, a1 = b2 in (2.6) or (2.10), we recover the expres-
sions obtained in section 4 of da Fonseca (2018) for the
matrices of even order analysed therein.

The previous result leads us to an orthogonal diago-
nalization for anti-tridiagonal 2-Hankel matrices (1.1) with
null northeast-to-southwest diagonal, i.e. for matrices of the
form
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.
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. ...
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Put

Vn :=
�
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||un(λ1,a1,a2)||

. . .
un(λn,a1,a2)
||un(λn,a1,a2)||

�

Wn :=
�

un(μ1,b1,b2)
||un(μ1,b1,b2)||

. . .
un(μn,b1,b2)
||un(μn,b1,b2)||

� (2.15)

where un(λk,a1,a2) and un(μk,b1,b2) are the n-
dimensional vectors whose kth components are defined
by (2.5).

Corollary 1 Let n be a positive integer, a1,a2,b1,b2
nonzero real numbers, H∗

2n the 2n × 2n matrix (2.14),
Tn(a1,a2) and Tn(b1,b2) matrices defined by (2.4) having
eigenvalues λ1, . . . ,λn and μ1, . . . ,μn, respectively. Suppose
that det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0 and the se-
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2
Qn−1(λk,b2) for each k = 1, . . . ,n.
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�
Vn O
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P2n is the permutation matrix (2.6) and Vn,Wn are the n×n
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(b) If n is odd, then

H∗
2n = U2ndiag(λ1, . . . ,λn,μ1, . . . ,μn)U⊤

2n (2.18)

where

U2n = P⊤
2n

�
O Wn

Vn O

�
,

P2n is the permutation matrix (2.13) and Vn,Wn are the
n×n matrices in (2.15).

Remark More generally, Theorem 1 also leads to an eigen-
decomposition for H2n in (1.1) with d = 0, taking eigen-
vector matrices formed by the column vectors (2.7), (2.8)
or (2.11), (2.12) according to whether n is even or odd, re-
spectively.

3 Lemmata and proofs
In order to prove Theorem 1, we will need some auxiliary
results. The first one is well-known in the literature (Akbu-
lak, da Fonseca & Yilmaz, 2013) and locates the eigenval-
ues of tridiagonal matrices having the form (2.4). Indeed,
the characteristic polynomial of Tn(a,b) is
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whenever n is odd. Next, we shall provide a representation
of its eigenvectors.

Lemma 1 Let n be a positive integer and Tn(a,b) the n×n
matrix (2.4) with a,b nonzero reals. If λ is an eigenvalue of
Tn(a,b), then un(λ ,a,b) given in (2.5) is an eigenvector of
Tn(a,b) associated to λ .
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an eigenvector of Tn(a,b) associated to the eigenvalue λ
(da Fonseca, 2005). The thesis is established. ⊓⊔

3
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3 Lemmata and proofs
In order to prove Theorem 1, we will need some auxiliary
results. The first one is well-known in the literature (Akbu-
lak, da Fonseca & Yilmaz, 2013) and locates the eigenval-
ues of tridiagonal matrices having the form (2.4). Indeed,
the characteristic polynomial of Tn(a,b) is

(ab)
n
2
�
Un

2

�
x2−a2−b2

2ab

�
+ b−x

a Un
2−1

�
x2−a2−b2

2ab

��
,

when n is even and

(ab)
n−1

2
�
(x−a)Un−1

2

�
x2−a2−b2

2ab

�
−bUn−3

2

�
x2−a2−b2

2ab

��

whenever n is odd. Next, we shall provide a representation
of its eigenvectors.

Lemma 1 Let n be a positive integer and Tn(a,b) the n×n
matrix (2.4) with a,b nonzero reals. If λ is an eigenvalue of
Tn(a,b), then un(λ ,a,b) given in (2.5) is an eigenvector of
Tn(a,b) associated to λ .

Proof. Suppose a positive integer n and reals a,b such that
a �= 0, b �= 0. Consider the three-term recurrence relation,





P−1(x)≡ 0,
P0(x)≡ 1,
Pk(x) = x−βk

αk
Pk−1(x)−

γk−1
αk

Pk−2(x), 1 � k � n

with γ0 = αn = 1,

αk = γk =

�
a, k odd
b, k even

and

βk =





0, k < n
b, k = n and n even
a, k = n and n odd.

Hence, Pk(x) is expressed by




U k
2

�
x2−a2−b2

2ab

�
+ b

aU k
2−1

�
x2−a2−b2

2ab

�
, k even

x
aUk−1

2

�
x2−a2−b2

2ab

�
, k odd

for each 0 � k � n− 1 and [P0(λ ),P1(λ ), . . . ,Pn−1(λ )]
⊤ is

an eigenvector of Tn(a,b) associated to the eigenvalue λ
(da Fonseca, 2005). The thesis is established. ⊓⊔

3

are eigenvectors of H2n associated to λ and μ , respectively,
where P2n is the 2n×2n permutation matrix

P2n :=

�
Kn EnJn

En KnJn

�
(2.13)

un(λ ,a1,a2), un(μ ,b1,b2) are the n-dimensional vectors
defined by (2.5) and Sn(λ ,b1,b2) is the n× n matrix given
in (2.3).

Remark It is worthwhile to note that by taking c = 0 and
a2 = b1, a1 = b2 in (2.6) or (2.10), we recover the expres-
sions obtained in section 4 of da Fonseca (2018) for the
matrices of even order analysed therein.

The previous result leads us to an orthogonal diago-
nalization for anti-tridiagonal 2-Hankel matrices (1.1) with
null northeast-to-southwest diagonal, i.e. for matrices of the
form

H∗
2n =




0 . . . . . . . . . 0 b1 0
... . .

.
a2 0 a1

... . .
.

. .
.

0 b2 0
... . .

.
. .
.

. .
.

. .
.

. .
. ...

0 a2 0 . .
.

. .
. ...

b1 0 b2 . .
. ...

0 a1 0 . . . . . . . . . 0




(2.14)

Put

Vn :=
�

un(λ1,a1,a2)
||un(λ1,a1,a2)||

. . .
un(λn,a1,a2)
||un(λn,a1,a2)||

�

Wn :=
�

un(μ1,b1,b2)
||un(μ1,b1,b2)||

. . .
un(μn,b1,b2)
||un(μn,b1,b2)||

� (2.15)

where un(λk,a1,a2) and un(μk,b1,b2) are the n-
dimensional vectors whose kth components are defined
by (2.5).

Corollary 1 Let n be a positive integer, a1,a2,b1,b2
nonzero real numbers, H∗

2n the 2n × 2n matrix (2.14),
Tn(a1,a2) and Tn(b1,b2) matrices defined by (2.4) having
eigenvalues λ1, . . . ,λn and μ1, . . . ,μn, respectively. Suppose
that det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0 and the se-
quence of polynomials {Qk(x,ξ )}k�0 given by (2.1) satis-
fies Qn(λk,b2) �= b 3+(−1)n

2
Qn−1(λk,b2) for each k = 1, . . . ,n.

(a) If n is even, then

H∗
2n = U2ndiag(λ1, . . . ,λn,μ1, . . . ,μn)U⊤

2n, (2.16)

where

U2n = P⊤
2n

�
Vn O
O Wn

�
, (2.17)

P2n is the permutation matrix (2.6) and Vn,Wn are the n×n
matrices in (2.15).

(b) If n is odd, then

H∗
2n = U2ndiag(λ1, . . . ,λn,μ1, . . . ,μn)U⊤

2n (2.18)

where

U2n = P⊤
2n

�
O Wn

Vn O

�
,

P2n is the permutation matrix (2.13) and Vn,Wn are the
n×n matrices in (2.15).

Remark More generally, Theorem 1 also leads to an eigen-
decomposition for H2n in (1.1) with d = 0, taking eigen-
vector matrices formed by the column vectors (2.7), (2.8)
or (2.11), (2.12) according to whether n is even or odd, re-
spectively.

3 Lemmata and proofs
In order to prove Theorem 1, we will need some auxiliary
results. The first one is well-known in the literature (Akbu-
lak, da Fonseca & Yilmaz, 2013) and locates the eigenval-
ues of tridiagonal matrices having the form (2.4). Indeed,
the characteristic polynomial of Tn(a,b) is

(ab)
n
2
�
Un

2

�
x2−a2−b2

2ab

�
+ b−x

a Un
2−1

�
x2−a2−b2

2ab

��
,

when n is even and

(ab)
n−1

2
�
(x−a)Un−1

2

�
x2−a2−b2

2ab

�
−bUn−3

2

�
x2−a2−b2

2ab

��

whenever n is odd. Next, we shall provide a representation
of its eigenvectors.

Lemma 1 Let n be a positive integer and Tn(a,b) the n×n
matrix (2.4) with a,b nonzero reals. If λ is an eigenvalue of
Tn(a,b), then un(λ ,a,b) given in (2.5) is an eigenvector of
Tn(a,b) associated to λ .

Proof. Suppose a positive integer n and reals a,b such that
a �= 0, b �= 0. Consider the three-term recurrence relation,





P−1(x)≡ 0,
P0(x)≡ 1,
Pk(x) = x−βk

αk
Pk−1(x)−

γk−1
αk

Pk−2(x), 1 � k � n

with γ0 = αn = 1,

αk = γk =

�
a, k odd
b, k even

and

βk =





0, k < n
b, k = n and n even
a, k = n and n odd.

Hence, Pk(x) is expressed by




U k
2

�
x2−a2−b2

2ab

�
+ b

aU k
2−1

�
x2−a2−b2

2ab

�
, k even

x
aUk−1

2

�
x2−a2−b2

2ab

�
, k odd

for each 0 � k � n− 1 and [P0(λ ),P1(λ ), . . . ,Pn−1(λ )]
⊤ is

an eigenvector of Tn(a,b) associated to the eigenvalue λ
(da Fonseca, 2005). The thesis is established. ⊓⊔

3

are eigenvectors of H2n associated to λ and μ , respectively,
where P2n is the 2n×2n permutation matrix

P2n :=

�
Kn EnJn

En KnJn

�
(2.13)

un(λ ,a1,a2), un(μ ,b1,b2) are the n-dimensional vectors
defined by (2.5) and Sn(λ ,b1,b2) is the n× n matrix given
in (2.3).

Remark It is worthwhile to note that by taking c = 0 and
a2 = b1, a1 = b2 in (2.6) or (2.10), we recover the expres-
sions obtained in section 4 of da Fonseca (2018) for the
matrices of even order analysed therein.

The previous result leads us to an orthogonal diago-
nalization for anti-tridiagonal 2-Hankel matrices (1.1) with
null northeast-to-southwest diagonal, i.e. for matrices of the
form

H∗
2n =




0 . . . . . . . . . 0 b1 0
... . .

.
a2 0 a1

... . .
.

. .
.

0 b2 0
... . .

.
. .
.

. .
.

. .
.

. .
. ...

0 a2 0 . .
.

. .
. ...

b1 0 b2 . .
. ...

0 a1 0 . . . . . . . . . 0




(2.14)

Put

Vn :=
�

un(λ1,a1,a2)
||un(λ1,a1,a2)||

. . .
un(λn,a1,a2)
||un(λn,a1,a2)||

�

Wn :=
�

un(μ1,b1,b2)
||un(μ1,b1,b2)||

. . .
un(μn,b1,b2)
||un(μn,b1,b2)||

� (2.15)

where un(λk,a1,a2) and un(μk,b1,b2) are the n-
dimensional vectors whose kth components are defined
by (2.5).

Corollary 1 Let n be a positive integer, a1,a2,b1,b2
nonzero real numbers, H∗

2n the 2n × 2n matrix (2.14),
Tn(a1,a2) and Tn(b1,b2) matrices defined by (2.4) having
eigenvalues λ1, . . . ,λn and μ1, . . . ,μn, respectively. Suppose
that det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0 and the se-
quence of polynomials {Qk(x,ξ )}k�0 given by (2.1) satis-
fies Qn(λk,b2) �= b 3+(−1)n

2
Qn−1(λk,b2) for each k = 1, . . . ,n.

(a) If n is even, then

H∗
2n = U2ndiag(λ1, . . . ,λn,μ1, . . . ,μn)U⊤

2n, (2.16)

where

U2n = P⊤
2n

�
Vn O
O Wn

�
, (2.17)

P2n is the permutation matrix (2.6) and Vn,Wn are the n×n
matrices in (2.15).

(b) If n is odd, then

H∗
2n = U2ndiag(λ1, . . . ,λn,μ1, . . . ,μn)U⊤

2n (2.18)

where

U2n = P⊤
2n

�
O Wn

Vn O

�
,

P2n is the permutation matrix (2.13) and Vn,Wn are the
n×n matrices in (2.15).

Remark More generally, Theorem 1 also leads to an eigen-
decomposition for H2n in (1.1) with d = 0, taking eigen-
vector matrices formed by the column vectors (2.7), (2.8)
or (2.11), (2.12) according to whether n is even or odd, re-
spectively.

3 Lemmata and proofs
In order to prove Theorem 1, we will need some auxiliary
results. The first one is well-known in the literature (Akbu-
lak, da Fonseca & Yilmaz, 2013) and locates the eigenval-
ues of tridiagonal matrices having the form (2.4). Indeed,
the characteristic polynomial of Tn(a,b) is

(ab)
n
2
�
Un

2

�
x2−a2−b2

2ab

�
+ b−x

a Un
2−1

�
x2−a2−b2

2ab

��
,

when n is even and

(ab)
n−1

2
�
(x−a)Un−1

2

�
x2−a2−b2

2ab

�
−bUn−3

2

�
x2−a2−b2

2ab

��

whenever n is odd. Next, we shall provide a representation
of its eigenvectors.

Lemma 1 Let n be a positive integer and Tn(a,b) the n×n
matrix (2.4) with a,b nonzero reals. If λ is an eigenvalue of
Tn(a,b), then un(λ ,a,b) given in (2.5) is an eigenvector of
Tn(a,b) associated to λ .

Proof. Suppose a positive integer n and reals a,b such that
a �= 0, b �= 0. Consider the three-term recurrence relation,





P−1(x)≡ 0,
P0(x)≡ 1,
Pk(x) = x−βk

αk
Pk−1(x)−

γk−1
αk

Pk−2(x), 1 � k � n

with γ0 = αn = 1,

αk = γk =

�
a, k odd
b, k even

and

βk =





0, k < n
b, k = n and n even
a, k = n and n odd.

Hence, Pk(x) is expressed by




U k
2

�
x2−a2−b2

2ab

�
+ b

aU k
2−1

�
x2−a2−b2

2ab

�
, k even

x
aUk−1

2

�
x2−a2−b2

2ab

�
, k odd

for each 0 � k � n− 1 and [P0(λ ),P1(λ ), . . . ,Pn−1(λ )]
⊤ is

an eigenvector of Tn(a,b) associated to the eigenvalue λ
(da Fonseca, 2005). The thesis is established. ⊓⊔

3

are eigenvectors of H2n associated to λ and μ , respectively,
where P2n is the 2n× 2n permutation matrix

P2n :=

�
Kn EnJn

En KnJn

�
(2.13)

un(λ ,a1,a2), un(μ ,b1,b2) are the n-dimensional vectors
defined by (2.5) and Sn(λ ,b1,b2) is the n× n matrix given
in (2.3).

Remark It is worthwhile to note that by taking c = 0 and
a2 = b1, a1 = b2 in (2.6) or (2.10), we recover the expres-
sions obtained in section 4 of da Fonseca (2018) for the
matrices of even order analysed therein.

The previous result leads us to an orthogonal diago-
nalization for anti-tridiagonal 2-Hankel matrices (1.1) with
null northeast-to-southwest diagonal, i.e. for matrices of the
form

H∗
2n =




0 . . . . . . . . . 0 b1 0
... . .

.
a2 0 a1

... . .
.

. .
.

0 b2 0
... . .

.
. .
.

. .
.

. .
.

. .
. ...

0 a2 0 . .
.

. .
. ...

b1 0 b2 . .
. ...

0 a1 0 . . . . . . . . . 0




(2.14)

Put

Vn :=
�

un(λ1,a1,a2)
||un(λ1,a1,a2)||

. . .
un(λn,a1,a2)
||un(λn,a1,a2)||

�

Wn :=
�

un(μ1,b1,b2)
||un(μ1,b1,b2)||

. . .
un(μn,b1,b2)
||un(μn,b1,b2)||

� (2.15)

where un(λk,a1,a2) and un(μk,b1,b2) are the n-
dimensional vectors whose kth components are defined
by (2.5).

Corollary 1 Let n be a positive integer, a1,a2,b1,b2
nonzero real numbers, H∗

2n the 2n × 2n matrix (2.14),
Tn(a1,a2) and Tn(b1,b2) matrices defined by (2.4) having
eigenvalues λ1, . . . ,λn and μ1, . . . ,μn, respectively. Suppose
that det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0 and the se-
quence of polynomials {Qk(x,ξ )}k�0 given by (2.1) satis-
fies Qn(λk,b2) �= b 3+(−1)n

2
Qn−1(λk,b2) for each k = 1, . . . ,n.

(a) If n is even, then

H∗
2n = U2ndiag(λ1, . . . ,λn,μ1, . . . ,μn)U⊤

2n, (2.16)

where

U2n = P⊤
2n

�
Vn O
O Wn

�
, (2.17)

P2n is the permutation matrix (2.6) and Vn,Wn are the n×n
matrices in (2.15).

(b) If n is odd, then

H∗
2n = U2ndiag(λ1, . . . ,λn,μ1, . . . ,μn)U⊤

2n (2.18)

where

U2n = P⊤
2n

�
O Wn

Vn O

�
,

P2n is the permutation matrix (2.13) and Vn,Wn are the
n×n matrices in (2.15).

Remark More generally, Theorem 1 also leads to an eigen-
decomposition for H2n in (1.1) with d = 0, taking eigen-
vector matrices formed by the column vectors (2.7), (2.8)
or (2.11), (2.12) according to whether n is even or odd, re-
spectively.

3 Lemmata and proofs
In order to prove Theorem 1, we will need some auxiliary
results. The first one is well-known in the literature (Akbu-
lak, da Fonseca & Yilmaz, 2013) and locates the eigenval-
ues of tridiagonal matrices having the form (2.4). Indeed,
the characteristic polynomial of Tn(a,b) is

(ab)
n
2
�
Un

2

�
x2−a2−b2

2ab

�
+ b−x

a Un
2−1

�
x2−a2−b2

2ab

��
,

when n is even and

(ab)
n−1

2
�
(x−a)Un−1

2

�
x2−a2−b2

2ab

�
−bUn−3

2

�
x2−a2−b2

2ab

��

whenever n is odd. Next, we shall provide a representation
of its eigenvectors.

Lemma 1 Let n be a positive integer and Tn(a,b) the n×n
matrix (2.4) with a,b nonzero reals. If λ is an eigenvalue of
Tn(a,b), then un(λ ,a,b) given in (2.5) is an eigenvector of
Tn(a,b) associated to λ .

Proof. Suppose a positive integer n and reals a,b such that
a �= 0, b �= 0. Consider the three-term recurrence relation,





P−1(x)≡ 0,
P0(x)≡ 1,
Pk(x) = x−βk

αk
Pk−1(x)−

γk−1
αk

Pk−2(x), 1 � k � n

with γ0 = αn = 1,

αk = γk =

�
a, k odd
b, k even

and

βk =





0, k < n
b, k = n and n even
a, k = n and n odd.

Hence, Pk(x) is expressed by




U k
2

�
x2−a2−b2

2ab

�
+ b

aU k
2−1

�
x2−a2−b2

2ab

�
, k even

x
aUk−1

2

�
x2−a2−b2

2ab

�
, k odd

for each 0 � k � n− 1 and [P0(λ ),P1(λ ), . . . ,Pn−1(λ )]
⊤ is

an eigenvector of Tn(a,b) associated to the eigenvalue λ
(da Fonseca, 2005). The thesis is established. ⊓⊔

3

(a) If n is even, then

(17)

where

are eigenvectors of H2n associated to λ and μ , respectively,
where P2n is the 2n×2n permutation matrix

P2n :=

�
Kn EnJn

En KnJn

�
(2.13)

un(λ ,a1,a2), un(μ ,b1,b2) are the n-dimensional vectors
defined by (2.5) and Sn(λ ,b1,b2) is the n× n matrix given
in (2.3).

Remark It is worthwhile to note that by taking c = 0 and
a2 = b1, a1 = b2 in (2.6) or (2.10), we recover the expres-
sions obtained in section 4 of da Fonseca (2018) for the
matrices of even order analysed therein.

The previous result leads us to an orthogonal diago-
nalization for anti-tridiagonal 2-Hankel matrices (1.1) with
null northeast-to-southwest diagonal, i.e. for matrices of the
form

H∗
2n =




0 . . . . . . . . . 0 b1 0
... . .

.
a2 0 a1

... . .
.

. .
.

0 b2 0
... . .

.
. .
.

. .
.

. .
.

. .
. ...

0 a2 0 . .
.

. .
. ...

b1 0 b2 . .
. ...

0 a1 0 . . . . . . . . . 0




(2.14)

Put

Vn :=
�

un(λ1,a1,a2)
||un(λ1,a1,a2)||

. . .
un(λn,a1,a2)
||un(λn,a1,a2)||

�

Wn :=
�

un(μ1,b1,b2)
||un(μ1,b1,b2)||

. . .
un(μn,b1,b2)
||un(μn,b1,b2)||

� (2.15)

where un(λk,a1,a2) and un(μk,b1,b2) are the n-
dimensional vectors whose kth components are defined
by (2.5).

Corollary 1 Let n be a positive integer, a1,a2,b1,b2
nonzero real numbers, H∗

2n the 2n × 2n matrix (2.14),
Tn(a1,a2) and Tn(b1,b2) matrices defined by (2.4) having
eigenvalues λ1, . . . ,λn and μ1, . . . ,μn, respectively. Suppose
that det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0 and the se-
quence of polynomials {Qk(x,ξ )}k�0 given by (2.1) satis-
fies Qn(λk,b2) �= b 3+(−1)n

2
Qn−1(λk,b2) for each k = 1, . . . ,n.

(a) If n is even, then

H∗
2n = U2ndiag(λ1, . . . ,λn,μ1, . . . ,μn)U⊤

2n, (2.16)

where

U2n = P⊤
2n

�
Vn O
O Wn

�
, (2.17)

P2n is the permutation matrix (2.6) and Vn,Wn are the n×n
matrices in (2.15).

(b) If n is odd, then

H∗
2n = U2ndiag(λ1, . . . ,λn,μ1, . . . ,μn)U⊤

2n (2.18)

where

U2n = P⊤
2n

�
O Wn

Vn O

�
,

P2n is the permutation matrix (2.13) and Vn,Wn are the
n× n matrices in (2.15).

Remark More generally, Theorem 1 also leads to an eigen-
decomposition for H2n in (1.1) with d = 0, taking eigen-
vector matrices formed by the column vectors (2.7), (2.8)
or (2.11), (2.12) according to whether n is even or odd, re-
spectively.

3 Lemmata and proofs
In order to prove Theorem 1, we will need some auxiliary
results. The first one is well-known in the literature (Akbu-
lak, da Fonseca & Yilmaz, 2013) and locates the eigenval-
ues of tridiagonal matrices having the form (2.4). Indeed,
the characteristic polynomial of Tn(a,b) is

(ab)
n
2
�
Un

2

�
x2−a2−b2

2ab

�
+ b−x

a Un
2−1

�
x2−a2−b2

2ab

��
,

when n is even and

(ab)
n−1

2
�
(x−a)Un−1

2

�
x2−a2−b2

2ab

�
−bUn−3

2

�
x2−a2−b2

2ab

��

whenever n is odd. Next, we shall provide a representation
of its eigenvectors.

Lemma 1 Let n be a positive integer and Tn(a,b) the n×n
matrix (2.4) with a,b nonzero reals. If λ is an eigenvalue of
Tn(a,b), then un(λ ,a,b) given in (2.5) is an eigenvector of
Tn(a,b) associated to λ .

Proof. Suppose a positive integer n and reals a,b such that
a �= 0, b �= 0. Consider the three-term recurrence relation,





P−1(x)≡ 0,
P0(x)≡ 1,
Pk(x) = x−βk

αk
Pk−1(x)−

γk−1
αk

Pk−2(x), 1 � k � n

with γ0 = αn = 1,

αk = γk =

�
a, k odd
b, k even

and

βk =





0, k < n
b, k = n and n even
a, k = n and n odd.

Hence, Pk(x) is expressed by




U k
2

�
x2−a2−b2

2ab

�
+ b

aU k
2−1

�
x2−a2−b2

2ab

�
, k even

x
aUk−1

2

�
x2−a2−b2

2ab

�
, k odd

for each 0 � k � n− 1 and [P0(λ ),P1(λ ), . . . ,Pn−1(λ )]
⊤ is

an eigenvector of Tn(a,b) associated to the eigenvalue λ
(da Fonseca, 2005). The thesis is established. ⊓⊔

3

(18)

are eigenvectors of H2n associated to λ and μ , respectively,
where P2n is the 2n×2n permutation matrix

P2n :=

�
Kn EnJn

En KnJn

�
(2.13)

un(λ ,a1,a2), un(μ ,b1,b2) are the n-dimensional vectors
defined by (2.5) and Sn(λ ,b1,b2) is the n× n matrix given
in (2.3).

Remark It is worthwhile to note that by taking c = 0 and
a2 = b1, a1 = b2 in (2.6) or (2.10), we recover the expres-
sions obtained in section 4 of da Fonseca (2018) for the
matrices of even order analysed therein.

The previous result leads us to an orthogonal diago-
nalization for anti-tridiagonal 2-Hankel matrices (1.1) with
null northeast-to-southwest diagonal, i.e. for matrices of the
form

H∗
2n =




0 . . . . . . . . . 0 b1 0
... . .

.
a2 0 a1

... . .
.

. .
.

0 b2 0
... . .

.
. .
.

. .
.

. .
.

. .
. ...

0 a2 0 . .
.

. .
. ...

b1 0 b2 . .
. ...

0 a1 0 . . . . . . . . . 0




(2.14)

Put

Vn :=
�

un(λ1,a1,a2)
||un(λ1,a1,a2)||

. . .
un(λn,a1,a2)
||un(λn,a1,a2)||

�

Wn :=
�

un(μ1,b1,b2)
||un(μ1,b1,b2)||

. . .
un(μn,b1,b2)
||un(μn,b1,b2)||

� (2.15)

where un(λk,a1,a2) and un(μk,b1,b2) are the n-
dimensional vectors whose kth components are defined
by (2.5).

Corollary 1 Let n be a positive integer, a1,a2,b1,b2
nonzero real numbers, H∗

2n the 2n × 2n matrix (2.14),
Tn(a1,a2) and Tn(b1,b2) matrices defined by (2.4) having
eigenvalues λ1, . . . ,λn and μ1, . . . ,μn, respectively. Suppose
that det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0 and the se-
quence of polynomials {Qk(x,ξ )}k�0 given by (2.1) satis-
fies Qn(λk,b2) �= b 3+(−1)n

2
Qn−1(λk,b2) for each k = 1, . . . ,n.

(a) If n is even, then

H∗
2n = U2ndiag(λ1, . . . ,λn,μ1, . . . ,μn)U⊤

2n, (2.16)

where

U2n = P⊤
2n

�
Vn O
O Wn

�
, (2.17)

P2n is the permutation matrix (2.6) and Vn,Wn are the n×n
matrices in (2.15).

(b) If n is odd, then

H∗
2n = U2ndiag(λ1, . . . ,λn,μ1, . . . ,μn)U⊤

2n (2.18)

where

U2n = P⊤
2n

�
O Wn

Vn O

�
,

P2n is the permutation matrix (2.13) and Vn,Wn are the
n×n matrices in (2.15).

Remark More generally, Theorem 1 also leads to an eigen-
decomposition for H2n in (1.1) with d = 0, taking eigen-
vector matrices formed by the column vectors (2.7), (2.8)
or (2.11), (2.12) according to whether n is even or odd, re-
spectively.

3 Lemmata and proofs
In order to prove Theorem 1, we will need some auxiliary
results. The first one is well-known in the literature (Akbu-
lak, da Fonseca & Yilmaz, 2013) and locates the eigenval-
ues of tridiagonal matrices having the form (2.4). Indeed,
the characteristic polynomial of Tn(a,b) is

(ab)
n
2
�
Un

2

�
x2−a2−b2

2ab

�
+ b−x

a Un
2−1

�
x2−a2−b2

2ab

��
,

when n is even and

(ab)
n−1

2
�
(x−a)Un−1

2

�
x2−a2−b2

2ab

�
− bUn−3

2

�
x2−a2−b2

2ab

��

whenever n is odd. Next, we shall provide a representation
of its eigenvectors.

Lemma 1 Let n be a positive integer and Tn(a,b) the n×n
matrix (2.4) with a,b nonzero reals. If λ is an eigenvalue of
Tn(a,b), then un(λ ,a,b) given in (2.5) is an eigenvector of
Tn(a,b) associated to λ .

Proof. Suppose a positive integer n and reals a,b such that
a �= 0, b �= 0. Consider the three-term recurrence relation,





P−1(x)≡ 0,
P0(x)≡ 1,
Pk(x) = x−βk

αk
Pk−1(x)−

γk−1
αk

Pk−2(x), 1 � k � n

with γ0 = αn = 1,

αk = γk =

�
a, k odd
b, k even

and

βk =





0, k < n
b, k = n and n even
a, k = n and n odd.

Hence, Pk(x) is expressed by




U k
2

�
x2−a2−b2

2ab

�
+ b

aU k
2−1

�
x2−a2−b2

2ab

�
, k even

x
aUk−1

2

�
x2−a2−b2

2ab

�
, k odd

for each 0 � k � n− 1 and [P0(λ ),P1(λ ), . . . ,Pn−1(λ )]
⊤ is

an eigenvector of Tn(a,b) associated to the eigenvalue λ
(da Fonseca, 2005). The thesis is established. ⊓⊔

3

P2n is  the  permutation  matrix  (10)  and Vn,Wn are the 
n×n matrices in (16).
(b) If n is odd, then

(19)
where

are eigenvectors of H2n associated to λ and μ , respectively,
where P2n is the 2n×2n permutation matrix

P2n :=

�
Kn EnJn

En KnJn

�
(2.13)

un(λ ,a1,a2), un(μ ,b1,b2) are the n-dimensional vectors
defined by (2.5) and Sn(λ ,b1,b2) is the n× n matrix given
in (2.3).

Remark It is worthwhile to note that by taking c = 0 and
a2 = b1, a1 = b2 in (2.6) or (2.10), we recover the expres-
sions obtained in section 4 of da Fonseca (2018) for the
matrices of even order analysed therein.

The previous result leads us to an orthogonal diago-
nalization for anti-tridiagonal 2-Hankel matrices (1.1) with
null northeast-to-southwest diagonal, i.e. for matrices of the
form

H∗
2n =




0 . . . . . . . . . 0 b1 0
... . .

.
a2 0 a1

... . .
.

. .
.

0 b2 0
... . .

.
. .
.

. .
.

. .
.

. .
. ...

0 a2 0 . .
.

. .
. ...

b1 0 b2 . .
. ...

0 a1 0 . . . . . . . . . 0




(2.14)

Put

Vn :=
�

un(λ1,a1,a2)
||un(λ1,a1,a2)||

. . .
un(λn,a1,a2)
||un(λn,a1,a2)||

�

Wn :=
�

un(μ1,b1,b2)
||un(μ1,b1,b2)||

. . .
un(μn,b1,b2)
||un(μn,b1,b2)||

� (2.15)

where un(λk,a1,a2) and un(μk,b1,b2) are the n-
dimensional vectors whose kth components are defined
by (2.5).

Corollary 1 Let n be a positive integer, a1,a2,b1,b2
nonzero real numbers, H∗

2n the 2n × 2n matrix (2.14),
Tn(a1,a2) and Tn(b1,b2) matrices defined by (2.4) having
eigenvalues λ1, . . . ,λn and μ1, . . . ,μn, respectively. Suppose
that det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0 and the se-
quence of polynomials {Qk(x,ξ )}k�0 given by (2.1) satis-
fies Qn(λk,b2) �= b 3+(−1)n

2
Qn−1(λk,b2) for each k = 1, . . . ,n.

(a) If n is even, then

H∗
2n = U2ndiag(λ1, . . . ,λn,μ1, . . . ,μn)U⊤

2n, (2.16)

where

U2n = P⊤
2n

�
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O Wn

�
, (2.17)

P2n is the permutation matrix (2.6) and Vn,Wn are the n×n
matrices in (2.15).

(b) If n is odd, then

H∗
2n = U2ndiag(λ1, . . . ,λn,μ1, . . . ,μn)U⊤

2n (2.18)

where

U2n = P⊤
2n

�
O Wn

Vn O

�
,

P2n is the permutation matrix (2.13) and Vn,Wn are the
n×n matrices in (2.15).

Remark More generally, Theorem 1 also leads to an eigen-
decomposition for H2n in (1.1) with d = 0, taking eigen-
vector matrices formed by the column vectors (2.7), (2.8)
or (2.11), (2.12) according to whether n is even or odd, re-
spectively.

3 Lemmata and proofs
In order to prove Theorem 1, we will need some auxiliary
results. The first one is well-known in the literature (Akbu-
lak, da Fonseca & Yilmaz, 2013) and locates the eigenval-
ues of tridiagonal matrices having the form (2.4). Indeed,
the characteristic polynomial of Tn(a,b) is
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whenever n is odd. Next, we shall provide a representation
of its eigenvectors.

Lemma 1 Let n be a positive integer and Tn(a,b) the n×n
matrix (2.4) with a,b nonzero reals. If λ is an eigenvalue of
Tn(a,b), then un(λ ,a,b) given in (2.5) is an eigenvector of
Tn(a,b) associated to λ .

Proof. Suppose a positive integer n and reals a,b such that
a �= 0, b �= 0. Consider the three-term recurrence relation,





P−1(x)≡ 0,
P0(x)≡ 1,
Pk(x) = x−βk

αk
Pk−1(x)−

γk−1
αk

Pk−2(x), 1 � k � n

with γ0 = αn = 1,

αk = γk =

�
a, k odd
b, k even

and

βk =





0, k < n
b, k = n and n even
a, k = n and n odd.

Hence, Pk(x) is expressed by



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for each 0 � k � n− 1 and [P0(λ ),P1(λ ), . . . ,Pn−1(λ )]
⊤ is

an eigenvector of Tn(a,b) associated to the eigenvalue λ
(da Fonseca, 2005). The thesis is established. ⊓⊔

3

are eigenvectors of H2n associated to λ and μ , respectively,
where P2n is the 2n× 2n permutation matrix

P2n :=

�
Kn EnJn

En KnJn

�
(2.13)

un(λ ,a1,a2), un(μ ,b1,b2) are the n-dimensional vectors
defined by (2.5) and Sn(λ ,b1,b2) is the n× n matrix given
in (2.3).

Remark It is worthwhile to note that by taking c = 0 and
a2 = b1, a1 = b2 in (2.6) or (2.10), we recover the expres-
sions obtained in section 4 of da Fonseca (2018) for the
matrices of even order analysed therein.

The previous result leads us to an orthogonal diago-
nalization for anti-tridiagonal 2-Hankel matrices (1.1) with
null northeast-to-southwest diagonal, i.e. for matrices of the
form
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... . .
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0 a1 0 . . . . . . . . . 0
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

(2.14)
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� (2.15)

where un(λk,a1,a2) and un(μk,b1,b2) are the n-
dimensional vectors whose kth components are defined
by (2.5).

Corollary 1 Let n be a positive integer, a1,a2,b1,b2
nonzero real numbers, H∗

2n the 2n × 2n matrix (2.14),
Tn(a1,a2) and Tn(b1,b2) matrices defined by (2.4) having
eigenvalues λ1, . . . ,λn and μ1, . . . ,μn, respectively. Suppose
that det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0 and the se-
quence of polynomials {Qk(x,ξ )}k�0 given by (2.1) satis-
fies Qn(λk,b2) �= b 3+(−1)n

2
Qn−1(λk,b2) for each k = 1, . . . ,n.

(a) If n is even, then

H∗
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2n, (2.16)

where

U2n = P⊤
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, (2.17)

P2n is the permutation matrix (2.6) and Vn,Wn are the n×n
matrices in (2.15).

(b) If n is odd, then
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2n (2.18)

where
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2n

�
O Wn

Vn O

�
,

P2n is the permutation matrix (2.13) and Vn,Wn are the
n× n matrices in (2.15).

Remark More generally, Theorem 1 also leads to an eigen-
decomposition for H2n in (1.1) with d = 0, taking eigen-
vector matrices formed by the column vectors (2.7), (2.8)
or (2.11), (2.12) according to whether n is even or odd, re-
spectively.

3 Lemmata and proofs
In order to prove Theorem 1, we will need some auxiliary
results. The first one is well-known in the literature (Akbu-
lak, da Fonseca & Yilmaz, 2013) and locates the eigenval-
ues of tridiagonal matrices having the form (2.4). Indeed,
the characteristic polynomial of Tn(a,b) is
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whenever n is odd. Next, we shall provide a representation
of its eigenvectors.

Lemma 1 Let n be a positive integer and Tn(a,b) the n×n
matrix (2.4) with a,b nonzero reals. If λ is an eigenvalue of
Tn(a,b), then un(λ ,a,b) given in (2.5) is an eigenvector of
Tn(a,b) associated to λ .

Proof. Suppose a positive integer n and reals a,b such that
a �= 0, b �= 0. Consider the three-term recurrence relation,





P−1(x)≡ 0,
P0(x)≡ 1,
Pk(x) = x−βk

αk
Pk−1(x)−

γk−1
αk

Pk−2(x), 1 � k � n

with γ0 = αn = 1,

αk = γk =

�
a, k odd
b, k even

and

βk =





0, k < n
b, k = n and n even
a, k = n and n odd.

Hence, Pk(x) is expressed by



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for each 0 � k � n− 1 and [P0(λ ),P1(λ ), . . . ,Pn−1(λ )]
⊤ is

an eigenvector of Tn(a,b) associated to the eigenvalue λ
(da Fonseca, 2005). The thesis is established. ⊓⊔

3

P2n is the permutation matrix (14) and 
Vn,Wn are the n × n matrices in (16).

Remark More generally, Theorem 1 also leads 
to an eigendecomposition for H2n in (1) with 
d = 0, taking eigenvector matrices formed by the 
column vectors (8), (9) or (12), (13) according 
to whether n is even or odd, respectively.

3. Lemmata and proofs

In order to prove Theorem 1, we will need some auxiliary 
results. The first one is well-known in the literature (Akbulak, 
da Fonseca & Yilmaz, 2013) and locates the eigenvalues 
of tridiagonal matrices having the form (5). Indeed,
the characteristic polynomial of Tn(a,b) is

whenever n is odd. Next, we shall provide 
a representation of its eigenvectors.

Lemma 1 Let n be a positive integer and Tn(a,b) 
the n×n matrix (5) with a,b nonzero reals. If λ is 
an eigenvalue of Tn(a,b), then un(λ,a,b) given in 
(6) is an eigenvector of Tn(a,b) associated to λ .
Proof. Suppose a positive integer n and reals a,b such 
that                        Consider  the  three-term  recurrence 
relation,

are eigenvectors of H2n associated to λ and μ , respectively,
where P2n is the 2n× 2n permutation matrix

P2n :=

�
Kn EnJn

En KnJn

�
(2.13)

un(λ ,a1,a2), un(μ ,b1,b2) are the n-dimensional vectors
defined by (2.5) and Sn(λ ,b1,b2) is the n× n matrix given
in (2.3).

Remark It is worthwhile to note that by taking c = 0 and
a2 = b1, a1 = b2 in (2.6) or (2.10), we recover the expres-
sions obtained in section 4 of da Fonseca (2018) for the
matrices of even order analysed therein.

The previous result leads us to an orthogonal diago-
nalization for anti-tridiagonal 2-Hankel matrices (1.1) with
null northeast-to-southwest diagonal, i.e. for matrices of the
form

H∗
2n =




0 . . . . . . . . . 0 b1 0
... . .

.
a2 0 a1

... . .
.

. .
.

0 b2 0
... . .

.
. .
.

. .
.

. .
.

. .
. ...

0 a2 0 . .
.

. .
. ...

b1 0 b2 . .
. ...

0 a1 0 . . . . . . . . . 0




(2.14)

Put

Vn :=
�

un(λ1,a1,a2)
||un(λ1,a1,a2)||

. . .
un(λn,a1,a2)
||un(λn,a1,a2)||

�

Wn :=
�

un(μ1,b1,b2)
||un(μ1,b1,b2)||

. . .
un(μn,b1,b2)
||un(μn,b1,b2)||

� (2.15)

where un(λk,a1,a2) and un(μk,b1,b2) are the n-
dimensional vectors whose kth components are defined
by (2.5).

Corollary 1 Let n be a positive integer, a1,a2,b1,b2
nonzero real numbers, H∗

2n the 2n × 2n matrix (2.14),
Tn(a1,a2) and Tn(b1,b2) matrices defined by (2.4) having
eigenvalues λ1, . . . ,λn and μ1, . . . ,μn, respectively. Suppose
that det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0 and the se-
quence of polynomials {Qk(x,ξ )}k�0 given by (2.1) satis-
fies Qn(λk,b2) �= b 3+(−1)n

2
Qn−1(λk,b2) for each k = 1, . . . ,n.

(a) If n is even, then

H∗
2n = U2ndiag(λ1, . . . ,λn,μ1, . . . ,μn)U⊤

2n, (2.16)

where

U2n = P⊤
2n

�
Vn O
O Wn

�
, (2.17)

P2n is the permutation matrix (2.6) and Vn,Wn are the n×n
matrices in (2.15).

(b) If n is odd, then

H∗
2n = U2ndiag(λ1, . . . ,λn,μ1, . . . ,μn)U⊤

2n (2.18)

where

U2n = P⊤
2n

�
O Wn

Vn O

�
,

P2n is the permutation matrix (2.13) and Vn,Wn are the
n× n matrices in (2.15).

Remark More generally, Theorem 1 also leads to an eigen-
decomposition for H2n in (1.1) with d = 0, taking eigen-
vector matrices formed by the column vectors (2.7), (2.8)
or (2.11), (2.12) according to whether n is even or odd, re-
spectively.

3 Lemmata and proofs
In order to prove Theorem 1, we will need some auxiliary
results. The first one is well-known in the literature (Akbu-
lak, da Fonseca & Yilmaz, 2013) and locates the eigenval-
ues of tridiagonal matrices having the form (2.4). Indeed,
the characteristic polynomial of Tn(a,b) is
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whenever n is odd. Next, we shall provide a representation
of its eigenvectors.

Lemma 1 Let n be a positive integer and Tn(a,b) the n×n
matrix (2.4) with a,b nonzero reals. If λ is an eigenvalue of
Tn(a,b), then un(λ ,a,b) given in (2.5) is an eigenvector of
Tn(a,b) associated to λ .

Proof. Suppose a positive integer n and reals a,b such that
a �= 0, b �= 0. Consider the three-term recurrence relation,





P−1(x)≡ 0,
P0(x)≡ 1,
Pk(x) = x−βk

αk
Pk−1(x)−

γk−1
αk

Pk−2(x), 1 � k � n

with γ0 = αn = 1,

αk = γk =

�
a, k odd
b, k even

and

βk =





0, k < n
b, k = n and n even
a, k = n and n odd.

Hence, Pk(x) is expressed by
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
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for each 0 � k � n− 1 and [P0(λ ),P1(λ ), . . . ,Pn−1(λ )]
⊤ is

an eigenvector of Tn(a,b) associated to the eigenvalue λ
(da Fonseca, 2005). The thesis is established. ⊓⊔

3
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P2n :=
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Kn EnJn
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(2.13)

un(λ ,a1,a2), un(μ ,b1,b2) are the n-dimensional vectors
defined by (2.5) and Sn(λ ,b1,b2) is the n× n matrix given
in (2.3).

Remark It is worthwhile to note that by taking c = 0 and
a2 = b1, a1 = b2 in (2.6) or (2.10), we recover the expres-
sions obtained in section 4 of da Fonseca (2018) for the
matrices of even order analysed therein.

The previous result leads us to an orthogonal diago-
nalization for anti-tridiagonal 2-Hankel matrices (1.1) with
null northeast-to-southwest diagonal, i.e. for matrices of the
form
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Vn :=
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. . .
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Wn :=
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� (2.15)

where un(λk,a1,a2) and un(μk,b1,b2) are the n-
dimensional vectors whose kth components are defined
by (2.5).

Corollary 1 Let n be a positive integer, a1,a2,b1,b2
nonzero real numbers, H∗

2n the 2n × 2n matrix (2.14),
Tn(a1,a2) and Tn(b1,b2) matrices defined by (2.4) having
eigenvalues λ1, . . . ,λn and μ1, . . . ,μn, respectively. Suppose
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quence of polynomials {Qk(x,ξ )}k�0 given by (2.1) satis-
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(a) If n is even, then
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where
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P2n is the permutation matrix (2.6) and Vn,Wn are the n×n
matrices in (2.15).

(b) If n is odd, then
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where
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P2n is the permutation matrix (2.13) and Vn,Wn are the
n×n matrices in (2.15).

Remark More generally, Theorem 1 also leads to an eigen-
decomposition for H2n in (1.1) with d = 0, taking eigen-
vector matrices formed by the column vectors (2.7), (2.8)
or (2.11), (2.12) according to whether n is even or odd, re-
spectively.

3 Lemmata and proofs
In order to prove Theorem 1, we will need some auxiliary
results. The first one is well-known in the literature (Akbu-
lak, da Fonseca & Yilmaz, 2013) and locates the eigenval-
ues of tridiagonal matrices having the form (2.4). Indeed,
the characteristic polynomial of Tn(a,b) is
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whenever n is odd. Next, we shall provide a representation
of its eigenvectors.

Lemma 1 Let n be a positive integer and Tn(a,b) the n×n
matrix (2.4) with a,b nonzero reals. If λ is an eigenvalue of
Tn(a,b), then un(λ ,a,b) given in (2.5) is an eigenvector of
Tn(a,b) associated to λ .

Proof. Suppose a positive integer n and reals a,b such that
a �= 0, b �= 0. Consider the three-term recurrence relation,
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

P−1(x)≡ 0,
P0(x)≡ 1,
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with γ0 = αn = 1,

αk = γk =

�
a, k odd
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an eigenvector of Tn(a,b) associated to the eigenvalue λ
(da Fonseca, 2005). The thesis is established. ⊓⊔
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defined by (2.5) and Sn(λ ,b1,b2) is the n× n matrix given
in (2.3).

Remark It is worthwhile to note that by taking c = 0 and
a2 = b1, a1 = b2 in (2.6) or (2.10), we recover the expres-
sions obtained in section 4 of da Fonseca (2018) for the
matrices of even order analysed therein.
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0 . . . . . . . . . 0 b1 0
... . .

.
a2 0 a1

... . .
.

. .
.

0 b2 0
... . .

.
. .
.

. .
.

. .
.

. .
. ...

0 a2 0 . .
.

. .
. ...

b1 0 b2 . .
. ...

0 a1 0 . . . . . . . . . 0




(2.14)

Put

Vn :=
�

un(λ1,a1,a2)
||un(λ1,a1,a2)||

. . .
un(λn,a1,a2)
||un(λn,a1,a2)||

�

Wn :=
�

un(μ1,b1,b2)
||un(μ1,b1,b2)||

. . .
un(μn,b1,b2)
||un(μn,b1,b2)||

� (2.15)

where un(λk,a1,a2) and un(μk,b1,b2) are the n-
dimensional vectors whose kth components are defined
by (2.5).

Corollary 1 Let n be a positive integer, a1,a2,b1,b2
nonzero real numbers, H∗

2n the 2n × 2n matrix (2.14),
Tn(a1,a2) and Tn(b1,b2) matrices defined by (2.4) having
eigenvalues λ1, . . . ,λn and μ1, . . . ,μn, respectively. Suppose
that det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0 and the se-
quence of polynomials {Qk(x,ξ )}k�0 given by (2.1) satis-
fies Qn(λk,b2) �= b 3+(−1)n

2
Qn−1(λk,b2) for each k = 1, . . . ,n.

(a) If n is even, then

H∗
2n = U2ndiag(λ1, . . . ,λn,μ1, . . . ,μn)U⊤

2n, (2.16)

where

U2n = P⊤
2n

�
Vn O
O Wn

�
, (2.17)

P2n is the permutation matrix (2.6) and Vn,Wn are the n×n
matrices in (2.15).

(b) If n is odd, then

H∗
2n = U2ndiag(λ1, . . . ,λn,μ1, . . . ,μn)U⊤

2n (2.18)

where

U2n = P⊤
2n

�
O Wn

Vn O

�
,

P2n is the permutation matrix (2.13) and Vn,Wn are the
n×n matrices in (2.15).

Remark More generally, Theorem 1 also leads to an eigen-
decomposition for H2n in (1.1) with d = 0, taking eigen-
vector matrices formed by the column vectors (2.7), (2.8)
or (2.11), (2.12) according to whether n is even or odd, re-
spectively.

3 Lemmata and proofs
In order to prove Theorem 1, we will need some auxiliary
results. The first one is well-known in the literature (Akbu-
lak, da Fonseca & Yilmaz, 2013) and locates the eigenval-
ues of tridiagonal matrices having the form (2.4). Indeed,
the characteristic polynomial of Tn(a,b) is

(ab)
n
2
�
Un

2

�
x2−a2−b2

2ab

�
+ b−x

a Un
2−1

�
x2−a2−b2

2ab

��
,

when n is even and

(ab)
n−1

2
�
(x−a)Un−1

2

�
x2−a2−b2

2ab

�
− bUn−3

2

�
x2−a2−b2

2ab

��

whenever n is odd. Next, we shall provide a representation
of its eigenvectors.

Lemma 1 Let n be a positive integer and Tn(a,b) the n×n
matrix (2.4) with a,b nonzero reals. If λ is an eigenvalue of
Tn(a,b), then un(λ ,a,b) given in (2.5) is an eigenvector of
Tn(a,b) associated to λ .

Proof. Suppose a positive integer n and reals a,b such that
a �= 0, b �= 0. Consider the three-term recurrence relation,





P−1(x)≡ 0,
P0(x)≡ 1,
Pk(x) = x−βk

αk
Pk−1(x)−

γk−1
αk

Pk−2(x), 1 � k � n

with γ0 = αn = 1,

αk = γk =

�
a, k odd
b, k even

and

βk =





0, k < n
b, k = n and n even
a, k = n and n odd.

Hence, Pk(x) is expressed by




U k
2

�
x2−a2−b2

2ab

�
+ b

aU k
2−1

�
x2−a2−b2

2ab

�
, k even

x
aUk−1

2

�
x2−a2−b2

2ab

�
, k odd

for each 0 � k � n− 1 and [P0(λ ),P1(λ ), . . . ,Pn−1(λ )]
⊤ is

an eigenvector of Tn(a,b) associated to the eigenvalue λ
(da Fonseca, 2005). The thesis is established. ⊓⊔

3The following auxiliary statement is an explicit 
formula for the inverse of sort of slightly perturbed 
tridiagonal 2-Toeplitz matrices.

Lemma 2 Let n be a positive integer, λ a real number, 
                  the sequence of polynomials defined by 
(2) and Tn(b1,b2) the n × n matrix defined by (5) with
nonzero reals b1,b2. If 
then

The following auxiliary statement is an explicit formula
for the inverse of sort of slightly perturbed tridiagonal 2-
Toeplitz matrices.

Lemma 2 Let n be a positive integer, λ a real num-
ber, {Qk(x,ξ )}k�0 the sequence of polynomials defined by
(2.1) and Tn(b1,b2) the n× n matrix defined by (2.4) with
nonzero reals b1,b2. If Qn(λ ,b2) �= b 3+(−1)n

2
Qn−1(λ ,b2),

then

[Tn(b1,b2)−λ In]
−1 = Sn

[
λ ,b 3+(−1)n

2
,b2

]
(3.1)

where Sn

[
λ ,b 3+(−1)n

2
,b2

]
is the n×n matrix given by (2.3).

Proof. Suppose a positive integer n and real numbers
λ ,b1,b2 such that b1 �= 0, b2 �= 0. Employing the Second
Principle of Mathematical Induction on the variable n, we
can state that det [Tn(b1,b2)] = (−1)⌊

n
2⌋bn

1, which ensures
the nonsingularity of Tn(b1,b2). Denoting by en the n-
dimensional vector (0, . . . ,0,1), the inverse of Tn(b1,b2)−

λ In − b 3+(−1)n
2

en is the matrix Qn

[
b 3+(−1)n

2

]
in (2.2) (see

Theorem 4.1 of da Fonseca & Petronilho, 2001), and the
thesis is a direct consequence of the well-known Sherman-
Morrison-Woodbury formula. ⊓⊔

Proof of Theorem 1. Since both assertions can be proven in
the same way, we only prove (a). Let n be an even positive
integer. It is straightforward to see that

P2nH2nP⊤
2n =

[
Tn(a1,a2) O

cIn Tn(b1,b2)

]
, (3.2)

where P2n is the permutation matrix (2.9). Thus,

det(tI2n −H2n) =

det [tIn −Tn(a1,a2)]det [tIn −Tn(b1,b2)]

and from Lemma 1 we obtain (2.6). Let λ be an eigenvalue
of Tn(a1,a2). According to (3.3) we can rewrite the relation
(H2n −λ I2n)x = 0 as

[
Tn(a1,a2)−λ In O

cIn Tn(b1,b2)−λ In

]
P2nx = 0,

that is,

[Tn(a1,a2)−λ In]y(1) = 0,

cy(1) + [Tn(b1,b2)−λ In]y(2) = 0,
[

y(1)
y(2)

]
= P2nx.

(3.3)

Since det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0, the ma-
trices Tn(a1,a2) and Tn(b1,b2) have no eigenvalues in
common (see Laub, 2005, page 145) which implies
det [Tn(b1,b2)−λ In] �= 0 and Lemma 1 ensures that the so-
lution of (3.4) is

x = P⊤
2n

[
un(λ ,a1,a2)

−c [Tn(b1,b2)−λ In]
−1 un(λ ,a1,a2)

]
,

where un(λ ,a1,a2) is given by (2.5). From Lemma 2,

[Tn(b1,b2)−λ In]
−1 = Sn(λ ,b2,b2),

and (2.7) is an eigenvector of H2n associated to the eigen-
value λ . On the other hand, suppose that μ is an eigenvalue
of Tn(b1,b2). Since H2nx = μx is equivalent to

[Tn(a1,a2)− μIn]y(1) = 0,

cy(1) + [Tn(b1,b2)− μIn]y(2) = 0,
[

y(1)
y(2)

]
= P2nx,

and det [Tn(a1,a2)− μIn] �= 0, we obtain

x = P⊤
2n

[
0

un(μ ,b1,b2)

]
,

where un(μ ,b1,b2) is defined in (2.5). Therefore, (2.8) is
an eigenvector of H2n associated to the eigenvalue μ . ⊓⊔

Proof of Corollary 1. Consider an even positive integer n.
From Lemma 1 and

det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0,

we can guarantee that all eigenvalues of H∗
2n are distinct.

Setting

vn(λk) := un(λk,a1,a2),

wn(μk) := un(μk,b1,b2)

and

v̂n(λk) := P⊤
2n

[
vn(λk)

0

]
,

ŵn(μk) := P⊤
2n

[
0

wn(μk)

]

it follows that
{

v̂n(λ1)
||v̂n(λ1)||

, . . . ,
v̂n(λn)
||v̂n(λn)||

,
ŵn(μ1)
||ŵn(μ1)||

, . . . ,
ŵn(μn)
||ŵn(μn)||

}
(3.4)

is a complete set of orthogonal eigenvectors according to
Theorem 1. Hence,

H∗
2n = U2ndiag(λ1, . . . ,λn,μ1, . . . ,μn)U−1

2n ,

where

U2n =
[

v̂n(λ1)
||v̂n(λ1)||

. . .
v̂n(λn)
||v̂n(λn)||

ŵn(μ1)
||ŵn(μ1)||

. . .
ŵn(μn)
||ŵn(μn)||

]

= P⊤
2n

[ vn(λ1)
||vn(λ1)||

. . .
vn(λn)
||vn(λn)||

0 . . . 0
0 . . . 0 wn(μ1)

||wn(μ1)||
. . .

wn(μn)
||wn(μn)||

]

provided that P⊤
2n is an orthogonal matrix. Since (3.4) is an

orthonormal set, U2n is an orthogonal matrix and (2.16) is
established. The proof of (b) is analogous and so will be
omitted. ⊓⊔

4
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where Sn
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en is the matrix Qn

[
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2

]
in (2.2) (see

Theorem 4.1 of da Fonseca & Petronilho, 2001), and the
thesis is a direct consequence of the well-known Sherman-
Morrison-Woodbury formula. ⊓⊔

Proof of Theorem 1. Since both assertions can be proven in
the same way, we only prove (a). Let n be an even positive
integer. It is straightforward to see that

P2nH2nP⊤
2n =

[
Tn(a1,a2) O

cIn Tn(b1,b2)

]
, (3.2)

where P2n is the permutation matrix (2.9). Thus,

det(tI2n −H2n) =

det [tIn −Tn(a1,a2)]det [tIn −Tn(b1,b2)]

and from Lemma 1 we obtain (2.6). Let λ be an eigenvalue
of Tn(a1,a2). According to (3.3) we can rewrite the relation
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that is,
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y(1)
y(2)

]
= P2nx.

(3.3)

Since det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0, the ma-
trices Tn(a1,a2) and Tn(b1,b2) have no eigenvalues in
common (see Laub, 2005, page 145) which implies
det [Tn(b1,b2)−λ In] �= 0 and Lemma 1 ensures that the so-
lution of (3.4) is

x = P⊤
2n

[
un(λ ,a1,a2)

−c [Tn(b1,b2)−λ In]
−1 un(λ ,a1,a2)

]
,

where un(λ ,a1,a2) is given by (2.5). From Lemma 2,

[Tn(b1,b2)−λ In]
−1 = Sn(λ ,b2,b2),

and (2.7) is an eigenvector of H2n associated to the eigen-
value λ . On the other hand, suppose that μ is an eigenvalue
of Tn(b1,b2). Since H2nx = μx is equivalent to

[Tn(a1,a2)− μIn]y(1) = 0,

cy(1) + [Tn(b1,b2)− μIn]y(2) = 0,
[

y(1)
y(2)

]
= P2nx,

and det [Tn(a1,a2)− μIn] �= 0, we obtain

x = P⊤
2n

[
0

un(μ ,b1,b2)

]
,

where un(μ ,b1,b2) is defined in (2.5). Therefore, (2.8) is
an eigenvector of H2n associated to the eigenvalue μ . ⊓⊔

Proof of Corollary 1. Consider an even positive integer n.
From Lemma 1 and

det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0,

we can guarantee that all eigenvalues of H∗
2n are distinct.

Setting
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and
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ŵn(μk) := P⊤
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it follows that
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(3.4)

is a complete set of orthogonal eigenvectors according to
Theorem 1. Hence,
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where
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||ŵn(μ1)||

. . .
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provided that P⊤
2n is an orthogonal matrix. Since (3.4) is an

orthonormal set, U2n is an orthogonal matrix and (2.16) is
established. The proof of (b) is analogous and so will be
omitted. ⊓⊔
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where Sn
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1, which ensures
the nonsingularity of Tn(b1,b2). Denoting by en the n-
dimensional vector (0, . . . ,0,1), the inverse of Tn(b1,b2)−

λ In − b 3+(−1)n
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en is the matrix Qn

[
b 3+(−1)n

2

]
in (2.2) (see

Theorem 4.1 of da Fonseca & Petronilho, 2001), and the
thesis is a direct consequence of the well-known Sherman-
Morrison-Woodbury formula. ⊓⊔

Proof of Theorem 1. Since both assertions can be proven in
the same way, we only prove (a). Let n be an even positive
integer. It is straightforward to see that

P2nH2nP⊤
2n =

[
Tn(a1,a2) O

cIn Tn(b1,b2)

]
, (3.2)

where P2n is the permutation matrix (2.9). Thus,

det(tI2n −H2n) =

det [tIn −Tn(a1,a2)]det [tIn −Tn(b1,b2)]

and from Lemma 1 we obtain (2.6). Let λ be an eigenvalue
of Tn(a1,a2). According to (3.3) we can rewrite the relation
(H2n −λ I2n)x = 0 as
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Tn(a1,a2)−λ In O

cIn Tn(b1,b2)−λ In

]
P2nx = 0,

that is,
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cy(1) + [Tn(b1,b2)−λ In]y(2) = 0,
[

y(1)
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common (see Laub, 2005, page 145) which implies
det [Tn(b1,b2)−λ In] �= 0 and Lemma 1 ensures that the so-
lution of (3.4) is

x = P⊤
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[
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−c [Tn(b1,b2)−λ In]
−1 un(λ ,a1,a2)

]
,

where un(λ ,a1,a2) is given by (2.5). From Lemma 2,

[Tn(b1,b2)−λ In]
−1 = Sn(λ ,b2,b2),

and (2.7) is an eigenvector of H2n associated to the eigen-
value λ . On the other hand, suppose that μ is an eigenvalue
of Tn(b1,b2). Since H2nx = μx is equivalent to
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cy(1) + [Tn(b1,b2)− μIn]y(2) = 0,
[

y(1)
y(2)
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= P2nx,

and det [Tn(a1,a2)− μIn] �= 0, we obtain

x = P⊤
2n
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0

un(μ ,b1,b2)

]
,

where un(μ ,b1,b2) is defined in (2.5). Therefore, (2.8) is
an eigenvector of H2n associated to the eigenvalue μ . ⊓⊔

Proof of Corollary 1. Consider an even positive integer n.
From Lemma 1 and

det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0,

we can guarantee that all eigenvalues of H∗
2n are distinct.

Setting

vn(λk) := un(λk,a1,a2),

wn(μk) := un(μk,b1,b2)

and

v̂n(λk) := P⊤
2n

[
vn(λk)

0

]
,

ŵn(μk) := P⊤
2n
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0

wn(μk)

]

it follows that
{

v̂n(λ1)
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, . . . ,
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||ŵn(μn)||

}
(3.4)

is a complete set of orthogonal eigenvectors according to
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H∗
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where

U2n =
[

v̂n(λ1)
||v̂n(λ1)||

. . .
v̂n(λn)
||v̂n(λn)||
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||ŵn(μ1)||

. . .
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||ŵn(μn)||

]

= P⊤
2n
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||vn(λ1)||

. . .
vn(λn)
||vn(λn)||

0 . . . 0
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. . .
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provided that P⊤
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orthonormal set, U2n is an orthogonal matrix and (2.16) is
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omitted. ⊓⊔

4
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3   The characteristic polynomial of some anti-tridiagonal 2-Hankel matrices of even order   

when n is even and

are eigenvectors of H2n associated to λ and μ , respectively,
where P2n is the 2n× 2n permutation matrix

P2n :=

�
Kn EnJn

En KnJn

�
(2.13)

un(λ ,a1,a2), un(μ ,b1,b2) are the n-dimensional vectors
defined by (2.5) and Sn(λ ,b1,b2) is the n× n matrix given
in (2.3).

Remark It is worthwhile to note that by taking c = 0 and
a2 = b1, a1 = b2 in (2.6) or (2.10), we recover the expres-
sions obtained in section 4 of da Fonseca (2018) for the
matrices of even order analysed therein.

The previous result leads us to an orthogonal diago-
nalization for anti-tridiagonal 2-Hankel matrices (1.1) with
null northeast-to-southwest diagonal, i.e. for matrices of the
form

H∗
2n =




0 . . . . . . . . . 0 b1 0
... . .

.
a2 0 a1

... . .
.

. .
.

0 b2 0
... . .

.
. .
.

. .
.

. .
.

. .
. ...

0 a2 0 . .
.

. .
. ...

b1 0 b2 . .
. ...

0 a1 0 . . . . . . . . . 0




(2.14)

Put

Vn :=
�

un(λ1,a1,a2)
||un(λ1,a1,a2)||

. . .
un(λn,a1,a2)
||un(λn,a1,a2)||

�

Wn :=
�

un(μ1,b1,b2)
||un(μ1,b1,b2)||

. . .
un(μn,b1,b2)
||un(μn,b1,b2)||

� (2.15)

where un(λk,a1,a2) and un(μk,b1,b2) are the n-
dimensional vectors whose kth components are defined
by (2.5).

Corollary 1 Let n be a positive integer, a1,a2,b1,b2
nonzero real numbers, H∗

2n the 2n × 2n matrix (2.14),
Tn(a1,a2) and Tn(b1,b2) matrices defined by (2.4) having
eigenvalues λ1, . . . ,λn and μ1, . . . ,μn, respectively. Suppose
that det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0 and the se-
quence of polynomials {Qk(x,ξ )}k�0 given by (2.1) satis-
fies Qn(λk,b2) �= b 3+(−1)n

2
Qn−1(λk,b2) for each k = 1, . . . ,n.

(a) If n is even, then

H∗
2n = U2ndiag(λ1, . . . ,λn,μ1, . . . ,μn)U⊤

2n, (2.16)

where

U2n = P⊤
2n

�
Vn O
O Wn

�
, (2.17)

P2n is the permutation matrix (2.6) and Vn,Wn are the n×n
matrices in (2.15).

(b) If n is odd, then

H∗
2n = U2ndiag(λ1, . . . ,λn,μ1, . . . ,μn)U⊤

2n (2.18)

where

U2n = P⊤
2n

�
O Wn

Vn O

�
,

P2n is the permutation matrix (2.13) and Vn,Wn are the
n× n matrices in (2.15).

Remark More generally, Theorem 1 also leads to an eigen-
decomposition for H2n in (1.1) with d = 0, taking eigen-
vector matrices formed by the column vectors (2.7), (2.8)
or (2.11), (2.12) according to whether n is even or odd, re-
spectively.

3 Lemmata and proofs
In order to prove Theorem 1, we will need some auxiliary
results. The first one is well-known in the literature (Akbu-
lak, da Fonseca & Yilmaz, 2013) and locates the eigenval-
ues of tridiagonal matrices having the form (2.4). Indeed,
the characteristic polynomial of Tn(a,b) is

(ab)
n
2
�
Un

2

�
x2−a2−b2

2ab

�
+ b−x

a Un
2−1

�
x2−a2−b2

2ab

��
,

when n is even and

(ab)
n−1

2
�
(x−a)Un−1

2

�
x2−a2−b2

2ab

�
−bUn−3

2

�
x2−a2−b2

2ab

��

whenever n is odd. Next, we shall provide a representation
of its eigenvectors.

Lemma 1 Let n be a positive integer and Tn(a,b) the n×n
matrix (2.4) with a,b nonzero reals. If λ is an eigenvalue of
Tn(a,b), then un(λ ,a,b) given in (2.5) is an eigenvector of
Tn(a,b) associated to λ .

Proof. Suppose a positive integer n and reals a,b such that
a �= 0, b �= 0. Consider the three-term recurrence relation,





P−1(x)≡ 0,
P0(x)≡ 1,
Pk(x) = x−βk

αk
Pk−1(x)−

γk−1
αk

Pk−2(x), 1 � k � n

with γ0 = αn = 1,

αk = γk =

�
a, k odd
b, k even

and

βk =





0, k < n
b, k = n and n even
a, k = n and n odd.

Hence, Pk(x) is expressed by




U k
2

�
x2−a2−b2

2ab

�
+ b

aU k
2−1

�
x2−a2−b2

2ab

�
, k even

x
aUk−1

2

�
x2−a2−b2

2ab

�
, k odd

for each 0 � k � n− 1 and [P0(λ ),P1(λ ), . . . ,Pn−1(λ )]
⊤ is

an eigenvector of Tn(a,b) associated to the eigenvalue λ
(da Fonseca, 2005). The thesis is established. ⊓⊔

3

Hence, Pk(x) is expressed by





U k
2

(
x2−a2−b2

2ab

)
+ b

aU k
2−1

(
x2−a2−b2

2ab

)
, k even

x
aU k−1

2

(
x2−a2−b2

2ab

)
, k odd

for each 0 � k � n−1 and [P0(λ), P1(λ), . . . , Pn−1(λ)]
�

is an eigenvector of Tn(a, b) associated to the eigen-
value λ (da Fonseca, 2005). The thesis is established.
��

The following auxiliary statement is an explicit for-
mula for the inverse of sort of slightly perturbed tridi-
agonal 2-Toeplitz matrices.

Lemma 2 Let n be a positive integer, λ a real num-
ber, {Qk(x, ξ)}k�0 the sequence of polynomials de-
fined by (2.1) and Tn(b1, b2) the n × n matrix de-
fined by (2.4) with nonzero reals b1, b2. If Qn(λ, b2) �=
b 3+(−1)n

2
Qn−1(λ, b2), then

[Tn(b1, b2)− λIn]
−1

= Sn

[
λ, b 3+(−1)n

2
, b2

]
(3.1)

where Sn

[
λ, b 3+(−1)n

2
, b2

]
is the n× n matrix given by

(2.3).

Proof. Suppose a positive integer n and real numbers
λ, b1, b2 such that b1 �= 0, b2 �= 0. Employing the Sec-
ond Principle of Mathematical Induction on the vari-

able n, we can state that det [Tn(b1, b2)] = (−1)�
n
2 �bn1 ,

which ensures the nonsingularity of Tn(b1, b2). Denot-
ing by en the n-dimensional vector (0, . . . , 0, 1), the
inverse of Tn(b1, b2) − λIn − b 3+(−1)n

2
en is the ma-

trix Qn

[
b 3+(−1)n

2

]
in (2.2) (see Theorem 4.1 of da

Fonseca & Petronilho, 2001), and the thesis is a di-
rect consequence of the well-known Sherman-Morrison-
Woodbury formula. ��

Proof of Theorem 1. Since both assertions can be
proven in the same way, we only prove (a). Let n be an
even positive integer. It is straightforward to see that

P2nH2nP
�
2n =

[
Tn(a1, a2) O

cIn Tn(b1, b2)

]
, (3.2)

where P2n is the permutation matrix (2.9). Thus,

det (tI2n −H2n) =

det [tIn −Tn(a1, a2)] det [tIn −Tn(b1, b2)]

and from Lemma 1 we obtain (2.6). Let λ be an eigen-
value of Tn(a1, a2). According to (3.3) we can rewrite
the relation (H2n − λI2n)x = 0 as

[
Tn(a1, a2)− λIn O

cIn Tn(b1, b2)− λIn

]
P2nx = 0,

that is,

[Tn(a1, a2)− λIn]y
(1) = 0,

cy(1) + [Tn(b1, b2)− λIn]y
(2) = 0,

[
y(1)

y(2)

]
= P2nx.

(3.3)

Since det [In ⊗Tn(a1, a2)−Tn(b1, b2)⊗ In] �= 0, the
matrices Tn(a1, a2) and Tn(b1, b2) have no eigenvalues
in common (see Laub, 2005, page 145) which implies
det [Tn(b1, b2)− λIn] �= 0 and Lemma 1 ensures that
the solution of (3.4) is

x = P�
2n

[
un(λ, a1, a2)

−c [Tn(b1, b2)− λIn]
−1

un(λ, a1, a2)

]
,

where un(λ, a1, a2) is given by (2.5). From Lemma 2,

[Tn(b1, b2)− λIn]
−1

= Sn(λ, b2, b2),

and (2.7) is an eigenvector of H2n associated to the
eigenvalue λ. On the other hand, suppose that µ is an
eigenvalue of Tn(b1, b2). Since H2nx = µx is equiva-
lent to

[Tn(a1, a2)− µIn]y
(1) = 0,

cy(1) + [Tn(b1, b2)− µIn]y
(2) = 0,

[
y(1)

y(2)

]
= P2nx,

and det [Tn(a1, a2)− µIn] �= 0, we obtain

x = P�
2n

[
0

un(µ, b1, b2)

]
,

where un(µ, b1, b2) is defined in (2.5). Therefore, (2.8)
is an eigenvector of H2n associated to the eigenvalue
µ. ��

Proof of Corollary 1. Consider an even positive inte-
ger n. From Lemma 1 and

det [In ⊗Tn(a1, a2)−Tn(b1, b2)⊗ In] �= 0,

we can guarantee that all eigenvalues of H∗
2n are dis-

tinct. Setting

vn(λk) := un(λk, a1, a2),

wn(µk) := un(µk, b1, b2)

and

v̂n(λk) := P�
2n

[
vn(λk)

0

]
,

ŵn(µk) := P�
2n

[
0

wn(µk)

]

it follows that
{

v̂n(λ1)
||v̂n(λ1)|| , . . . ,

v̂n(λn)
||v̂n(λn)|| ,

ŵn(µ1)
||ŵn(µ1)|| , . . . ,

ŵn(µn)
||ŵn(µn)||

}
(3.4)
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The following auxiliary statement is an explicit formula
for the inverse of sort of slightly perturbed tridiagonal 2-
Toeplitz matrices.

Lemma 2 Let n be a positive integer, λ a real num-
ber, {Qk(x,ξ )}k�0 the sequence of polynomials defined by
(2.1) and Tn(b1,b2) the n× n matrix defined by (2.4) with
nonzero reals b1,b2. If Qn(λ ,b2) �= b 3+(−1)n

2
Qn−1(λ ,b2),

then

[Tn(b1,b2)−λ In]
−1 = Sn

[
λ ,b 3+(−1)n

2
,b2

]
(3.1)

where Sn

[
λ ,b 3+(−1)n

2
,b2

]
is the n×n matrix given by (2.3).

Proof. Suppose a positive integer n and real numbers
λ ,b1,b2 such that b1 �= 0, b2 �= 0. Employing the Second
Principle of Mathematical Induction on the variable n, we
can state that det [Tn(b1,b2)] = (−1)⌊

n
2⌋bn

1, which ensures
the nonsingularity of Tn(b1,b2). Denoting by en the n-
dimensional vector (0, . . . ,0,1), the inverse of Tn(b1,b2)−

λ In − b 3+(−1)n
2

en is the matrix Qn

[
b 3+(−1)n

2

]
in (2.2) (see

Theorem 4.1 of da Fonseca & Petronilho, 2001), and the
thesis is a direct consequence of the well-known Sherman-
Morrison-Woodbury formula. ⊓⊔

Proof of Theorem 1. Since both assertions can be proven in
the same way, we only prove (a). Let n be an even positive
integer. It is straightforward to see that

P2nH2nP⊤
2n =

[
Tn(a1,a2) O

cIn Tn(b1,b2)

]
, (3.2)

where P2n is the permutation matrix (2.9). Thus,

det(tI2n −H2n) =

det [tIn −Tn(a1,a2)]det [tIn −Tn(b1,b2)]

and from Lemma 1 we obtain (2.6). Let λ be an eigenvalue
of Tn(a1,a2). According to (3.3) we can rewrite the relation
(H2n −λ I2n)x = 0 as

[
Tn(a1,a2)−λ In O

cIn Tn(b1,b2)−λ In

]
P2nx = 0,

that is,

[Tn(a1,a2)−λ In]y(1) = 0,

cy(1) + [Tn(b1,b2)−λ In]y(2) = 0,
[

y(1)
y(2)

]
= P2nx.

(3.3)

Since det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0, the ma-
trices Tn(a1,a2) and Tn(b1,b2) have no eigenvalues in
common (see Laub, 2005, page 145) which implies
det [Tn(b1,b2)−λ In] �= 0 and Lemma 1 ensures that the so-
lution of (3.4) is

x = P⊤
2n

[
un(λ ,a1,a2)

−c [Tn(b1,b2)−λ In]
−1 un(λ ,a1,a2)

]
,

where un(λ ,a1,a2) is given by (2.5). From Lemma 2,

[Tn(b1,b2)−λ In]
−1 = Sn(λ ,b2,b2),

and (2.7) is an eigenvector of H2n associated to the eigen-
value λ . On the other hand, suppose that μ is an eigenvalue
of Tn(b1,b2). Since H2nx = μx is equivalent to

[Tn(a1,a2)− μIn]y(1) = 0,

cy(1) + [Tn(b1,b2)− μIn]y(2) = 0,
[

y(1)
y(2)

]
= P2nx,

and det [Tn(a1,a2)− μIn] �= 0, we obtain

x = P⊤
2n

[
0

un(μ ,b1,b2)

]
,

where un(μ ,b1,b2) is defined in (2.5). Therefore, (2.8) is
an eigenvector of H2n associated to the eigenvalue μ . ⊓⊔

Proof of Corollary 1. Consider an even positive integer n.
From Lemma 1 and

det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0,

we can guarantee that all eigenvalues of H∗
2n are distinct.

Setting

vn(λk) := un(λk,a1,a2),

wn(μk) := un(μk,b1,b2)

and

v̂n(λk) := P⊤
2n

[
vn(λk)

0

]
,

ŵn(μk) := P⊤
2n

[
0

wn(μk)

]

it follows that
{

v̂n(λ1)
||v̂n(λ1)||

, . . . ,
v̂n(λn)
||v̂n(λn)||

,
ŵn(μ1)
||ŵn(μ1)||

, . . . ,
ŵn(μn)
||ŵn(μn)||

}
(3.4)

is a complete set of orthogonal eigenvectors according to
Theorem 1. Hence,

H∗
2n = U2ndiag(λ1, . . . ,λn,μ1, . . . ,μn)U−1

2n ,

where

U2n =
[

v̂n(λ1)
||v̂n(λ1)||

. . .
v̂n(λn)
||v̂n(λn)||

ŵn(μ1)
||ŵn(μ1)||

. . .
ŵn(μn)
||ŵn(μn)||

]

= P⊤
2n

[ vn(λ1)
||vn(λ1)||

. . .
vn(λn)
||vn(λn)||

0 . . . 0
0 . . . 0 wn(μ1)

||wn(μ1)||
. . .

wn(μn)
||wn(μn)||

]

provided that P⊤
2n is an orthogonal matrix. Since (3.4) is an

orthonormal set, U2n is an orthogonal matrix and (2.16) is
established. The proof of (b) is analogous and so will be
omitted. ⊓⊔

4

where                          is the n×n matrix given by (4).

Proof. Suppose a positive integer n and real numbers
λ,b1,b2 such that            Employing the Second 
Principle of Mathematical Induction on the variable n, we
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nonsingularity     of     Tn(b1,b2).   Denoting     en            the 
n-dimensional vector (0,...,0,1), the inverse of  Tn(b1,b2)
                          is the matrix                    in     (3)     (see 
Theorem 4.1 of da Fonseca & Petronilho, 2001), and 
the thesis is a direct consequence of the 
well-known Sherman-Morrison-Woodbury formula. 
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ŵn(μk) := P⊤
2n

[
0

wn(μk)

]

it follows that
{

v̂n(λ1)
||v̂n(λ1)||

, . . . ,
v̂n(λn)
||v̂n(λn)||

,
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thesis is a direct consequence of the well-known Sherman-
Morrison-Woodbury formula. ⊓⊔
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the same way, we only prove (a). Let n be an even positive
integer. It is straightforward to see that
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ŵn(μk) := P⊤
2n

[
0

wn(μk)

]

it follows that
{

v̂n(λ1)
||v̂n(λ1)||

, . . . ,
v̂n(λn)
||v̂n(λn)||

,
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||ŵn(μ1)||

, . . . ,
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where un(λ ,a1,a2) is given by (2.5). From Lemma 2,

[Tn(b1,b2)−λ In]
−1 = Sn(λ ,b2,b2),

and (2.7) is an eigenvector of H2n associated to the eigen-
value λ . On the other hand, suppose that μ is an eigenvalue
of Tn(b1,b2). Since H2nx = μx is equivalent to

[Tn(a1,a2)− μIn]y(1) = 0,

cy(1) + [Tn(b1,b2)− μIn]y(2) = 0,
[

y(1)
y(2)

]
= P2nx,

and det [Tn(a1,a2)− μIn] �= 0, we obtain

x = P⊤
2n

[
0

un(μ ,b1,b2)

]
,

where un(μ ,b1,b2) is defined in (2.5). Therefore, (2.8) is
an eigenvector of H2n associated to the eigenvalue μ . ⊓⊔

Proof of Corollary 1. Consider an even positive integer n.
From Lemma 1 and

det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0,

we can guarantee that all eigenvalues of H∗
2n are distinct.

Setting

vn(λk) := un(λk,a1,a2),

wn(μk) := un(μk,b1,b2)

and

v̂n(λk) := P⊤
2n

[
vn(λk)

0

]
,

ŵn(μk) := P⊤
2n

[
0

wn(μk)

]

it follows that
{

v̂n(λ1)
||v̂n(λ1)||

, . . . ,
v̂n(λn)
||v̂n(λn)||

,
ŵn(μ1)
||ŵn(μ1)||

, . . . ,
ŵn(μn)
||ŵn(μn)||

}
(3.4)

is a complete set of orthogonal eigenvectors according to
Theorem 1. Hence,

H∗
2n = U2ndiag(λ1, . . . ,λn,μ1, . . . ,μn)U−1

2n ,

where

U2n =
[

v̂n(λ1)
||v̂n(λ1)||

. . .
v̂n(λn)
||v̂n(λn)||
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]
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. . .
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0 . . . 0 wn(μ1)

||wn(μ1)||
. . .

wn(μn)
||wn(μn)||

]

provided that P⊤
2n is an orthogonal matrix. Since (3.4) is an

orthonormal set, U2n is an orthogonal matrix and (2.16) is
established. The proof of (b) is analogous and so will be
omitted. ⊓⊔

4

(21)

where P2n is the permutation matrix (10). Thus,

The following auxiliary statement is an explicit formula
for the inverse of sort of slightly perturbed tridiagonal 2-
Toeplitz matrices.

Lemma 2 Let n be a positive integer, λ a real num-
ber, {Qk(x,ξ )}k�0 the sequence of polynomials defined by
(2.1) and Tn(b1,b2) the n× n matrix defined by (2.4) with
nonzero reals b1,b2. If Qn(λ ,b2) �= b 3+(−1)n
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Qn−1(λ ,b2),

then

[Tn(b1,b2)−λ In]
−1 = Sn
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λ ,b 3+(−1)n

2
,b2

]
(3.1)

where Sn

[
λ ,b 3+(−1)n

2
,b2

]
is the n×n matrix given by (2.3).

Proof. Suppose a positive integer n and real numbers
λ ,b1,b2 such that b1 �= 0, b2 �= 0. Employing the Second
Principle of Mathematical Induction on the variable n, we
can state that det [Tn(b1,b2)] = (−1)⌊

n
2⌋bn

1, which ensures
the nonsingularity of Tn(b1,b2). Denoting by en the n-
dimensional vector (0, . . . ,0,1), the inverse of Tn(b1,b2)−

λ In − b 3+(−1)n
2

en is the matrix Qn

[
b 3+(−1)n

2

]
in (2.2) (see

Theorem 4.1 of da Fonseca & Petronilho, 2001), and the
thesis is a direct consequence of the well-known Sherman-
Morrison-Woodbury formula. ⊓⊔

Proof of Theorem 1. Since both assertions can be proven in
the same way, we only prove (a). Let n be an even positive
integer. It is straightforward to see that

P2nH2nP⊤
2n =
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Tn(a1,a2) O

cIn Tn(b1,b2)

]
, (3.2)

where P2n is the permutation matrix (2.9). Thus,

det(tI2n −H2n) =

det [tIn −Tn(a1,a2)]det [tIn −Tn(b1,b2)]

and from Lemma 1 we obtain (2.6). Let λ be an eigenvalue
of Tn(a1,a2). According to (3.3) we can rewrite the relation
(H2n −λ I2n)x = 0 as

[
Tn(a1,a2)−λ In O

cIn Tn(b1,b2)−λ In

]
P2nx = 0,

that is,

[Tn(a1,a2)−λ In]y(1) = 0,

cy(1) + [Tn(b1,b2)−λ In]y(2) = 0,
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y(1)
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]
= P2nx.

(3.3)
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value λ . On the other hand, suppose that μ is an eigenvalue
of Tn(b1,b2). Since H2nx = μx is equivalent to

[Tn(a1,a2)− μIn]y(1) = 0,
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2n

[
0

un(μ ,b1,b2)

]
,

where un(μ ,b1,b2) is defined in (2.5). Therefore, (2.8) is
an eigenvector of H2n associated to the eigenvalue μ . ⊓⊔

Proof of Corollary 1. Consider an even positive integer n.
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]

provided that P⊤
2n is an orthogonal matrix. Since (3.4) is an

orthonormal set, U2n is an orthogonal matrix and (2.16) is
established. The proof of (b) is analogous and so will be
omitted. ⊓⊔
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and we obtain (7). Let λ be an eigenvalue 
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rewrite the relation (H2n− λI2n) x = 0 as
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P2nH2nP⊤
2n =

[
Tn(a1,a2) O
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[
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that is,

[Tn(a1,a2)−λ In]y(1) = 0,
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y(1)
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(3.3)

Since det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0, the ma-
trices Tn(a1,a2) and Tn(b1,b2) have no eigenvalues in
common (see Laub, 2005, page 145) which implies
det [Tn(b1,b2)−λ In] �= 0 and Lemma 1 ensures that the so-
lution of (3.4) is

x = P⊤
2n

[
un(λ ,a1,a2)

−c [Tn(b1,b2)−λ In]
−1 un(λ ,a1,a2)

]
,

where un(λ ,a1,a2) is given by (2.5). From Lemma 2,

[Tn(b1,b2)−λ In]
−1 = Sn(λ ,b2,b2),

and (2.7) is an eigenvector of H2n associated to the eigen-
value λ . On the other hand, suppose that μ is an eigenvalue
of Tn(b1,b2). Since H2nx = μx is equivalent to
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[

y(1)
y(2)

]
= P2nx,

and det [Tn(a1,a2)− μIn] �= 0, we obtain

x = P⊤
2n

[
0

un(μ ,b1,b2)

]
,

where un(μ ,b1,b2) is defined in (2.5). Therefore, (2.8) is
an eigenvector of H2n associated to the eigenvalue μ . ⊓⊔

Proof of Corollary 1. Consider an even positive integer n.
From Lemma 1 and

det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0,

we can guarantee that all eigenvalues of H∗
2n are distinct.
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vn(λk) := un(λk,a1,a2),
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and

v̂n(λk) := P⊤
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it follows that
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]

provided that P⊤
2n is an orthogonal matrix. Since (3.4) is an

orthonormal set, U2n is an orthogonal matrix and (2.16) is
established. The proof of (b) is analogous and so will be
omitted. ⊓⊔

4

(22)

Since det [In⊗Tn(a1,a2)−Tn(b1,b2)⊗In]  0, the 
matrices Tn(a1,a2) and Tn(b1,b2) have no eigenvalues 
in common (see Laub, 2005, page 145) which implies
det [Tn(b1,b2)− λ In]       0 and Lemma 1 ensures that the 
solution of (22) is
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n
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en is the matrix Qn

[
b 3+(−1)n

2

]
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]
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,

where un(μ ,b1,b2) is defined in (2.5). Therefore, (2.8) is
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||ŵn(μ1)||

. . .
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wn(μk) := un(μk,b1,b2)

and

v̂n(λk) := P⊤
2n

[
vn(λk)

0

]
,

ŵn(μk) := P⊤
2n

[
0

wn(μk)

]

it follows that
{

v̂n(λ1)
||v̂n(λ1)||

, . . . ,
v̂n(λn)
||v̂n(λn)||

,
ŵn(μ1)
||ŵn(μ1)||

, . . . ,
ŵn(μn)
||ŵn(μn)||

}
(3.4)

is a complete set of orthogonal eigenvectors according to
Theorem 1. Hence,

H∗
2n = U2ndiag(λ1, . . . ,λn,μ1, . . . ,μn)U−1

2n ,

where

U2n =
[

v̂n(λ1)
||v̂n(λ1)||

. . .
v̂n(λn)
||v̂n(λn)||

ŵn(μ1)
||ŵn(μ1)||

. . .
ŵn(μn)
||ŵn(μn)||

]

= P⊤
2n

[ vn(λ1)
||vn(λ1)||

. . .
vn(λn)
||vn(λn)||

0 . . . 0
0 . . . 0 wn(μ1)

||wn(μ1)||
. . .

wn(μn)
||wn(μn)||

]

provided that P⊤
2n is an orthogonal matrix. Since (3.4) is an

orthonormal set, U2n is an orthogonal matrix and (2.16) is
established. The proof of (b) is analogous and so will be
omitted. ⊓⊔

4

The following auxiliary statement is an explicit formula
for the inverse of sort of slightly perturbed tridiagonal 2-
Toeplitz matrices.

Lemma 2 Let n be a positive integer, λ a real num-
ber, {Qk(x,ξ )}k�0 the sequence of polynomials defined by
(2.1) and Tn(b1,b2) the n× n matrix defined by (2.4) with
nonzero reals b1,b2. If Qn(λ ,b2) �= b 3+(−1)n

2
Qn−1(λ ,b2),

then

[Tn(b1,b2)−λ In]
−1 = Sn

[
λ ,b 3+(−1)n

2
,b2

]
(3.1)

where Sn

[
λ ,b 3+(−1)n

2
,b2

]
is the n×n matrix given by (2.3).

Proof. Suppose a positive integer n and real numbers
λ ,b1,b2 such that b1 �= 0, b2 �= 0. Employing the Second
Principle of Mathematical Induction on the variable n, we
can state that det [Tn(b1,b2)] = (−1)⌊

n
2⌋bn

1, which ensures
the nonsingularity of Tn(b1,b2). Denoting by en the n-
dimensional vector (0, . . . ,0,1), the inverse of Tn(b1,b2)−

λ In − b 3+(−1)n
2

en is the matrix Qn

[
b 3+(−1)n

2

]
in (2.2) (see

Theorem 4.1 of da Fonseca & Petronilho, 2001), and the
thesis is a direct consequence of the well-known Sherman-
Morrison-Woodbury formula. ⊓⊔

Proof of Theorem 1. Since both assertions can be proven in
the same way, we only prove (a). Let n be an even positive
integer. It is straightforward to see that

P2nH2nP⊤
2n =

[
Tn(a1,a2) O

cIn Tn(b1,b2)

]
, (3.2)

where P2n is the permutation matrix (2.9). Thus,

det(tI2n −H2n) =

det [tIn −Tn(a1,a2)]det [tIn −Tn(b1,b2)]

and from Lemma 1 we obtain (2.6). Let λ be an eigenvalue
of Tn(a1,a2). According to (3.3) we can rewrite the relation
(H2n −λ I2n)x = 0 as

[
Tn(a1,a2)−λ In O

cIn Tn(b1,b2)−λ In

]
P2nx = 0,

that is,

[Tn(a1,a2)−λ In]y(1) = 0,

cy(1) + [Tn(b1,b2)−λ In]y(2) = 0,
[

y(1)
y(2)

]
= P2nx.

(3.3)

Since det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0, the ma-
trices Tn(a1,a2) and Tn(b1,b2) have no eigenvalues in
common (see Laub, 2005, page 145) which implies
det [Tn(b1,b2)−λ In] �= 0 and Lemma 1 ensures that the so-
lution of (3.4) is

x = P⊤
2n

[
un(λ ,a1,a2)

−c [Tn(b1,b2)−λ In]
−1 un(λ ,a1,a2)

]
,

where un(λ ,a1,a2) is given by (2.5). From Lemma 2,

[Tn(b1,b2)−λ In]
−1 = Sn(λ ,b2,b2),

and (2.7) is an eigenvector of H2n associated to the eigen-
value λ . On the other hand, suppose that μ is an eigenvalue
of Tn(b1,b2). Since H2nx = μx is equivalent to

[Tn(a1,a2)− μIn]y(1) = 0,

cy(1) + [Tn(b1,b2)− μIn]y(2) = 0,
[

y(1)
y(2)

]
= P2nx,

and det [Tn(a1,a2)− μIn] �= 0, we obtain

x = P⊤
2n

[
0

un(μ ,b1,b2)

]
,

where un(μ ,b1,b2) is defined in (2.5). Therefore, (2.8) is
an eigenvector of H2n associated to the eigenvalue μ . ⊓⊔

Proof of Corollary 1. Consider an even positive integer n.
From Lemma 1 and

det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0,

we can guarantee that all eigenvalues of H∗
2n are distinct.

Setting

vn(λk) := un(λk,a1,a2),

wn(μk) := un(μk,b1,b2)

and

v̂n(λk) := P⊤
2n

[
vn(λk)

0

]
,

ŵn(μk) := P⊤
2n

[
0

wn(μk)

]

it follows that
{

v̂n(λ1)
||v̂n(λ1)||

, . . . ,
v̂n(λn)
||v̂n(λn)||

,
ŵn(μ1)
||ŵn(μ1)||

, . . . ,
ŵn(μn)
||ŵn(μn)||

}
(3.4)

is a complete set of orthogonal eigenvectors according to
Theorem 1. Hence,

H∗
2n = U2ndiag(λ1, . . . ,λn,μ1, . . . ,μn)U−1

2n ,

where

U2n =
[

v̂n(λ1)
||v̂n(λ1)||

. . .
v̂n(λn)
||v̂n(λn)||

ŵn(μ1)
||ŵn(μ1)||

. . .
ŵn(μn)
||ŵn(μn)||

]

= P⊤
2n

[ vn(λ1)
||vn(λ1)||

. . .
vn(λn)
||vn(λn)||

0 . . . 0
0 . . . 0 wn(μ1)

||wn(μ1)||
. . .

wn(μn)
||wn(μn)||

]

provided that P⊤
2n is an orthogonal matrix. Since (3.4) is an

orthonormal set, U2n is an orthogonal matrix and (2.16) is
established. The proof of (b) is analogous and so will be
omitted. ⊓⊔

4

where un(µ ,b1,b2) is defined in (6). Therefore,  (9)  is  an 
eigenvector of H2n associated to the eigenvalue µ .

Proof of Corollary 1.  Consider  an even positive integer 
n. From

The following auxiliary statement is an explicit formula
for the inverse of sort of slightly perturbed tridiagonal 2-
Toeplitz matrices.

Lemma 2 Let n be a positive integer, λ a real num-
ber, {Qk(x,ξ )}k�0 the sequence of polynomials defined by
(2.1) and Tn(b1,b2) the n× n matrix defined by (2.4) with
nonzero reals b1,b2. If Qn(λ ,b2) �= b 3+(−1)n

2
Qn−1(λ ,b2),

then

[Tn(b1,b2)−λ In]
−1 = Sn

[
λ ,b 3+(−1)n

2
,b2

]
(3.1)

where Sn

[
λ ,b 3+(−1)n

2
,b2

]
is the n×n matrix given by (2.3).

Proof. Suppose a positive integer n and real numbers
λ ,b1,b2 such that b1 �= 0, b2 �= 0. Employing the Second
Principle of Mathematical Induction on the variable n, we
can state that det [Tn(b1,b2)] = (−1)⌊

n
2⌋bn

1, which ensures
the nonsingularity of Tn(b1,b2). Denoting by en the n-
dimensional vector (0, . . . ,0,1), the inverse of Tn(b1,b2)−

λ In − b 3+(−1)n
2

en is the matrix Qn

[
b 3+(−1)n

2

]
in (2.2) (see

Theorem 4.1 of da Fonseca & Petronilho, 2001), and the
thesis is a direct consequence of the well-known Sherman-
Morrison-Woodbury formula. ⊓⊔

Proof of Theorem 1. Since both assertions can be proven in
the same way, we only prove (a). Let n be an even positive
integer. It is straightforward to see that

P2nH2nP⊤
2n =

[
Tn(a1,a2) O

cIn Tn(b1,b2)

]
, (3.2)

where P2n is the permutation matrix (2.9). Thus,

det(tI2n −H2n) =

det [tIn −Tn(a1,a2)]det [tIn −Tn(b1,b2)]

and from Lemma 1 we obtain (2.6). Let λ be an eigenvalue
of Tn(a1,a2). According to (3.3) we can rewrite the relation
(H2n −λ I2n)x = 0 as

[
Tn(a1,a2)−λ In O

cIn Tn(b1,b2)−λ In

]
P2nx = 0,

that is,

[Tn(a1,a2)−λ In]y(1) = 0,

cy(1) + [Tn(b1,b2)−λ In]y(2) = 0,
[

y(1)
y(2)

]
= P2nx.

(3.3)

Since det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0, the ma-
trices Tn(a1,a2) and Tn(b1,b2) have no eigenvalues in
common (see Laub, 2005, page 145) which implies
det [Tn(b1,b2)−λ In] �= 0 and Lemma 1 ensures that the so-
lution of (3.4) is

x = P⊤
2n

[
un(λ ,a1,a2)

−c [Tn(b1,b2)−λ In]
−1 un(λ ,a1,a2)

]
,

where un(λ ,a1,a2) is given by (2.5). From Lemma 2,

[Tn(b1,b2)−λ In]
−1 = Sn(λ ,b2,b2),

and (2.7) is an eigenvector of H2n associated to the eigen-
value λ . On the other hand, suppose that μ is an eigenvalue
of Tn(b1,b2). Since H2nx = μx is equivalent to

[Tn(a1,a2)− μIn]y(1) = 0,

cy(1) + [Tn(b1,b2)− μIn]y(2) = 0,
[

y(1)
y(2)

]
= P2nx,

and det [Tn(a1,a2)− μIn] �= 0, we obtain

x = P⊤
2n

[
0

un(μ ,b1,b2)

]
,

where un(μ ,b1,b2) is defined in (2.5). Therefore, (2.8) is
an eigenvector of H2n associated to the eigenvalue μ . ⊓⊔

Proof of Corollary 1. Consider an even positive integer n.
From Lemma 1 and

det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0,

we can guarantee that all eigenvalues of H∗
2n are distinct.

Setting

vn(λk) := un(λk,a1,a2),

wn(μk) := un(μk,b1,b2)

and

v̂n(λk) := P⊤
2n

[
vn(λk)

0

]
,

ŵn(μk) := P⊤
2n

[
0

wn(μk)

]

it follows that
{

v̂n(λ1)
||v̂n(λ1)||

, . . . ,
v̂n(λn)
||v̂n(λn)||

,
ŵn(μ1)
||ŵn(μ1)||

, . . . ,
ŵn(μn)
||ŵn(μn)||

}
(3.4)

is a complete set of orthogonal eigenvectors according to
Theorem 1. Hence,

H∗
2n = U2ndiag(λ1, . . . ,λn,μ1, . . . ,μn)U−1

2n ,

where

U2n =
[

v̂n(λ1)
||v̂n(λ1)||

. . .
v̂n(λn)
||v̂n(λn)||

ŵn(μ1)
||ŵn(μ1)||

. . .
ŵn(μn)
||ŵn(μn)||

]

= P⊤
2n

[ vn(λ1)
||vn(λ1)||

. . .
vn(λn)
||vn(λn)||

0 . . . 0
0 . . . 0 wn(μ1)

||wn(μ1)||
. . .

wn(μn)
||wn(μn)||

]

provided that P⊤
2n is an orthogonal matrix. Since (3.4) is an

orthonormal set, U2n is an orthogonal matrix and (2.16) is
established. The proof of (b) is analogous and so will be
omitted. ⊓⊔

4

we can guarantee that all eigenvalues of H*
2n are 

distinct. Setting

The following auxiliary statement is an explicit formula
for the inverse of sort of slightly perturbed tridiagonal 2-
Toeplitz matrices.

Lemma 2 Let n be a positive integer, λ a real num-
ber, {Qk(x,ξ )}k�0 the sequence of polynomials defined by
(2.1) and Tn(b1,b2) the n× n matrix defined by (2.4) with
nonzero reals b1,b2. If Qn(λ ,b2) �= b 3+(−1)n

2
Qn−1(λ ,b2),

then

[Tn(b1,b2)−λ In]
−1 = Sn

[
λ ,b 3+(−1)n

2
,b2

]
(3.1)

where Sn

[
λ ,b 3+(−1)n

2
,b2

]
is the n×n matrix given by (2.3).

Proof. Suppose a positive integer n and real numbers
λ ,b1,b2 such that b1 �= 0, b2 �= 0. Employing the Second
Principle of Mathematical Induction on the variable n, we
can state that det [Tn(b1,b2)] = (−1)⌊

n
2⌋bn

1, which ensures
the nonsingularity of Tn(b1,b2). Denoting by en the n-
dimensional vector (0, . . . ,0,1), the inverse of Tn(b1,b2)−

λ In − b 3+(−1)n
2

en is the matrix Qn

[
b 3+(−1)n

2

]
in (2.2) (see

Theorem 4.1 of da Fonseca & Petronilho, 2001), and the
thesis is a direct consequence of the well-known Sherman-
Morrison-Woodbury formula. ⊓⊔

Proof of Theorem 1. Since both assertions can be proven in
the same way, we only prove (a). Let n be an even positive
integer. It is straightforward to see that

P2nH2nP⊤
2n =

[
Tn(a1,a2) O

cIn Tn(b1,b2)

]
, (3.2)

where P2n is the permutation matrix (2.9). Thus,

det(tI2n −H2n) =

det [tIn −Tn(a1,a2)]det [tIn −Tn(b1,b2)]

and from Lemma 1 we obtain (2.6). Let λ be an eigenvalue
of Tn(a1,a2). According to (3.3) we can rewrite the relation
(H2n −λ I2n)x = 0 as

[
Tn(a1,a2)−λ In O

cIn Tn(b1,b2)−λ In

]
P2nx = 0,

that is,

[Tn(a1,a2)−λ In]y(1) = 0,

cy(1) + [Tn(b1,b2)−λ In]y(2) = 0,
[

y(1)
y(2)

]
= P2nx.

(3.3)

Since det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0, the ma-
trices Tn(a1,a2) and Tn(b1,b2) have no eigenvalues in
common (see Laub, 2005, page 145) which implies
det [Tn(b1,b2)−λ In] �= 0 and Lemma 1 ensures that the so-
lution of (3.4) is

x = P⊤
2n

[
un(λ ,a1,a2)

−c [Tn(b1,b2)−λ In]
−1 un(λ ,a1,a2)

]
,

where un(λ ,a1,a2) is given by (2.5). From Lemma 2,

[Tn(b1,b2)−λ In]
−1 = Sn(λ ,b2,b2),

and (2.7) is an eigenvector of H2n associated to the eigen-
value λ . On the other hand, suppose that μ is an eigenvalue
of Tn(b1,b2). Since H2nx = μx is equivalent to

[Tn(a1,a2)− μIn]y(1) = 0,

cy(1) + [Tn(b1,b2)− μIn]y(2) = 0,
[

y(1)
y(2)

]
= P2nx,

and det [Tn(a1,a2)− μIn] �= 0, we obtain

x = P⊤
2n

[
0

un(μ ,b1,b2)

]
,

where un(μ ,b1,b2) is defined in (2.5). Therefore, (2.8) is
an eigenvector of H2n associated to the eigenvalue μ . ⊓⊔

Proof of Corollary 1. Consider an even positive integer n.
From Lemma 1 and

det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0,

we can guarantee that all eigenvalues of H∗
2n are distinct.

Setting

vn(λk) := un(λk,a1,a2),

wn(μk) := un(μk,b1,b2)

and

v̂n(λk) := P⊤
2n

[
vn(λk)

0

]
,

ŵn(μk) := P⊤
2n

[
0

wn(μk)

]

it follows that
{

v̂n(λ1)
||v̂n(λ1)||

, . . . ,
v̂n(λn)
||v̂n(λn)||

,
ŵn(μ1)
||ŵn(μ1)||

, . . . ,
ŵn(μn)
||ŵn(μn)||

}
(3.4)

is a complete set of orthogonal eigenvectors according to
Theorem 1. Hence,

H∗
2n = U2ndiag(λ1, . . . ,λn,μ1, . . . ,μn)U−1

2n ,

where

U2n =
[

v̂n(λ1)
||v̂n(λ1)||

. . .
v̂n(λn)
||v̂n(λn)||

ŵn(μ1)
||ŵn(μ1)||

. . .
ŵn(μn)
||ŵn(μn)||

]

= P⊤
2n

[ vn(λ1)
||vn(λ1)||

. . .
vn(λn)
||vn(λn)||

0 . . . 0
0 . . . 0 wn(μ1)

||wn(μ1)||
. . .

wn(μn)
||wn(μn)||

]

provided that P⊤
2n is an orthogonal matrix. Since (3.4) is an

orthonormal set, U2n is an orthogonal matrix and (2.16) is
established. The proof of (b) is analogous and so will be
omitted. ⊓⊔

4

(23)

is a complete set of  orthogonal  eigenvectors  according 
to Theorem 1. Hence,

The following auxiliary statement is an explicit formula
for the inverse of sort of slightly perturbed tridiagonal 2-
Toeplitz matrices.

Lemma 2 Let n be a positive integer, λ a real num-
ber, {Qk(x,ξ )}k�0 the sequence of polynomials defined by
(2.1) and Tn(b1,b2) the n× n matrix defined by (2.4) with
nonzero reals b1,b2. If Qn(λ ,b2) �= b 3+(−1)n

2
Qn−1(λ ,b2),

then

[Tn(b1,b2)−λ In]
−1 = Sn

[
λ ,b 3+(−1)n

2
,b2

]
(3.1)

where Sn

[
λ ,b 3+(−1)n

2
,b2

]
is the n×n matrix given by (2.3).

Proof. Suppose a positive integer n and real numbers
λ ,b1,b2 such that b1 �= 0, b2 �= 0. Employing the Second
Principle of Mathematical Induction on the variable n, we
can state that det [Tn(b1,b2)] = (−1)⌊

n
2⌋bn

1, which ensures
the nonsingularity of Tn(b1,b2). Denoting by en the n-
dimensional vector (0, . . . ,0,1), the inverse of Tn(b1,b2)−

λ In − b 3+(−1)n
2

en is the matrix Qn

[
b 3+(−1)n

2

]
in (2.2) (see

Theorem 4.1 of da Fonseca & Petronilho, 2001), and the
thesis is a direct consequence of the well-known Sherman-
Morrison-Woodbury formula. ⊓⊔

Proof of Theorem 1. Since both assertions can be proven in
the same way, we only prove (a). Let n be an even positive
integer. It is straightforward to see that

P2nH2nP⊤
2n =

[
Tn(a1,a2) O

cIn Tn(b1,b2)

]
, (3.2)

where P2n is the permutation matrix (2.9). Thus,

det(tI2n −H2n) =

det [tIn −Tn(a1,a2)]det [tIn −Tn(b1,b2)]

and from Lemma 1 we obtain (2.6). Let λ be an eigenvalue
of Tn(a1,a2). According to (3.3) we can rewrite the relation
(H2n −λ I2n)x = 0 as

[
Tn(a1,a2)−λ In O

cIn Tn(b1,b2)−λ In

]
P2nx = 0,

that is,

[Tn(a1,a2)−λ In]y(1) = 0,

cy(1) + [Tn(b1,b2)−λ In]y(2) = 0,
[

y(1)
y(2)

]
= P2nx.

(3.3)

Since det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0, the ma-
trices Tn(a1,a2) and Tn(b1,b2) have no eigenvalues in
common (see Laub, 2005, page 145) which implies
det [Tn(b1,b2)−λ In] �= 0 and Lemma 1 ensures that the so-
lution of (3.4) is

x = P⊤
2n

[
un(λ ,a1,a2)

−c [Tn(b1,b2)−λ In]
−1 un(λ ,a1,a2)

]
,

where un(λ ,a1,a2) is given by (2.5). From Lemma 2,

[Tn(b1,b2)−λ In]
−1 = Sn(λ ,b2,b2),

and (2.7) is an eigenvector of H2n associated to the eigen-
value λ . On the other hand, suppose that μ is an eigenvalue
of Tn(b1,b2). Since H2nx = μx is equivalent to

[Tn(a1,a2)− μIn]y(1) = 0,

cy(1) + [Tn(b1,b2)− μIn]y(2) = 0,
[

y(1)
y(2)

]
= P2nx,

and det [Tn(a1,a2)− μIn] �= 0, we obtain

x = P⊤
2n

[
0

un(μ ,b1,b2)

]
,

where un(μ ,b1,b2) is defined in (2.5). Therefore, (2.8) is
an eigenvector of H2n associated to the eigenvalue μ . ⊓⊔

Proof of Corollary 1. Consider an even positive integer n.
From Lemma 1 and

det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0,

we can guarantee that all eigenvalues of H∗
2n are distinct.

Setting

vn(λk) := un(λk,a1,a2),

wn(μk) := un(μk,b1,b2)

and

v̂n(λk) := P⊤
2n

[
vn(λk)

0

]
,

ŵn(μk) := P⊤
2n

[
0

wn(μk)

]

it follows that
{

v̂n(λ1)
||v̂n(λ1)||

, . . . ,
v̂n(λn)
||v̂n(λn)||

,
ŵn(μ1)
||ŵn(μ1)||

, . . . ,
ŵn(μn)
||ŵn(μn)||

}
(3.4)

is a complete set of orthogonal eigenvectors according to
Theorem 1. Hence,

H∗
2n = U2ndiag(λ1, . . . ,λn,μ1, . . . ,μn)U−1

2n ,

where

U2n =
[

v̂n(λ1)
||v̂n(λ1)||

. . .
v̂n(λn)
||v̂n(λn)||

ŵn(μ1)
||ŵn(μ1)||

. . .
ŵn(μn)
||ŵn(μn)||

]

= P⊤
2n

[ vn(λ1)
||vn(λ1)||

. . .
vn(λn)
||vn(λn)||

0 . . . 0
0 . . . 0 wn(μ1)

||wn(μ1)||
. . .

wn(μn)
||wn(μn)||

]

provided that P⊤
2n is an orthogonal matrix. Since (3.4) is an

orthonormal set, U2n is an orthogonal matrix and (2.16) is
established. The proof of (b) is analogous and so will be
omitted. ⊓⊔

4

provided that  is an orthogonal matrix. Since 
(23) is an orthonormal set, U2n is an orthogonal 
matrix and (17) is established. The proof 
of (b) is analogous and so will be omitted.

The following auxiliary statement is an explicit formula
for the inverse of sort of slightly perturbed tridiagonal 2-
Toeplitz matrices.

Lemma 2 Let n be a positive integer, λ a real num-
ber, {Qk(x,ξ )}k�0 the sequence of polynomials defined by
(2.1) and Tn(b1,b2) the n× n matrix defined by (2.4) with
nonzero reals b1,b2. If Qn(λ ,b2) �= b 3+(−1)n

2
Qn−1(λ ,b2),

then

[Tn(b1,b2)−λ In]
−1 = Sn

[
λ ,b 3+(−1)n

2
,b2

]
(3.1)

where Sn

[
λ ,b 3+(−1)n

2
,b2

]
is the n×n matrix given by (2.3).

Proof. Suppose a positive integer n and real numbers
λ ,b1,b2 such that b1 �= 0, b2 �= 0. Employing the Second
Principle of Mathematical Induction on the variable n, we
can state that det [Tn(b1,b2)] = (−1)⌊

n
2⌋bn

1, which ensures
the nonsingularity of Tn(b1,b2). Denoting by en the n-
dimensional vector (0, . . . ,0,1), the inverse of Tn(b1,b2)−

λ In − b 3+(−1)n
2

en is the matrix Qn

[
b 3+(−1)n

2

]
in (2.2) (see

Theorem 4.1 of da Fonseca & Petronilho, 2001), and the
thesis is a direct consequence of the well-known Sherman-
Morrison-Woodbury formula. ⊓⊔

Proof of Theorem 1. Since both assertions can be proven in
the same way, we only prove (a). Let n be an even positive
integer. It is straightforward to see that

P2nH2nP⊤
2n =

[
Tn(a1,a2) O

cIn Tn(b1,b2)

]
, (3.2)

where P2n is the permutation matrix (2.9). Thus,

det(tI2n −H2n) =

det [tIn −Tn(a1,a2)]det [tIn −Tn(b1,b2)]

and from Lemma 1 we obtain (2.6). Let λ be an eigenvalue
of Tn(a1,a2). According to (3.3) we can rewrite the relation
(H2n −λ I2n)x = 0 as

[
Tn(a1,a2)−λ In O

cIn Tn(b1,b2)−λ In

]
P2nx = 0,

that is,

[Tn(a1,a2)−λ In]y(1) = 0,

cy(1) + [Tn(b1,b2)−λ In]y(2) = 0,
[

y(1)
y(2)

]
= P2nx.

(3.3)

Since det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0, the ma-
trices Tn(a1,a2) and Tn(b1,b2) have no eigenvalues in
common (see Laub, 2005, page 145) which implies
det [Tn(b1,b2)−λ In] �= 0 and Lemma 1 ensures that the so-
lution of (3.4) is

x = P⊤
2n

[
un(λ ,a1,a2)

−c [Tn(b1,b2)−λ In]
−1 un(λ ,a1,a2)

]
,

where un(λ ,a1,a2) is given by (2.5). From Lemma 2,

[Tn(b1,b2)−λ In]
−1 = Sn(λ ,b2,b2),

and (2.7) is an eigenvector of H2n associated to the eigen-
value λ . On the other hand, suppose that μ is an eigenvalue
of Tn(b1,b2). Since H2nx = μx is equivalent to

[Tn(a1,a2)− μIn]y(1) = 0,

cy(1) + [Tn(b1,b2)− μIn]y(2) = 0,
[

y(1)
y(2)

]
= P2nx,

and det [Tn(a1,a2)− μIn] �= 0, we obtain

x = P⊤
2n

[
0

un(μ ,b1,b2)

]
,

where un(μ ,b1,b2) is defined in (2.5). Therefore, (2.8) is
an eigenvector of H2n associated to the eigenvalue μ . ⊓⊔

Proof of Corollary 1. Consider an even positive integer n.
From Lemma 1 and

det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0,

we can guarantee that all eigenvalues of H∗
2n are distinct.

Setting

vn(λk) := un(λk,a1,a2),

wn(μk) := un(μk,b1,b2)

and

v̂n(λk) := P⊤
2n

[
vn(λk)

0

]
,

ŵn(μk) := P⊤
2n

[
0

wn(μk)

]

it follows that
{

v̂n(λ1)
||v̂n(λ1)||

, . . . ,
v̂n(λn)
||v̂n(λn)||

,
ŵn(μ1)
||ŵn(μ1)||

, . . . ,
ŵn(μn)
||ŵn(μn)||

}
(3.4)

is a complete set of orthogonal eigenvectors according to
Theorem 1. Hence,

H∗
2n = U2ndiag(λ1, . . . ,λn,μ1, . . . ,μn)U−1

2n ,

where

U2n =
[

v̂n(λ1)
||v̂n(λ1)||

. . .
v̂n(λn)
||v̂n(λn)||

ŵn(μ1)
||ŵn(μ1)||

. . .
ŵn(μn)
||ŵn(μn)||

]

= P⊤
2n

[ vn(λ1)
||vn(λ1)||

. . .
vn(λn)
||vn(λn)||

0 . . . 0
0 . . . 0 wn(μ1)

||wn(μ1)||
. . .

wn(μn)
||wn(μn)||

]

provided that P⊤
2n is an orthogonal matrix. Since (3.4) is an

orthonormal set, U2n is an orthogonal matrix and (2.16) is
established. The proof of (b) is analogous and so will be
omitted. ⊓⊔
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1 Introduction
The concept of an r-Toeplitz matrix was introduced by
Gover and Barnett in the eighties (Gover & Barnett, 1985),
which also established many of its properties (Gover & Bar-
nett, 1985; Gover, 1989). They defined an r-Toeplitz matrix
as an n× n matrix An, such that [An]k+r,ℓ+r = [An]k,ℓ for
all k, ℓ = 1,2, . . . ,n− r. Following this idea, we say that an
n×n matrix Bn is an r-Hankel matrix if [Bn]k+r,ℓ−r = [Bn]k,ℓ
for every k = 1,2, . . . ,n− r and ℓ = r+ 1, . . . ,n. Note that
when r = 1, the matrix Bn becomes a Hankel matrix.

Let us point out that Hankel matrices appear not only
in engineering problems of system and control theory (Ol-
shevsky & Stewart, 2001 and the references therein), but
also in computational mathematics (Bultheel & Van Barel,
1997).

In this note, we shall consider a particular type of anti-
tridiagonal 2-Hankel matrices of even order, concretely, real
2n×2n matrices of the form

H2n =




0 . . . . . . . . . 0 b1 c
... . .

.
a2 d a1

... . .
.

. .
.

c b2 0
... . .

.
. .
.

. .
.

. .
.

. .
. ...

0 a2 d . .
.

. .
. ...

b1 c b2 . .
. ...

d a1 0 . . . . . . . . . 0




(1.1)

with cd = 0. It is our goal to obtain an explicit expression
for the characteristic polynomial of H2n as well as a rep-
resentation of its eigenvectors for eigenvalues given a pri-
ori. As a consequence, sufficient conditions are announced
to get an orthogonal diagonalization of anti-tridiagonal 2-

Hankel matrices of even order having null northeast-to-
southwest diagonal. We emphasize that, in general, H2n
is not a persymmetric matrix, which makes some recent
approaches concerning this issue unfeasible (Akbulak, da
Fonseca & Yilmaz, 2013; Wu, 2010). Therefore, our re-
sults emerge as a complement for these and other papers
about spectral properties of anti-tridiagonal matrices.

2 Main results
For any integer p � −1, we shall denote by Up(x) the pth
degree Chebyshev polynomial of the second kind

Up(x) =
sin[(p+1)arccosx]

sin(arccosx)
, −1 < x < 1,

with Up(±1) = (±1)p(p + 1) (Mason & Handscomb,
2003). This expression as a sum of powers of x can, of
course, be evaluated for any x. The symbols ⌊x⌋ and ⊗ will
be used to indicate the largest integer not greater than x and
the Kronecker product, respectively. The Euclidean norm
will be denoted by || · ||.

Let ξ ,b1,b2 be real numbers such that b1b2 �= 0.
Throughout, we shall consider the sequence of polynomi-
als {Qk(x,ξ )}k�0 defined by

Qk(x,ξ ) :=





x(b1b2)
k−1

2 Uk−1
2

�
x2−b2

1−b2
2

2b1b2

�
, k odd

(b1b2)
k
2 U k

2

�
x2−b2

1−b2
2

2b1b2

�
+

ξ 2(b1b2)
k
2−1U k

2−1

�
x2−b2

1−b2
2

2b1b2

�
, k even

(2.1)

as well as the n×n matrix Qn

�
b 3+(−1)n

2

�
whose (k, ℓ)-entry

1

   4

The following auxiliary statement is an explicit formula
for the inverse of sort of slightly perturbed tridiagonal 2-
Toeplitz matrices.

Lemma 2 Let n be a positive integer, λ a real num-
ber, {Qk(x,ξ )}k�0 the sequence of polynomials defined by
(2.1) and Tn(b1,b2) the n× n matrix defined by (2.4) with
nonzero reals b1,b2. If Qn(λ ,b2) �= b 3+(−1)n

2
Qn−1(λ ,b2),

then

[Tn(b1,b2)−λ In]
−1 = Sn

[
λ ,b 3+(−1)n

2
,b2

]
(3.1)

where Sn

[
λ ,b 3+(−1)n

2
,b2

]
is the n×n matrix given by (2.3).

Proof. Suppose a positive integer n and real numbers
λ ,b1,b2 such that b1 �= 0, b2 �= 0. Employing the Second
Principle of Mathematical Induction on the variable n, we
can state that det [Tn(b1,b2)] = (−1)⌊

n
2⌋bn

1, which ensures
the nonsingularity of Tn(b1,b2). Denoting by en the n-
dimensional vector (0, . . . ,0,1), the inverse of Tn(b1,b2)−

λ In − b 3+(−1)n
2

en is the matrix Qn

[
b 3+(−1)n

2

]
in (2.2) (see

Theorem 4.1 of da Fonseca & Petronilho, 2001), and the
thesis is a direct consequence of the well-known Sherman-
Morrison-Woodbury formula. ⊓⊔

Proof of Theorem 1. Since both assertions can be proven in
the same way, we only prove (a). Let n be an even positive
integer. It is straightforward to see that

P2nH2nP⊤
2n =

[
Tn(a1,a2) O

cIn Tn(b1,b2)

]
, (3.2)

where P2n is the permutation matrix (2.9). Thus,

det(tI2n −H2n) =

det [tIn −Tn(a1,a2)]det [tIn −Tn(b1,b2)]

and from Lemma 1 we obtain (2.6). Let λ be an eigenvalue
of Tn(a1,a2). According to (3.3) we can rewrite the relation
(H2n −λ I2n)x = 0 as

[
Tn(a1,a2)−λ In O

cIn Tn(b1,b2)−λ In

]
P2nx = 0,

that is,

[Tn(a1,a2)−λ In]y(1) = 0,

cy(1) + [Tn(b1,b2)−λ In]y(2) = 0,
[

y(1)
y(2)

]
= P2nx.

(3.3)

Since det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0, the ma-
trices Tn(a1,a2) and Tn(b1,b2) have no eigenvalues in
common (see Laub, 2005, page 145) which implies
det [Tn(b1,b2)−λ In] �= 0 and Lemma 1 ensures that the so-
lution of (3.4) is

x = P⊤
2n

[
un(λ ,a1,a2)

−c [Tn(b1,b2)−λ In]
−1 un(λ ,a1,a2)

]
,

where un(λ ,a1,a2) is given by (2.5). From Lemma 2,

[Tn(b1,b2)−λ In]
−1 = Sn(λ ,b2,b2),

and (2.7) is an eigenvector of H2n associated to the eigen-
value λ . On the other hand, suppose that μ is an eigenvalue
of Tn(b1,b2). Since H2nx = μx is equivalent to

[Tn(a1,a2)− μIn]y(1) = 0,

cy(1) + [Tn(b1,b2)− μIn]y(2) = 0,
[

y(1)
y(2)

]
= P2nx,

and det [Tn(a1,a2)− μIn] �= 0, we obtain

x = P⊤
2n

[
0

un(μ ,b1,b2)

]
,

where un(μ ,b1,b2) is defined in (2.5). Therefore, (2.8) is
an eigenvector of H2n associated to the eigenvalue μ . ⊓⊔

Proof of Corollary 1. Consider an even positive integer n.
From Lemma 1 and

det [In ⊗Tn(a1,a2)−Tn(b1,b2)⊗ In] �= 0,

we can guarantee that all eigenvalues of H∗
2n are distinct.

Setting

vn(λk) := un(λk,a1,a2),

wn(μk) := un(μk,b1,b2)

and

v̂n(λk) := P⊤
2n

[
vn(λk)

0

]
,

ŵn(μk) := P⊤
2n

[
0

wn(μk)

]

it follows that
{

v̂n(λ1)
||v̂n(λ1)||

, . . . ,
v̂n(λn)
||v̂n(λn)||

,
ŵn(μ1)
||ŵn(μ1)||

, . . . ,
ŵn(μn)
||ŵn(μn)||

}
(3.4)

is a complete set of orthogonal eigenvectors according to
Theorem 1. Hence,

H∗
2n = U2ndiag(λ1, . . . ,λn,μ1, . . . ,μn)U−1

2n ,

where

U2n =
[

v̂n(λ1)
||v̂n(λ1)||

. . .
v̂n(λn)
||v̂n(λn)||

ŵn(μ1)
||ŵn(μ1)||

. . .
ŵn(μn)
||ŵn(μn)||

]

= P⊤
2n

[ vn(λ1)
||vn(λ1)||

. . .
vn(λn)
||vn(λn)||

0 . . . 0
0 . . . 0 wn(μ1)

||wn(μ1)||
. . .

wn(μn)
||wn(μn)||

]

provided that P⊤
2n is an orthogonal matrix. Since (3.4) is an

orthonormal set, U2n is an orthogonal matrix and (2.16) is
established. The proof of (b) is analogous and so will be
omitted. ⊓⊔

4

Hence, Pk(x) is expressed by





U k
2

(
x2−a2−b2

2ab

)
+ b

aU k
2−1

(
x2−a2−b2

2ab

)
, k even

x
aU k−1

2

(
x2−a2−b2

2ab

)
, k odd

for each 0 � k � n−1 and [P0(λ), P1(λ), . . . , Pn−1(λ)]
�

is an eigenvector of Tn(a, b) associated to the eigen-
value λ (da Fonseca, 2005). The thesis is established.
��

The following auxiliary statement is an explicit for-
mula for the inverse of sort of slightly perturbed tridi-
agonal 2-Toeplitz matrices.

Lemma 2 Let n be a positive integer, λ a real num-
ber, {Qk(x, ξ)}k�0 the sequence of polynomials de-
fined by (2.1) and Tn(b1, b2) the n × n matrix de-
fined by (2.4) with nonzero reals b1, b2. If Qn(λ, b2) �=
b 3+(−1)n

2
Qn−1(λ, b2), then

[Tn(b1, b2)− λIn]
−1

= Sn

[
λ, b 3+(−1)n

2
, b2

]
(3.1)

where Sn

[
λ, b 3+(−1)n

2
, b2

]
is the n× n matrix given by

(2.3).

Proof. Suppose a positive integer n and real numbers
λ, b1, b2 such that b1 �= 0, b2 �= 0. Employing the Sec-
ond Principle of Mathematical Induction on the vari-

able n, we can state that det [Tn(b1, b2)] = (−1)�
n
2 �bn1 ,

which ensures the nonsingularity of Tn(b1, b2). Denot-
ing by en the n-dimensional vector (0, . . . , 0, 1), the
inverse of Tn(b1, b2) − λIn − b 3+(−1)n

2
en is the ma-

trix Qn

[
b 3+(−1)n

2

]
in (2.2) (see Theorem 4.1 of da

Fonseca & Petronilho, 2001), and the thesis is a di-
rect consequence of the well-known Sherman-Morrison-
Woodbury formula. ��

Proof of Theorem 1. Since both assertions can be
proven in the same way, we only prove (a). Let n be an
even positive integer. It is straightforward to see that

P2nH2nP
�
2n =

[
Tn(a1, a2) O

cIn Tn(b1, b2)

]
, (3.2)

where P2n is the permutation matrix (2.9). Thus,

det (tI2n −H2n) =

det [tIn −Tn(a1, a2)] det [tIn −Tn(b1, b2)]

and from Lemma 1 we obtain (2.6). Let λ be an eigen-
value of Tn(a1, a2). According to (3.3) we can rewrite
the relation (H2n − λI2n)x = 0 as

[
Tn(a1, a2)− λIn O

cIn Tn(b1, b2)− λIn

]
P2nx = 0,

that is,

[Tn(a1, a2)− λIn]y
(1) = 0,

cy(1) + [Tn(b1, b2)− λIn]y
(2) = 0,

[
y(1)

y(2)

]
= P2nx.

(3.3)

Since det [In ⊗Tn(a1, a2)−Tn(b1, b2)⊗ In] �= 0, the
matrices Tn(a1, a2) and Tn(b1, b2) have no eigenvalues
in common (see Laub, 2005, page 145) which implies
det [Tn(b1, b2)− λIn] �= 0 and Lemma 1 ensures that
the solution of (3.4) is

x = P�
2n

[
un(λ, a1, a2)

−c [Tn(b1, b2)− λIn]
−1

un(λ, a1, a2)

]
,

where un(λ, a1, a2) is given by (2.5). From Lemma 2,

[Tn(b1, b2)− λIn]
−1

= Sn(λ, b2, b2),

and (2.7) is an eigenvector of H2n associated to the
eigenvalue λ. On the other hand, suppose that µ is an
eigenvalue of Tn(b1, b2). Since H2nx = µx is equiva-
lent to

[Tn(a1, a2)− µIn]y
(1) = 0,

cy(1) + [Tn(b1, b2)− µIn]y
(2) = 0,

[
y(1)

y(2)

]
= P2nx,

and det [Tn(a1, a2)− µIn] �= 0, we obtain

x = P�
2n

[
0

un(µ, b1, b2)

]
,

where un(µ, b1, b2) is defined in (2.5). Therefore, (2.8)
is an eigenvector of H2n associated to the eigenvalue
µ. ��

Proof of Corollary 1. Consider an even positive inte-
ger n. From Lemma 1 and

det [In ⊗Tn(a1, a2)−Tn(b1, b2)⊗ In] �= 0,

we can guarantee that all eigenvalues of H∗
2n are dis-

tinct. Setting

vn(λk) := un(λk, a1, a2),

wn(µk) := un(µk, b1, b2)

and

v̂n(λk) := P�
2n

[
vn(λk)

0

]
,

ŵn(µk) := P�
2n

[
0

wn(µk)

]

it follows that
{

v̂n(λ1)
||v̂n(λ1)|| , . . . ,

v̂n(λn)
||v̂n(λn)|| ,

ŵn(µ1)
||ŵn(µ1)|| , . . . ,

ŵn(µn)
||ŵn(µn)||

}
(3.4)
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Hence, Pk(x) is expressed by
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2ab
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aU k
2−1
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x2−a2−b2

2ab
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aU k−1

2

(
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2ab

)
, k odd

for each 0 � k � n−1 and [P0(λ), P1(λ), . . . , Pn−1(λ)]
�

is an eigenvector of Tn(a, b) associated to the eigen-
value λ (da Fonseca, 2005). The thesis is established.
��

The following auxiliary statement is an explicit for-
mula for the inverse of sort of slightly perturbed tridi-
agonal 2-Toeplitz matrices.

Lemma 2 Let n be a positive integer, λ a real num-
ber, {Qk(x, ξ)}k�0 the sequence of polynomials de-
fined by (2.1) and Tn(b1, b2) the n × n matrix de-
fined by (2.4) with nonzero reals b1, b2. If Qn(λ, b2) �=
b 3+(−1)n

2
Qn−1(λ, b2), then

[Tn(b1, b2)− λIn]
−1

= Sn

[
λ, b 3+(−1)n

2
, b2

]
(3.1)

where Sn

[
λ, b 3+(−1)n

2
, b2

]
is the n× n matrix given by

(2.3).

Proof. Suppose a positive integer n and real numbers
λ, b1, b2 such that b1 �= 0, b2 �= 0. Employing the Sec-
ond Principle of Mathematical Induction on the vari-

able n, we can state that det [Tn(b1, b2)] = (−1)�
n
2 �bn1 ,

which ensures the nonsingularity of Tn(b1, b2). Denot-
ing by en the n-dimensional vector (0, . . . , 0, 1), the
inverse of Tn(b1, b2) − λIn − b 3+(−1)n

2
en is the ma-

trix Qn

[
b 3+(−1)n

2

]
in (2.2) (see Theorem 4.1 of da

Fonseca & Petronilho, 2001), and the thesis is a di-
rect consequence of the well-known Sherman-Morrison-
Woodbury formula. ��

Proof of Theorem 1. Since both assertions can be
proven in the same way, we only prove (a). Let n be an
even positive integer. It is straightforward to see that

P2nH2nP
�
2n =

[
Tn(a1, a2) O

cIn Tn(b1, b2)

]
, (3.2)

where P2n is the permutation matrix (2.9). Thus,

det (tI2n −H2n) =

det [tIn −Tn(a1, a2)] det [tIn −Tn(b1, b2)]

and from Lemma 1 we obtain (2.6). Let λ be an eigen-
value of Tn(a1, a2). According to (3.3) we can rewrite
the relation (H2n − λI2n)x = 0 as

[
Tn(a1, a2)− λIn O

cIn Tn(b1, b2)− λIn

]
P2nx = 0,

that is,

[Tn(a1, a2)− λIn]y
(1) = 0,

cy(1) + [Tn(b1, b2)− λIn]y
(2) = 0,

[
y(1)

y(2)

]
= P2nx.

(3.3)

Since det [In ⊗Tn(a1, a2)−Tn(b1, b2)⊗ In] �= 0, the
matrices Tn(a1, a2) and Tn(b1, b2) have no eigenvalues
in common (see Laub, 2005, page 145) which implies
det [Tn(b1, b2)− λIn] �= 0 and Lemma 1 ensures that
the solution of (3.4) is

x = P�
2n

[
un(λ, a1, a2)

−c [Tn(b1, b2)− λIn]
−1

un(λ, a1, a2)

]
,

where un(λ, a1, a2) is given by (2.5). From Lemma 2,

[Tn(b1, b2)− λIn]
−1

= Sn(λ, b2, b2),

and (2.7) is an eigenvector of H2n associated to the
eigenvalue λ. On the other hand, suppose that µ is an
eigenvalue of Tn(b1, b2). Since H2nx = µx is equiva-
lent to

[Tn(a1, a2)− µIn]y
(1) = 0,

cy(1) + [Tn(b1, b2)− µIn]y
(2) = 0,

[
y(1)

y(2)

]
= P2nx,

and det [Tn(a1, a2)− µIn] �= 0, we obtain

x = P�
2n

[
0

un(µ, b1, b2)

]
,

where un(µ, b1, b2) is defined in (2.5). Therefore, (2.8)
is an eigenvector of H2n associated to the eigenvalue
µ. ��

Proof of Corollary 1. Consider an even positive inte-
ger n. From Lemma 1 and

det [In ⊗Tn(a1, a2)−Tn(b1, b2)⊗ In] �= 0,

we can guarantee that all eigenvalues of H∗
2n are dis-

tinct. Setting

vn(λk) := un(λk, a1, a2),

wn(µk) := un(µk, b1, b2)

and

v̂n(λk) := P�
2n

[
vn(λk)

0

]
,

ŵn(µk) := P�
2n

[
0

wn(µk)

]

it follows that
{

v̂n(λ1)
||v̂n(λ1)|| , . . . ,

v̂n(λn)
||v̂n(λn)|| ,

ŵn(µ1)
||ŵn(µ1)|| , . . . ,

ŵn(µn)
||ŵn(µn)||

}
(3.4)
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Hence, Pk(x) is expressed by





U k
2

(
x2−a2−b2

2ab

)
+ b

aU k
2−1

(
x2−a2−b2

2ab

)
, k even

x
aU k−1

2

(
x2−a2−b2

2ab

)
, k odd

for each 0 � k � n−1 and [P0(λ), P1(λ), . . . , Pn−1(λ)]
�

is an eigenvector of Tn(a, b) associated to the eigen-
value λ (da Fonseca, 2005). The thesis is established.
��
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Abstract

In this paper, we derive the characteristic polynomial for a family of anti-tridiagonal 2-Hankel matrices of even order
in terms of Chebyshev polynomials, giving also a representation of its eigenvectors. An orthogonal diagonalization for
these type of matrices having null northeast-to-southwest diagonal is also provided using prescribed eigenvalues.
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1 Introduction
The concept of an r-Toeplitz matrix was introduced by
Gover and Barnett in the eighties (Gover & Barnett, 1985),
which also established many of its properties (Gover & Bar-
nett, 1985; Gover, 1989). They defined an r-Toeplitz matrix
as an n× n matrix An, such that [An]k+r,ℓ+r = [An]k,ℓ for
all k, ℓ = 1,2, . . . ,n− r. Following this idea, we say that an
n×n matrix Bn is an r-Hankel matrix if [Bn]k+r,ℓ−r = [Bn]k,ℓ
for every k = 1,2, . . . ,n− r and ℓ = r+ 1, . . . ,n. Note that
when r = 1, the matrix Bn becomes a Hankel matrix.

Let us point out that Hankel matrices appear not only
in engineering problems of system and control theory (Ol-
shevsky & Stewart, 2001 and the references therein), but
also in computational mathematics (Bultheel & Van Barel,
1997).

In this note, we shall consider a particular type of anti-
tridiagonal 2-Hankel matrices of even order, concretely, real
2n×2n matrices of the form

H2n =




0 . . . . . . . . . 0 b1 c
... . .

.
a2 d a1

... . .
.

. .
.

c b2 0
... . .

.
. .
.

. .
.

. .
.

. .
. ...

0 a2 d . .
.

. .
. ...

b1 c b2 . .
. ...

d a1 0 . . . . . . . . . 0




(1.1)

with cd = 0. It is our goal to obtain an explicit expression
for the characteristic polynomial of H2n as well as a rep-
resentation of its eigenvectors for eigenvalues given a pri-
ori. As a consequence, sufficient conditions are announced
to get an orthogonal diagonalization of anti-tridiagonal 2-

Hankel matrices of even order having null northeast-to-
southwest diagonal. We emphasize that, in general, H2n
is not a persymmetric matrix, which makes some recent
approaches concerning this issue unfeasible (Akbulak, da
Fonseca & Yilmaz, 2013; Wu, 2010). Therefore, our re-
sults emerge as a complement for these and other papers
about spectral properties of anti-tridiagonal matrices.

2 Main results
For any integer p � −1, we shall denote by Up(x) the pth
degree Chebyshev polynomial of the second kind

Up(x) =
sin[(p+1)arccosx]

sin(arccosx)
, −1 < x < 1,

with Up(±1) = (±1)p(p + 1) (Mason & Handscomb,
2003). This expression as a sum of powers of x can, of
course, be evaluated for any x. The symbols ⌊x⌋ and ⊗ will
be used to indicate the largest integer not greater than x and
the Kronecker product, respectively. The Euclidean norm
will be denoted by || · ||.

Let ξ ,b1,b2 be real numbers such that b1b2 �= 0.
Throughout, we shall consider the sequence of polynomi-
als {Qk(x,ξ )}k�0 defined by

Qk(x,ξ ) :=





x(b1b2)
k−1

2 Uk−1
2

�
x2−b2

1−b2
2

2b1b2

�
, k odd

(b1b2)
k
2 U k

2

�
x2−b2

1−b2
2

2b1b2

�
+

ξ 2(b1b2)
k
2−1U k

2−1

�
x2−b2

1−b2
2

2b1b2

�
, k even

(2.1)

as well as the n×n matrix Qn

�
b 3+(−1)n

2

�
whose (k, ℓ)-entry

1
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 كثيرات الحدود المميزة لبعض المصفوفات ثلاثية القطرية
ثنائية هانكل العكسية للترتيب المتساوي

جو أو ليتا دا سيلفا
قسم الرياضيات و تكنولوجيا البيولوجيا الجيولوجية

كلية العلوم والتكنولوجيا، جامعة نوفا في لشبونة، كوينتا دا توري، البرتغال

الملخص
لترتيــب  العكســية  هانــكل  ثنائيــة  القطريــة  ثلاثيــة  المصفوفــات  مــن  لعائلــة  المميــزة  الحــدود  كثيــرات  نســتنتج  البحــث،  هــذا  فــي 
متعامــدة  قطريــة  توفيــر  تــم  كمــا  الذاتيــة.  لمتجهاتهــا  تمثيــاً  أيضــا  تقــدم  والتــي   Chebyshev حــدود  كثيــرات  حيــث  مــن  متســاوي 
المحــددة. الذاتيــة  القيــم  باســتخدام  الغربــي  الجنــوب  إلــى  الشــرقي  الشــمال  مــن  صفــري  قطــر  لهــا  التــي  المصفوفــات  مــن  النــوع  لهــذا 


