The characteristic polynomial of some anti-tridiagonal 2-Hankel matrices of even order

João Lita da Silva*
Dept. of Mathematics and GeoBioTec
Faculty of Sciences and Technology, NOVA University of Lisbon
Quinta da Torre, 2829-516 Caparica, Portugal
*Corresponding author: jfls@fct.unl.pt

Abstract

In this paper, we derive the characteristic polynomial for a family of anti-tridiagonal 2-Hankel matrices of even order in terms of Chebyshev polynomials, giving also a representation of its eigenvectors. An orthogonal diagonalization for these type of matrices having null northeast-to-southwest diagonal is also provided using prescribed eigenvalues.

Keywords: Anti-tridiagonal 2-Hankel matrix; Chebyshev polynomials; eigenvalue; eigenvector
2010 Mathematics Subject Classification: 15A18, 42C05

1. Introduction

The concept of an r-Toeplitz matrix was introduced by Gover and Barnett in the eighties (Gover \& Barnett, 1985), which also established many of its properties (Gover \& Barnett, 1985; Gover, 1989). They defined an r-Toeplitz matrix as an $n \times n$ matrix \mathbf{A}_{n}, such that $\left[\mathbf{A}_{n}\right]_{k+, \ell+r}=\left[\mathbf{A}_{n}\right]_{k, \ell}$ for all $k, \ell=1,2, \ldots, n-r$. Following this idea, we say that an $n \times n$ matrix \mathbf{B}_{n} is an r-Hankel matrix if $\left[\mathbf{B}_{n}\right]_{k+\ell, \ell-r}=\left[\mathbf{B}_{n}\right]_{k, \ell}$ for every $k=1,2, \ldots, n-r$ and $\ell=r$ $+1, \ldots, n$. Note that when $r=1$, the matrix \mathbf{B}_{n} becomes a Hankel matrix.

Let us point out that Hankel matrices appear not only in engineering problems of system and control theory (Olshevsky \& Stewart, 2001 and the references therein), but also in computational mathematics (Bultheel \& Van Barel, 1997).

In this note, we shall consider a particular type of anti-tridiagonal 2-Hankel matrices of even order, concretely, real $2 n \times 2 n$ matrices of the form
$\mathbf{H}_{2 n}=\left[\begin{array}{ccccccc}0 & \ldots & \ldots & \ldots & 0 & b_{1} & c \\ \vdots & & & . & a_{2} & d & a_{1} \\ \vdots & & . & . & . & c & b_{2}\end{array}\right)$
with $c d=0$. It is our goal to obtain an explicit expression for the characteristic polynomial of $\mathbf{H}_{2 n}$ as well as a representation of its eigenvectors for eigenvalues given a priori. As a consequence, sufficient conditions are announced to get an orthogonal diagonalization of anti-tridiagonal 2-Hankel matrices of even order having null northeast-to-southwest diagonal. We emphasize that, in general, $\mathbf{H}_{2 n}$ is not a persymmetric matrix, which makes some recent approaches
concerning this issue unfeasible (Akbulak, da Fonseca \& Yilmaz, 2013; Wu, 2010). Therefore, our results emerge as a complement for these and other papers about spectral properties of anti-tridiagonal matrices.

2. Main results

For any integer $p \geqslant-1$, we shall denote by $U_{p}(x)$ the p th degree Chebyshev polynomial of the second kind

$$
U_{p}(x)=\frac{\sin [(p+1) \arccos x]}{\sin (\arccos x)}, \quad-1<x<1,
$$

with $U_{p}(\pm 1)=(\pm 1)^{p}(p+1)$ (Mason \& Handscomb, 2003). This expression as a sum of powers of x can, of course, be evaluated for any x. The symbols $\lfloor x\rfloor$ and \otimes will be used to indicate the largest integer not greater than x and the Kronecker product, respectively. The Euclidean norm will be denoted by $\|\cdot\|$.

Let $\xi_{,} b_{1}, b_{2}$ be real numbers such that $b_{1} b_{2} \neq 0$. Throughout, we shall consider the sequence of polynomials $\left\{Q_{k}(x, \xi)\right\}_{k \geqslant 0}$ defined by
$Q_{k}(x, \xi):=\left\{\begin{array}{l}x\left(b_{1} b_{2}\right)^{\frac{k-1}{2}} U_{\frac{k-1}{2}}\left(\frac{x^{2}-b_{1}^{2}-b_{2}^{2}}{2 b_{1}}\right), k \text { odd } \\ \left(b_{1} b_{2} \frac{\frac{k}{2}}{\frac{k}{2}} U_{\frac{k}{k}}\left(\frac{x^{2}-b_{1}^{2}-b_{2}^{2}}{2 b_{1} b_{2}}\right)+\right. \\ \xi^{2}\left(b_{1} b_{2}\right)^{\frac{k}{2}-1} U_{\frac{k_{2}}{2}-1}\left(\frac{x^{2}-b_{1}^{2}-b_{2}^{2}}{2 b_{1} b_{2}}\right), k \text { even }\end{array}\right.$
as well as the $n \times n$ matrix $\mathbf{Q}_{n}\left[b_{\frac{3_{3+(-1)}^{2}}{}}\right]$ whose (k, ℓ)-entry is
and the $n \times n$ matrix $\mathbf{S}_{n}\left[x, b_{\frac{3+(-1)^{n}}{2}}, b_{2}\right]$ given by

$$
\begin{align*}
& \mathbf{Q}_{n}\left[b_{\frac{3+(-1)^{n}}{2}}\right]-\frac{b_{\frac{3+(-1)^{n}}{}} Q_{n}\left(x, b_{2}\right)}{Q_{n}\left(x, b_{2}\right)-b_{\frac{3+(-1)^{n}}{}}^{2} Q_{n-1}\left(x, b_{2}\right)} \\
& \mathbf{q}_{n}\left[\frac{b_{\frac{3+(-1)^{n}}{}}^{2}}{}\right] \mathbf{q}_{n}\left[b_{\frac{3+(-1)^{n}}{2}}\right]^{\top} \tag{4}
\end{align*}
$$

 we shall suppose the $n \times n$ matrix $\mathbf{T}_{n}(x, y)$ defined by

$$
\left\{\begin{array}{ccccccc}
{\left[\begin{array}{cccccc}
0 & x & 0 & \ldots & \ldots & \ldots \\
x & 0 & y & 0 & & \\
0 \\
0 & y & 0 & x & \ddots & \\
\vdots \\
\vdots & 0 & x & \ddots & \ddots & \ddots
\end{array} \vdots\right.} \tag{5}\\
\vdots & & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & \ddots & \ddots & 0 & x \\
0 & \ldots & \ldots & \ldots & 0 & x & y
\end{array}\right], n \text { even }
$$

Set

$$
\begin{gathered}
\mathbf{J}_{n}:=\left[\delta_{k+\ell, n+1}\right]_{k, \ell}, \\
\mathbf{E}_{n}:=\left[\frac{1+(-1)^{k}}{2} \delta_{k, \ell}\right]_{k, \ell}, \\
\mathbf{K}_{n}:=\left[\frac{1-(-1)^{k}}{2} \delta_{k, \ell}\right]_{k, \ell}
\end{gathered}
$$

where δ is the Kronecker delta. For $a b \neq 0$, let $\mathbf{u}_{\mathrm{n}}(x, a, b)$ be the n-dimensional vector whose the k th component is

$$
\left\{\begin{array}{l}
U_{\frac{k-1}{2}}\left(\frac{x^{2}-a^{2}-b^{2}}{2 a b}\right)+\frac{b}{a} U_{\frac{k-3}{2}}\left(\frac{x^{2}-a^{2}-b^{2}}{2 a b}\right), k \text { odd } \tag{6}\\
\frac{x}{a} U_{\frac{k}{2}-1}\left(\frac{x^{2}-a^{2}-b^{2}}{2 a b}\right), k \text { even }
\end{array}\right.
$$

In what follows, we shall assume the antitridiagonal 2-Hankel matrix $\mathbf{H}_{2 n}$ defined in (1) with $d=0$. Notwithstanding, similar results hold for any real number d and $c=0$, mutatis mutandis.

Theorem 1 Let n be a positive integer, c a real number, $\left\{Q_{k}(x, \xi)\right\}_{k \geqslant 0}$ the sequence of polynomials (2) and $\quad \mathbf{T}_{n}\left(a_{1}, a_{2}\right), \quad \mathbf{T}_{n}\left(b_{1}, b_{2}\right)$ the matrices defined by (5) for nonzero reals $a_{1}, a_{2}, b_{1}, b_{2}$.
(a) If n is even, then the eigenvalues of $\mathbf{H}_{2 n}$ in (1) are precisely the zeros of

$$
\begin{align*}
& f(x)=\left(a_{1} a_{2} b_{1} b_{2}\right)^{\frac{n}{2}} . \\
& \quad\left[U_{\frac{n}{2}}\left(\frac{x^{2}-a_{1}^{2}-a_{2}^{2}}{2 a_{1} a_{2}}\right)+\frac{a_{2}-x}{a_{1}} U_{\frac{n}{2}-1}\left(\frac{x^{2}-a_{1}^{2}-a_{2}^{2}}{2 a_{1} a_{2}}\right)\right] . \tag{7}\\
& \quad\left[U_{\frac{n}{2}}\left(\frac{x^{2}-b_{1}^{2}-b_{2}^{2}}{2 b_{1} b_{2}}\right)+\frac{b_{2}-x}{b_{1}} U_{\frac{n}{2}-1}\left(\frac{x^{2}-b_{1}^{2}-b_{2}^{2}}{2 b_{1} b_{2}}\right)\right]
\end{align*}
$$

Moreover, if λ is an eigenvalue of $\mathbf{T}_{n}\left(a_{1}, a_{2}\right), \mu$ is an eigenvalue of $\mathbf{T}_{n}\left(b_{1}, b_{2}\right), Q_{n}\left(\lambda, b_{2}\right) \neq b_{2} Q_{n-1}\left(\lambda, b_{2}\right)$ and $\quad \operatorname{det}\left[\mathbf{I}_{n} \otimes \mathbf{T}_{n}\left(a_{1}, a_{2}\right)-\mathbf{T}_{n}\left(b_{1}, b_{2}\right) \otimes \mathbf{I}_{n}\right] \neq 0$, then

$$
\mathbf{P}_{2 n}^{\top}\left[\begin{array}{c}
\mathbf{u}_{n}\left(\lambda, a_{1}, a_{2}\right) \tag{8}\\
-c \mathbf{S}_{n}\left(\lambda, b_{2}, b_{2}\right) \mathbf{u}_{n}\left(\lambda, a_{1}, a_{2}\right)
\end{array}\right]
$$

and

$$
\mathbf{P}_{2 n}^{\top}\left[\begin{array}{c}
\mathbf{0} \tag{9}\\
\mathbf{u}_{n}\left(\mu, b_{1}, b_{2}\right)
\end{array}\right]
$$

are eigenvectors of $\mathbf{H}_{2 n}$ associated to λ and μ, respectively, where $\mathbf{P}_{2 n}$ is the $2 n \times 2 n$ permutation matrix
$\mathbf{P}_{2 n}:=\left[\begin{array}{l|l}\mathbf{E}_{n} & \mathbf{J}_{n} \mathbf{E}_{n} \\ \hline \mathbf{K}_{n} & \mathbf{J}_{n} \mathbf{K}_{n}\end{array}\right]$
$\mathbf{u}_{\mathrm{n}}\left(\lambda, a_{1}, a_{2}\right), \mathbf{u}_{\mathrm{n}}\left(\mu, b_{1}, b_{2}\right)$ are the n-dimensional vectors defined by (6) and $\mathbf{S}_{n}\left(\lambda, b_{2}, b_{2}\right)$ is the $n \times n$ matrix given in (4).
(b) If n is odd, then the eigenvalues of $\mathbf{H}_{2 n}$ in (1) are precisely the zeros of

$$
\begin{align*}
& f(x)=\left(a_{1} a_{2} b_{1} b_{2}\right)^{\frac{n-1}{2} .} \\
& \quad\left[\left(x-a_{1}\right) U_{\frac{n-1}{2}}\left(\frac{x^{2}-a_{1}^{2}-a_{2}^{2}}{2 a_{1} a_{2}}\right)-a_{2} U_{\frac{n-3}{2}}\left(\frac{x^{2}-a_{1}^{2}-a_{2}^{2}}{2 a_{2} a_{2}}\right)\right] . \tag{11}\\
& \quad\left[\left(x-b_{1}\right) U_{\frac{n-1}{2}}\left(\frac{x^{2}-b_{1}^{2}-b_{2}^{2}}{2 b_{1} b_{2}}\right)-b_{2} U_{\frac{n-3}{2}}\left(\frac{x^{2}-b_{1}^{2}-b_{2}^{2}}{2 b_{1} b_{2}}\right)\right]
\end{align*}
$$

Furthermore, if λ is an eigenvalue of $\mathbf{T}_{\mathrm{n}}\left(a_{1}, a_{2}\right)$, μ is an eigenvalue of $\mathbf{T}_{\mathrm{n}}\left(b_{1}, b_{2}\right), Q_{n}\left(\lambda, b_{2}\right) \neq b_{1} Q_{n-1}\left(\lambda, b_{2}\right)$ and

$$
\operatorname{det}\left[\mathbf{I}_{n} \otimes \mathbf{T}_{n}\left(a_{1}, a_{2}\right)-\mathbf{T}_{n}\left(b_{1}, b_{2}\right) \otimes \mathbf{I}_{n}\right] \neq 0 \text {, then }
$$

$$
\mathbf{P}_{2 n}^{\top}\left[\begin{array}{c}
-c \mathbf{S}_{n}\left(\lambda, b_{1}, b_{2}\right) \mathbf{u}_{n}\left(\lambda, a_{1}, a_{2}\right) \tag{12}\\
\mathbf{u}_{n}\left(\lambda, a_{1}, a_{2}\right)
\end{array}\right]
$$

and

$$
\mathbf{P}_{2 n}^{\top}\left[\begin{array}{c}
\mathbf{u}_{n}\left(\mu, b_{1}, b_{2}\right) \tag{13}\\
\mathbf{0}
\end{array}\right]
$$

are eigenvectors of $\mathbf{H}_{2 n}$ associated to λ and μ, respectively, where $\mathbf{P}_{2 n}$ is the $2 n \times 2 n$ permutation matrix

$$
\mathbf{P}_{2 n}:=\left[\begin{array}{l|l}
\mathbf{K}_{n} & \mathbf{E}_{n} \mathbf{J}_{n} \tag{14}\\
\hline \mathbf{E}_{n} & \mathbf{K}_{n} \mathbf{J}_{n}
\end{array}\right]
$$

$\mathbf{u}_{n}\left(\lambda, a_{1}, a_{2}\right), \mathbf{u}_{n}\left(\mu, b_{1}, b_{2}\right)$ are the n-dimensional vectors defined by (6) and $\mathbf{S}_{\mathrm{n}}\left(\lambda, b_{1}, b_{2}\right)$ is the $n \times n$ matrix given in (4).

Remark It is worthwhile to note that by taking $c=$ 0 and $a_{2}=b_{1}, a_{1}=b_{2}$ in (7) or (11), we recover the expressions obtained in section 4 of da Fonseca
(2018) for the matrices of even order analysed therei...

The previous result leads us to an orthogonal diagonalization for anti-tridiagonal 2-Hankel matrices (1) with null northeast-to-southwest diagonal, i.e. for matrices of the form

$$
\mathbf{H}_{2 n}^{*}=\left[\begin{array}{ccccccc}
0 & \ldots & \ldots & \ldots & 0 & b_{1} & 0 \tag{15}\\
\vdots & & & \ddots & a_{2} & 0 & a_{1} \\
\vdots & & \ddots & . & 0 & b_{2} & 0 \\
\vdots & . & \ddots & . & . & \ddots & \vdots \\
0 & a_{2} & 0 & \ddots & . & & \vdots \\
b_{1} & 0 & b_{2} & . & & & \vdots \\
0 & a_{1} & 0 & \ldots & \ldots & \ldots & 0
\end{array}\right]
$$

Put

$$
\left.\begin{array}{l}
\mathbf{v}_{n}:=\left[\begin{array}{lll}
\frac{\mathbf{u}_{n}\left(\lambda_{1}, a_{1}, a_{2}\right)}{} & \cdots & \frac{\mathbf{u}_{n}\left(\lambda_{n}, a_{1}, a_{2}\right)}{}\left(\lambda_{1}, a_{1}, a_{2}\right)
\end{array}\right] \tag{16}
\end{array}\right]
$$

where $\mathbf{u}_{n}\left(\lambda_{k} a_{1}, a_{2}\right)$ and $\mathbf{u}_{n}\left(\mu_{k}, b_{1}, b_{2}\right)$ are the n-dimensional vectors whose k th components are defined by (6). Corollary 1 Let n be a positive integer, $a_{1}, a_{2}, b_{1}, b_{2}$ nonzero real numbers, $\mathbf{H}_{2 \mathrm{n}}^{*}$ the $2 n \times 2 n$ matrix (15), $\mathbf{T}_{n}\left(a_{1}, a_{2}\right)$ and $\mathbf{T}_{n}\left(b_{1}, b_{2}\right)$ matrices defined by (5) having eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and μ_{1}, \ldots, μ_{n}, respectively. Suppose that $\operatorname{det}\left[\mathbf{I}_{n} \otimes \mathbf{T}_{n}\left(a_{1}, a_{2}\right)-\mathbf{T}_{n}\left(b_{1}, b_{2}\right) \otimes \mathbf{I}_{n}\right] \neq 0$ and the sequence of polynomials $\left\{Q_{k}(x, \xi)\right\}_{k \geqslant 0}^{\prime}$ given by (2) satisfies $Q_{n}\left(\lambda_{k}, b_{2}\right) \neq b_{\frac{\left.3+(-)^{1}\right)}{2}} Q_{n-1}\left(\lambda_{k}, b_{2}\right)$. for each $k=1, \ldots, n$.
(a) If n is even, then

$$
\begin{equation*}
\mathbf{H}_{2 n}^{*}=\mathbf{U}_{2 n} \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}, \mu_{1}, \ldots, \mu_{n}\right) \mathbf{U}_{2 n}^{\top}, \tag{17}
\end{equation*}
$$

where

$$
\mathbf{U}_{2 n}=\mathbf{P}_{2 n}^{\top}\left[\begin{array}{c|c}
\mathbf{V}_{n} & \mathbf{O} \tag{18}\\
\hline \mathbf{O} & \mathbf{W}_{n}
\end{array}\right],
$$

$\mathbf{P}_{2 n}$ is the permutation matrix (10) and $\mathbf{V}_{n} \mathbf{W}_{n}$ are the $n \times n$ matrices in (16).
(b) If n is odd, then

$$
\begin{equation*}
\mathbf{H}_{2 n}^{*}=\mathbf{U}_{2 n} \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}, \mu_{1}, \ldots, \mu_{n}\right) \mathbf{U}_{2 n}^{\top} \tag{19}
\end{equation*}
$$

where

$$
\mathbf{U}_{2 n}=\mathbf{P}_{2 n}^{\top}\left[\begin{array}{c|c}
\mathbf{O} & \mathbf{W}_{n} \\
\hline \mathbf{V}_{n} & \mathbf{O}
\end{array}\right],
$$

$\mathbf{P}_{2 n}$ is the permutation matrix $\mathbf{V}_{n}, \mathbf{W}_{n}$ are the $n \times n$ matrices in (16).

Remark More generally, Theorem 1 also leads to an eigendecomposition for $\mathbf{H}_{2 n}$ in (1) with $d=0$, taking eigenvector matrices formed by the column vectors (8), (9) or (12), (13) according to whether n is even or odd, respectively.

3. Lemmata and proofs

In order to prove Theorem 1, we will need some auxiliary results. The first one is well-known in the literature (Akbulak, da Fonseca \& Yilmaz, 2013) and locates the eigenvalues of tridiagonal matrices having the form (5). Indeed, the characteristic polynomial of $\mathbf{T}_{n}(a, b)$ is

$$
(a b)^{\frac{n}{2}}\left[U_{\frac{n}{2}}\left(\frac{x^{2}-a^{2}-b^{2}}{2 a b}\right)+\frac{b-x}{a} U_{\frac{n}{2}-1}\left(\frac{x^{2}-a^{2}-b^{2}}{2 a b}\right)\right] \text {, }
$$

when n is even and

$$
(a b)^{\frac{n-1}{2}}\left[(x-a) U_{\frac{n-1}{2}}\left(\frac{x^{2}-a^{2}-b^{2}}{2 a b}\right)-b U_{\frac{n-3}{2}}\left(\frac{x^{2}-a^{2}-b^{2}}{2 a b}\right)\right]
$$

whenever n is odd. Next, we shall provide a representation of its eigenvectors.

Lemma 1 Let n be a positive integer and $\mathbf{T}_{n}(a, b)$ the $n \times n$ matrix (5) with a, b nonzero reals. If λ is an eigenvalue of $\mathbf{T}_{n}(a, b)$, then $\mathbf{u}_{n}(\lambda, a, b)$ given in (6) is an eigenvector of $\mathbf{T}_{n}(a, b)$ associated to λ. Proof. Suppose a positive integer n and reals a, b such that $a \neq 0, b \neq 0$. Consider the three-term recurrence relation,

$$
\left\{\begin{array}{l}
P_{-1}(x) \equiv 0, \\
P_{0}(x) \equiv 1, \\
P_{k}(x)=\frac{x-\beta_{k}}{\alpha_{k}} P_{k-1}(x)-\frac{\gamma_{k-1}}{\alpha_{k}} P_{k-2}(x), \quad 1 \leqslant k \leqslant n
\end{array}\right.
$$

with $\gamma_{0}=\alpha_{n}=1$,

$$
\alpha_{k}=\gamma_{k}= \begin{cases}a, & k \text { odd } \\ b, & k \text { even }\end{cases}
$$

and

$$
\beta_{k}=\left\{\begin{array}{l}
0, k<n \\
b, k=n \text { and } n \text { even } \\
a, k=n \text { and } n \text { odd. }
\end{array}\right.
$$

Hence, $P_{k}(x)$ is expressed by

$$
\left\{\begin{array}{l}
U_{\frac{k}{2}}\left(\frac{x^{2}-a^{2}-b^{2}}{2 a b}\right)+\frac{b}{a} U_{\frac{k}{2}-1}\left(\frac{x^{2}-a^{2}-b^{2}}{2 a b}\right), k \text { even } \\
\frac{x}{a} U_{\frac{k-1}{2}}\left(\frac{x^{2}-a^{2}-b^{2}}{2 a b}\right), k \text { odd }
\end{array}\right.
$$

for each $0 \leqslant k \leqslant n-1$ and $\left[P_{0}(\lambda), P_{1}(\lambda), \ldots, P_{n-1}(\lambda)\right]^{\top} \quad$ is an eigenvector of $\mathbf{T}_{n}(a, b)$ associated to the eigenvalue λ (da Fonseca, 2005). The thesis is established.

The following auxiliary statement is an explicit formula for the inverse of sort of slightly perturbed tridiagonal 2-Toeplitz matrices.

Lemma 2 Let n be a positive integer, λ a real number,
$\left\{Q_{k}(x, \xi)\right\}_{k \geqslant 0}$ the sequence of polynomials defined by (2) and $\mathbf{T}_{n}\left(b_{1}, b_{2}\right)$ the $n \times n$ matrix defined by (5) with nonzero reals b_{1}, b_{2}. If $Q_{n}\left(\lambda, b_{2}\right) \neq b_{\frac{3+(-1)^{n}}{2}} Q_{n-1}\left(\lambda, b_{2}\right)$, then

$$
\begin{equation*}
\left[\mathbf{T}_{n}\left(b_{1}, b_{2}\right)-\lambda \mathbf{I}_{n}\right]^{-1}=\mathbf{S}_{n}\left[\lambda, b_{\frac{3+(-1)^{n}}{2}}, b_{2}\right] \tag{20}
\end{equation*}
$$

where $\mathbf{S}_{n}\left[\lambda, b_{\frac{3+(-1)^{2}}{2}}, b_{2}\right]$ is the $n \times n$ matrix given by (4).
Proof. Suppose a positive integer n and real numbers λ, b_{1}, b_{2} such that $b_{1} \neq 0, b_{2} \neq 0$. Employing the Second Principle of Mathematical Induction on the variable n, we can state that $\operatorname{det}\left[\mathbf{T}_{n}\left(b_{1}, b_{2}\right)\right]=(-1)^{\left\lfloor\frac{n}{2}\right\rfloor} b_{1}^{n}$, which ensure the nonsingularity of $\mathbf{T}_{n}\left(b_{1}, b_{2}\right)$. Denoting \mathbf{e}_{n} the n-dimensional vector ($0, \ldots, 0,1$), the inverse of $\mathbf{T}_{n}\left(b_{1}, b_{2}\right)$ $-\lambda \mathbf{I}_{n}-b_{\frac{3+(-1)^{n}}{2}} \mathbf{e}_{n}$ is the matrix $\mathbf{Q}_{n}\left[b_{\frac{3+(-1)^{n}}{2}}\right]$ in (3) (see Theorem 4.1 of da Fonseca \& Petronilho, 2001), and the thesis is a direct consequence of the well-known Sherman-Morrison-Woodbury formula.

Proof of Theorem 1. Since both assertions can be proven in the same way, we only prove (a). Let n be an even positive integer. It is straightforward to see that

$$
\mathbf{P}_{2 n} \mathbf{H}_{2 n} \mathbf{P}_{2 n}^{\top}=\left[\begin{array}{c|c}
\mathbf{T}_{n}\left(a_{1}, a_{2}\right) & \mathbf{O} \tag{21}\\
\hline \mathbf{I}_{n} & \mathbf{T}_{n}\left(b_{1}, b_{2}\right)
\end{array}\right],
$$

where $\mathbf{P}_{2 n}$ is the permutation matrix (10). Thus,

$$
\begin{aligned}
& \operatorname{det}\left(t \mathbf{I}_{2 n}-\mathbf{H}_{2 n}\right)= \\
& \quad \operatorname{det}\left[t \mathbf{I}_{n}-\mathbf{T}_{n}\left(a_{1}, a_{2}\right)\right] \operatorname{det}\left[t \mathbf{I}_{n}-\mathbf{T}_{n}\left(b_{1}, b_{2}\right)\right]
\end{aligned}
$$

and we obtain (7). Let λ be an eigenvalue of $\mathbf{T}_{n}\left(a_{1}, a_{2}\right)$. According to (21) we can rewrite the relation $\left(\mathbf{H}_{2 n}-\lambda \mathbf{I}_{2 n}\right) x=0$ as

$$
\left[\begin{array}{c|c}
\mathbf{T}_{n}\left(a_{1}, a_{2}\right)-\lambda \mathbf{I}_{n} & \mathbf{O} \\
\hline c \mathbf{I}_{n} & \mathbf{T}_{n}\left(b_{1}, b_{2}\right)-\lambda \mathbf{I}_{n}
\end{array}\right] \mathbf{P}_{2 n} \mathbf{x}=\mathbf{0},
$$

that is,

$$
\begin{align*}
& {\left[\mathbf{T}_{n}\left(a_{1}, a_{2}\right)-\lambda \mathbf{I}_{n}\right] \mathbf{y}^{(1)}=\mathbf{0},} \\
& c \mathbf{y}^{(1)}+\left[\mathbf{T}_{n}\left(b_{1}, b_{2}\right)-\lambda \mathbf{I}_{n}\right] \mathbf{y}^{(2)}=\mathbf{0}, \tag{22}\\
& {\left[\begin{array}{l}
\mathbf{y}^{(1)} \\
\mathbf{y}^{(2)}
\end{array}\right]=\mathbf{P}_{2 n} \mathbf{x} .}
\end{align*}
$$

Since det $\left[\mathbf{I}_{n} \otimes \mathbf{T}_{n}\left(a_{1}, a_{2}\right)-\mathbf{T}_{n}\left(b_{1}, b_{2}\right) \otimes \mathbf{I}_{n}\right] \quad \neq 0$, the matrices $\mathbf{T}_{n}\left(a_{1}, a_{2}\right)$ and $\mathbf{T}_{n}\left(b_{1}, b_{2}\right)$ have no eigenvalues in common (see Laub, 2005, page 145) which implies $\operatorname{det}\left[\mathbf{T}_{n}\left(b_{1}, b_{2}\right)-\lambda \mathbf{I}_{n}\right] \neq 0$ and Lemma 1 ensures that the solution of (22) is

$$
\mathbf{x}=\mathbf{P}_{2 n}^{\top}\left[\begin{array}{c}
\mathbf{u}_{n}\left(\lambda, a_{1}, a_{2}\right) \\
-c\left[\mathbf{T}_{n}\left(b_{1}, b_{2}\right)-\lambda \mathbf{I}_{n}\right]^{-1} \mathbf{u}_{n}\left(\lambda, a_{1}, a_{2}\right)
\end{array}\right],
$$

where $\mathbf{u}_{n}\left(\lambda, a_{1}, a_{2}\right)$ is given by (6). From Lemma 2,

$$
\left[\mathbf{T}_{n}\left(b_{1}, b_{2}\right)-\lambda \mathbf{I}_{n}\right]^{-1}=\mathbf{S}_{n}\left(\lambda, b_{2}, b_{2}\right),
$$

and (8) is an eigenvector of $\mathbf{H}_{2 n}$ associated to the eigenvalue λ. On the other hand, suppose that μ is an eigenvalue of $\mathbf{T}_{n}\left(b_{1}, b_{2}\right)$. Since $\mathbf{H}_{2 n} \mathbf{x}=\mu \mathbf{x}$ is equivalent to

$$
\begin{aligned}
& {\left[\mathbf{T}_{n}\left(a_{1}, a_{2}\right)-\mu \mathbf{I}_{n}\right] \mathbf{y}^{(1)}=\mathbf{0},} \\
& c \mathbf{y}^{(1)}+\left[\mathbf{T}_{n}\left(b_{1}, b_{2}\right)-\mu \mathbf{I}_{n}\right] \mathbf{y}^{(2)}=\mathbf{0}, \\
& {\left[\begin{array}{l}
\mathbf{y}^{(1)} \\
\mathbf{y}^{(2)}
\end{array}\right]=\mathbf{P}_{2 n} \mathbf{x},}
\end{aligned}
$$

and $\operatorname{det}\left[\mathbf{T}_{n}\left(a_{1}, a_{2}\right)-\mu \mathbf{I}_{n}\right] \neq 0$, we obtain

$$
\mathbf{x}=\mathbf{P}_{2 n}^{\top}\left[\begin{array}{c}
\mathbf{0} \\
\mathbf{u}_{n}\left(\mu, b_{1}, b_{2}\right)
\end{array}\right],
$$

where $\mathbf{u}_{n}\left(\mu, b_{1}, b_{2}\right)$ is defined in (6). Therefore, (9) is an eigenvector of $\mathbf{H}_{2 n}$ associated to the eigenvalue μ.

Proof of Corollary 1. Consider an even positive integer n. From

$$
\operatorname{det}\left[\mathbf{I}_{n} \otimes \mathbf{T}_{n}\left(a_{1}, a_{2}\right)-\mathbf{T}_{n}\left(b_{1}, b_{2}\right) \otimes \mathbf{I}_{n}\right] \neq 0,
$$

we can guarantee that all eigenvalues of $\mathbf{H}_{2 n}^{*}$ are distinct. Setting

$$
\begin{aligned}
& \mathbf{v}_{n}\left(\lambda_{k}\right):=\mathbf{u}_{n}\left(\lambda_{k}, a_{1}, a_{2}\right), \\
& \mathbf{w}_{n}\left(\mu_{k}\right):=\mathbf{u}_{n}\left(\mu_{k}, b_{1}, b_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \widehat{\mathbf{v}}_{n}\left(\lambda_{k}\right):=\mathbf{P}_{2 n}^{\top}\left[\begin{array}{c}
\mathbf{v}_{n}\left(\lambda_{k}\right) \\
\mathbf{0}
\end{array}\right], \\
& \widehat{\mathbf{w}}_{n}\left(\mu_{k}\right):=\mathbf{P}_{2 n}^{\top}\left[\begin{array}{c}
\mathbf{0} \\
\mathbf{w}_{n}\left(\mu_{k}\right)
\end{array}\right]
\end{aligned}
$$

it follows that
is a complete set of orthogonal eigenvectors according to Theorem 1. Hence,

$$
\mathbf{H}_{2 n}^{*}=\mathbf{U}_{2 n} \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}, \mu_{1}, \ldots, \mu_{n}\right) \mathbf{U}_{2 n}^{-1},
$$

where

$$
\begin{aligned}
& \mathbf{U}_{2 n}=\left[\frac{\widehat{v}_{n}\left(\lambda_{1}\right)}{\left\|\hat{v}_{n}\left(\lambda_{1}\right)\right\|} \cdots \frac{\hat{\mathrm{V}}_{n}\left(\lambda_{n}\right)}{\left\|\hat{\mathbf{v}}_{n}\left(\lambda_{n}\right)\right\|} \frac{\widehat{\mathbf{w}}_{n}\left(\mu_{1}\right)}{\left\|\hat{w}_{n}\left(\mu_{1}\right)\right\|} \cdots \frac{\widehat{\mathbf{w}}_{n}\left(\mu_{n}\right)}{\left\|\widehat{n}_{n}\left(\mu_{n}\right)\right\|}\right] \\
& =\mathbf{P}_{2 n}^{\top}\left[\begin{array}{ccccccc}
\frac{\mathbf{v}_{n}\left(\lambda_{1}\right)}{\left\|\mathbf{v}_{n}\left(\lambda_{1}\right)\right\|} & \cdots & \mathbf{v}_{n}\left(\lambda_{n}\right) & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & \ldots & \mathbf{0} & \underset{v_{n}}{ }\left(\lambda_{n}\right) \| & \frac{\mathbf{w}_{n}\left(\mu_{1}\right)}{\left\|\mathbf{w}_{n}\left(\mu_{1}\right)\right\|} & \cdots & \frac{\mathbf{w}_{n}\left(\mu_{n}\right)}{\left\|\mathbf{w}_{n}\left(n_{n}\right)\right\|}
\end{array}\right]
\end{aligned}
$$

provided that $\mathbf{P}_{2 n}^{\top}$ is an orthogonal matrix. Since (23) is an orthonormal set, $\mathbf{U}_{2 n}$ is an orthogonal matrix and (17) is established. The proof of (b) is analogous and so will be omitted.

ACKNOWLEDGEMENTS

This work is a contribution to the Project UID/ GEO/04035/2013, funded by FCT - Fundação para a Ciência e a Tecnologia, Portugal.

References

Akbulak, M., da Fonseca, C.M. \& Yilmaz, F. (2013). The eigenvalues of a family of persymmetric anti-tridiagonal 2-Hankel matrices. Applied Mathematics and Computation, 225: 352-357.

Bultheel, A. \& Van Barel, M. (1997). Linear algebra: Rational approximation and orthogonal polynomials. Studies in Computational Mathematics 6, NorthHolland, Amsterdam. Pp. 445.
da Fonseca, C.M. \& Petronilho, J. (2001). Explicit inverses of some tridiagonal matrices. Linear Algebra and its Applications, 325(1-3): 7-21.
da Fonseca, C.M. (2005). On the location of the eigenvalues of Jacobi matrices. Applied Mathematics Letters, 19: 1168-1174.
da Fonseca, C.M. (2018). The eigenvalues of some anti-tridiagonal Hankel matrices. Kuwait Journal of Sciences, 45: 1-6.

Gover, M.J.C. \& Barnett, S. (1985). Inversion of Toeplitz matrices which are not strongly non-singular. IMA Journal of Numerical Analysis, 5: 101-110.

Gover, M.J.C. \& Barnett, S. (1985). Characterisation and properties of r-Toeplitz matrices. Journal of Mathematical Analysis and Applications, 123: 297-305.

Gover, M.J.C. (1989). The determination of companion matrices characterizing Toeplitz and r-Toeplitz matrices. Linear Algebra and its Applications, 117: 81-92.

Laub, A.J. (2005). Matrix analysis for scientists \& engineers. SIAM, Philadelphia. Pp. 184.

Mason, J.C. \& Handscomb, D. (2003). Chebyshev polynomials.Chapman \& Hall/CRC, Boca Raton. Pp. 360.

Olshevsky, V. \& Stewart, M. (2001). Stable factorization for Hankel and Hankel-like matrices. Numerical Linear Algebra with Applications, 8: 401-434.

Wu, H. (2010). On computing of arbitrary positive powers for one type of anti-tridiagonal matrices of even order. Applied Mathematics and Computation, 217: 27502756.

Submitted :17/02/2018
Revised :27/03/2018
Acceptance :27/03/2018

كثيرات الحدود المميزة لبعض المصفوفات ثلاثية القطرية ثـائية هانكل العكسية للترتيب المتساوي

جو أو ليتا دا سيلفا

قسم الرياضيات و تكنولوجيا البيولوجيا الجيولوجية
كلية العلوم والنكنولوجيا، جامعة نوفا في لشبونة، كوينتا دا توري، البرتغال

فـي هـذا البحـن، نسـنتتج كثيـرات الحـدود المكيـزة لعائلــة مـن المصفوفـــات ثلاثيــة القطريـة ثثائيــة هانـكل العكسـية لترتيـب
 لهـذا النـوع مـن المصفوفـات التـي لهــا قطـر صفـري مـن الثــمـل الثــرقي إلـى الجنـوب الغربـي باســتخدام القيـم الذاتيــة المحـددة.

