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Abstract

Micro-array dataset is a classical example of high throughput data characterized with more features (genes) than sample
points (gene expression levels). A number of classification techniques have been proposed in literature. Many of these
methods are either computationally expensive or perform sub-optimally. In this paper, some distance functions are
considered and classification rules based on the distance functions are formulated. The distance functions include
average distance measure, distance to component-wise median, distance to mean. We also define a probabilistic
approach to classification rules based on two of the distance measures. Gene selection technique based on shrunken
centroids regularized discriminant analysis was employed on small round blue cell tissue, colon cancer, lymphoma,
prostate cancer and leukaemia data before applying the classification rules. Three simulation studies were performed
to mimic gene expression data. The performance of the classification methods mentioned above was compared with
performance of some known classification methods in literature. The performance of the distance-based classification

methods is competitive with some existing classification methods. Distance based methods implemented in this study

are computationally simple and very cheap in terms of computational cost.
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1. Introduction

The objectives of classification as a practical subject
in statistics are to find characteristics that define each
competing classes and build a function or rule that assigns
observations from unknown classes to one of competing
classes on the basis of these characteristics (Dabney,
2005). A typical example is to distinguish between tumour
tissues and normal tissues in colon tissue dataset (Alon
et al., 1999). In micro-array data analysis, observations
are referred to as gene expression levels. Each gene
expression level consists of a number of genes. Micro
array data is characterised by large number of genes but
very few gene expression levels. Many of these genes are
either irrelevant or redundant for discrimination among
groups of gene expression data (Klassen and Kim, 2009).

Support vector machines have been employed in
supervised statistical learning of gene expression data;
see for example, Furey et al. (2000), Wang et al. (2008),
Colak et al. (2016). Popularity of support vector machines
can be attributed to its successful performance in many
applications. However, redundant genes and extremely
outlying genes can have serious impacts on support

vector machines (Li and Yu, 2008). Vanitha et al. (2015)
suggested selecting the informative genes based on the
value of mutual information between the genes and the
known gene classes.

Statistical distances are viable tools in the analysis of
high dimensional data. Many statistical methodologies
are based on these distances. Examples include k-means
algorithms in cluster analysis, Hotelling 7” test in statistical
inference for location parameters, k-nearest neighbour
rule in classification, Hotelling 77 statistic in statistical
quality control, among others. Hastie et al. (2001)
proposed nearest centroid classifier for high dimensional
data. Dabney (2005) applied the nearest centroid classifier
to gene expression data with specific choice of active
genes to participate in classification exercise. Tibshirani
et al. (2002) proposed nearest shrunken centroid
classifier (NSC), which is the modification of nearest
centroid classifier. Klassen and Kim (2009) presented a
combination of nearest shrunken centroid (NSC) as gene
selection technique and random forest as a classifier for
some gene expression data as well as its comparison with
the performance of NSC as classifier.



Performances of classification methods, in general, can be
evaluated based on their proportions of correct assignment
or classification, interpretation of classification results and
practical implementation of the classification methods in
low and high dimensions. In this paper, we survey some
existing distance functions and discuss some of their
intuitive features such as computational simplicity. We
define some classification rules based on these distance
functions. The classification rules were employed on
some gene expression data. For implementation of
these classification approaches for gene expression data,
gene selection technique based on shrunken centroid
regularized discriminant analysis (Guo et al., 2007)
is employed to identify informative genes. We define
distribution function of the distance measures discussed
and formulate classification rules based on them. Also, we
simulate data following some intuitive characteristics of
gene expression data and employ the classification rules
on the simulated data to evaluate their performance.

2. Methods

Suppose X, € RPis arandom vector (or denotes random
gene expression level in a micro-array experiment) having
a distribution Fy, k = 1,2, ..., K. Define a distance
measure of a vector x € [RP with respect to F as

D:i(x, Fy) = E[[|x — X Il

where||. || can be taken as the usual Euclidean norm and E
denotes mathematical expectation. Suppose Fy, Fy, ..., Fx
are distributions of competing classes (1, Cy, ..., Ck

respectively. We define the classification rule based on
average distance as: assign a gene level z to class C if

D;(x,F) = min Dy (x, Fy). (1)
For latter reference, the classification rule in (1) is denoted

by D, . The sample version of D (x, Fy;) is defined thus;

let Xx1, Xk2) ooes ank be a random sample from Fj,, one
may define a distance function of a vector X based on
Xkl'XkZJ ’ank as

) nk p 1/2
Dy (%, Fy,) = n—kz Z(xj ~ Xii)’
i=1 \j=1

i=12,..,n,j=12,..,p,k=1,2,...,K. This
distance function D;(x, F}) is referred to as average
distance function.

Another distance function in literature is L, distance to
mean vector. This is defined as
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DZ(x'Fk) = ””k - x”'

where My denotes expected value of Fj. Hastie et al.
(2001) presented this distance function in component-
wise form and proposed a classification rule based on
scaled version of D, (x, F},). It suffices to note that both
D, (x, Fy) and D,(x, F},) characterize F}, in the sense
that high values of the distance metrics imply deviation
from the centre of data cloud. It is worth mentioning that
a generalized distance (also referred to as Mahalanobis
distance) can be used instead of D,(x, F},). However,
Mahalanobis distance is of limited use and particularly
difficult to implement when number of features is
greater than available sample size, for example in gene
expression data. Suppose Fy, F,, ..., Fy are distributions
of completing classes C;,C,, ..., Cx respectively. We
define the classification rule based on D,(x, F) as:
assign a gene level z to class Cj if

DZ(xl Fl) = 1z1ici?KD2(x’ Fk) (2)
For latter reference, the classification rule in (2) is denoted
by D,. The empirical version of D (X, Fy,) is constructed
by replacing population mean vector by sample mean
vector. That is, the sample version of D, (x, Fy, ) is defined
as

p K
1
NN 5
=\

271/2 2

» Y
= Z(ij -x)| -
j=1

Convergence of D, (x, Fnk) to D2(%, Fit) follows from the
fact that X, = nizzlzkl Xy — p for large sample sizes,
K

N, Ny, oo, N

The classifier D, lacks robustness against outlying
training sample points because a single outlying
sample point can adversely affect sample mean vector,
thereby affects the performance of the classifier D,.
In low dimensional setting, this problem can be easily
overcome by using minimum covariance determinant
(MCD) estimate of mean vector or trimmed mean
vector. However, computation of minimum covariance
determinant (MCD) estimate of mean vector is difficult
in micro-array experiment because the ratio of number of
genes to number of gene levels is far greater than 1. Depth
oriented trimmed mean (Liu ef al., 1999) based on spatial
depth can be employed.

When data cloud is heavy tailed, Hall et al. (2009)
suggested use of L, distance to componentwise median.
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The intuition behind it is that it is componentwise median
that minimises L4 distance among observations in the data
cloud. L; distance to componentwise median is defined
as

D3(x,Fy) = ||my, — x|y,

where |- |1 denotes L, norm and My, is componentwise
median of Fj,. We define the classification rule based on
D5 (x, F},) as: assign a gene level Z to class Cy if

Do(x,F;)) = min Dsy(x, F). 3
s(6F) = min Dy(x,F) 3)
For latter reference, the classification rule in (3) is denoted
by D,. The empirical version of D3 (x, F},) is defined as

Dy (%, Fy, ) = Z|9kj -,
j=1

where gkj = med(iji), i = 1, 2, e, n

The almost sure convergence of Dj (x, nk) to
D4 (x, Fnk) follows directly from the study of Hall ez al.
(2009). An intuitive property of D3 (x Fnk) is its robustness
against outlying observations. Dy (x, nk) is more robust
than D, (x, F,). The breakdown point of M is 0.5 (see
Chakraborty and Chaudhuri (2014) for details).

k=12 ..K,

Hall et al. (2009) referred to D, as median based
classifier. A similar classification rule to D, is quantile
discriminant analysis (Hennig and Viroli, 2016). Quantile
discriminant analysis, denoted by QuanDA, assigns a test
observation to the class with shortest L1 distance to the
ath quantile. A similar distance function to D (x, nk)
using L; norm can be constructed as

2 2 |Xkl] x]

The population version is defined as

Dy(x,F) = E [“Xk - x||1].

Dy(x,F,,)

We define the classification rule based on D, (x, Fy,) as:
assign a gene level z to class Cj if

Dy(x, F) = min Dy(x,Fy). 4)

For latter reference, the classification rule in (4) is denoted
by D,.

In literature, other distance based methods include
k nearest neighbour rule, shrunken centroid regularized

discriminantanalysis, nearest shrunken centroid classifier,
sparse partial least squares discriminant analysis. k
nearest neighbour rule (Cover, 1968), denoted by kNN,
assigns each test observation to the class for which
the observation have highest representatives among k
nearest neighbours. Nearest shrunken centroid classifier
(Tibshirani et al., 2002), denoted by NSC, assigns each
test observation to the class for which the observation
achieves the least distance to the class shrunken centroid.
Shrunken centroid regularized discriminant analysis
(Guo et al., 2007), denoted by SCRDA, is very similar
to NSC, except for the use of class shrunken regularized
centroid in place of class shrunken centroid. SCRDA
has been employed in classification of gene expression
data. However, SCRDA, NSC and kNN are distance
based and are compared with D, D,, D, and D, in our
numerical examples, both simulation and analysis of
gene expression data.

2. Modified classification rules

The classification rules in (1)-(4) can be modified using
a probabilistic approach. The modified method treats
a distance measure of any random vector (or gene
expression level in micro-array experiment) as a random
variable whose distribution function plays a vital role in
defining a new classification rule.

Classification rules based on distribution functions of
distance functions defined above assign a gene expression
level to the class for which it achieves minimum distribution
, Fy
, Cx

distribution function of

function of some distance measures. Suppose Fy, F5, ...
are K distributions of competing classes Cy, Cy, ...

respectively. Define the
UY = Dy(X,, F) as H(AQY) = PUY < A1),
where lgcl) = D,(z,F,) for z € RP. 1t follows from
the definition of H (AS)) that a central gene expression
level will have H (25(1)) close to zero and an extreme gene
expression level will have the value of H (/1561)) tends to 1.
The classification rule is to assign gene expression level
Z to class C; if H(/lgl)) = Ming<<k H(AS)). This
classification rule is denoted by DD,. The sample version

of H (/1(1)) denoted by H (/1(1)) is defined as

A(aD) = Z 1{D:(Xyi Fu,) < D1 (%, Fy, )},

where / is an 1nd1cator function.



Similarly, D, canbe modified inthe versionof DD . Suppose

H(A®) = P = 2(7) where A = D, (z, F)
and U,E4) =D, (Xk:F k). The classification rule based

4) . . . .
on l( ) is to assign gene expression level Z to class Crif

(1(4)) ming<<x H (1(4)) This classification rule is
denoted by DD,. The sample version of H (/1( )) denoted by
(/1% )) is defined as

H( (4) ZI{D‘}(XRU Fnk) < D,(x, Fnk)}

3. Simulation Studles

Suppose i th observation is in k th class, Xy;~N (U, X),
where i = (i1, Hi2s - Hiep)' with

p1j =0 for 1<j<p, pyj = 0.7 for

1 <j <100and u,; = Ootherwise andk = 1, 2.
The covariance structure X consists of 5X5 blocks,

each block of dimension 100X 100 with (j, j') element
0.61/=J"l. This simulation example is considered in Guo
et al. (2007).

The second simulation example is similar to the
one considered in Hall et al. (2009). Suppose X1
and X, are two random vectors from distributions
F; and F, respectively. Suppose X; and X, are
defined as Xyy =1y, + Uy, X2 =0y, + Uy,
v X1p = Nx1p + U, and Xo1 =Nx,, T+
Uy, Xa2 =MNx,, + Uz .oy Xop =Nx,, T Up, where

U, j=1,2,..,p is student’s t distributed with 3
degrees of freedom. We assume Uy, Uy, ..., U, are
independent. Take x,, = Mx,, = *** Nx,, = Owhile
(M X210 NXppr oe T’Ixzp)has first @ non-zero components.
Let w = p/4 such that @ non-zero component 7y,
equals the variance of U,

The third simulation example is similar to the
first simulation above but considers four classes. The
example is described thus: suppose there are four
classes m,, k=1,2,3,4 from N(f,Z) such
that Mk = (k1 iz o Mip) with pgj = 0 for
1<j<p,upy;=07frl<j<100and tz; =0
otherwise, p3; = 0if 1<j<100, and U3j = 0.5
if101 < j < 200 and pz; = 0O otherwise. Haj = 0.5
if1 <j <100,and 4g; = 0if 101 < j < 300 and
Uej = 0.5 otherwise. The covariance structure X consists
of 5% 5 blocks, each block of dimension 100X 100 with
(j,j") element 0.6 7",

In each of the simulated examples, equal samples
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are assumed for each of the competing classes. Each
experiment consists of measurements on P (=500) features
with 50 observations belonging to each training set and 50
observations to each test set. The simulation size is taken to
be 500. Mean and standard deviation of proportion of correct
classification were computed for each of the methods.

We compare the performance of D, D,, D,, D,, DD,
and DD, with k nearest neighbour rule, nearest shrunken
centroid classifier (Tibshirani et al., 2002), quantile
discriminant analysis (Hennig and Viroli, 2016), shrunken
centroid regularized discriminant analysis (Guo et al.,
2007) and sparse partial least squares discriminant analysis
(splsda) (Chung and Keles, 2010). In our comparison, we
choose k = 1 and k = 5 for implementing kNN using
R package class. R package quantileDA is employed
for implementing quantile discriminant analysis. The
threshold value for NSC as implemented in R package
pamr is taken to be 0.5. In these simulation examples, we
take the values of parameters of SCRDA to be 0.1 and 0.5
for & and A respectively.

The aim of Example 1 is to mimic covariance structure
of gene expression data as shown in Guo et al. (2007)
(see p. 98). Hall ez al. (2009) argued that gene expression
data are naturally tailed and not normally distributed.
This forms the basis for Example 2. Table 1 presents the
mean and standard deviation of proportions of correct
classification. In simulation 1, NSC and D, perform best
while SCRDA performs worst. D , D, and D, and quanDA
perform equivalently. A slight better performance of D, D
and NSC over D, and D, may be attributed to the fact that
competing classes are multivariate normally distributed
and their density functions involve L, distance and not
L, distance.

In simulation 2, D, performs best while DD, and
DD, perform worst. The nice performance of D, in this
example can be attributed to its optimal behaviour when
data are tailed. Hall et al. (2009) presented theoretical
results for the optimal behaviours of D, under suitable
conditions. QuanDA and D, perform equivalently. Among
the probabilistic based distance methods, DD, competes
well. In both simulation examples, k = 5 in k nearest
neighbour rule performs much better than k = 1. It is
observed that the performance of D -D, are much better
than the nearest neighbour rules, taken kK = 1 or k = 5.
Hall and Pham (2010) argued that for nearest neighbour
rules to perform competitively with centroid based
classification method (e.g. D,), dimension must increase
slowly as training sample sizes diverge. In simulation
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3, the performance of classifiers D -D, are competitive.
SVM and NSC compete well while SCRDA, splsda and
INN achieve the least proportions of correct classification.
It can be inferred from the simulation examples that any
of D, and D, should be used if the distributions of the
competing classes are symmetric, and any of D, and D, if
the distributions of the competing classes are tailed.

4. Analysis of Real Data

In this paper, five real life data are used for implementation
of the above methods. The datasets are colon tissue data,
leukaemia microarray data, small round blue cell tumor
data, lymphoma data and prostate cancer data. The datasets
are available in R packages spls, rda and plsgenomics.

Colon tissue data set (Alon et al., 19999), denoted
by colon, contains 62 samples with 2000 genes from
two classes. The classes are tumour tissues of size 40
and normal tissues of size 22. The data is split into two
equal samples for each class, which constitute the training
and test sample for each class. Studies have shown that
non-contributing features tend to lower the probability of
correctly assigning high dimensional test observations.
Shrunken centroid regularised discriminant analysis
(SCRDA) (Guo et al., 2007) was performed on all samples

to remove the non-contributing genes.

Leukaemia microarray data set, denoted by leukaemia,
arose from the study of Golub er al. (1999) on gene
expression levels of 3051 genes for 38 leukaemia patients.
The data consists of two groups: group 1 of size 27 and
group 2 of size 11. Random training samples of sizes 15
and 7 are selected from groups 1 and 2 respectively. Test
samples for the two groups are taken to be complement of
the training samples.

Small round blue cell tumor data set, denoted by
SRBCT, consists of gene expression level on 2308 genes
for 83 patients. This dataset arose from the study of Khan
et al. (2001) on childhood cancer and is available on R
package rda. The data set contains four classes; Ewing
sarcoma (ES) of size 29, Burkitt lymphoma (BL) of size
11, neuroblastoma (NB) of size 18 and rhabdomyosarcoma
(RMS) of size 25. Random training samples of sizes 15,
7,9 and 15 are taken from classes ES, BL, NB and RMS
respectively. Test samples for the completing classes are
taken to be complement of the training samples.

The lymphoma dataset (Alizadeh et al., 2000) consists
of three classes with 4026 genes. The classes are diffuse
large B-cell lymphoma (DLBCL) of size 42, follicular

lymphoma (FL) of size 9, and chronic lymphocytic
leukemia (CLL) of size 11. The lymphoma gene expression
data were normalized, imputed, log transformed, and
standardized to zero mean and unit variance across genes.
Chung and Keles (2010) presented detailed description of
the dataset. Random training samples of sizes 30, 6 and 7;
and random test samples of sizes 12, 3 and 4 are selected
from classes DLBCL, FL and CLL respectively.

Prostate cancer data (Singh et al., 2002) consists of
two classes (normal and tumor) of sizes 50 and 52 with
6033 genes. The gene expression data and arrays were
normalized, log transformed, and standardized to zero
mean and unit variance across genes as discussed in
Chung and Keles (2010). A random training sample of
size 30 is selected from each of the two groups. Random
test samples of sizes 20 and 22 are selected from class 1
and 2 respectively.

For each of the datasets, proportion of correct
classification was computed for each of the classification
methods. The experiment was repeated 1000 times.
Mean and standard deviation of proportion of correct
classification were computed. The R codes for the
competing classification methods are freely available at
https://github.com/osMakinde/gene\ classify. Table 2
presents the mean and standard deviation of proportions
of correct classification of some gene expression data.
For leukaemia data, D, D,, D,, D, and NSC perform best
while other classifiers perform competitively.

For colon data, splsda and SCRDA perform least while
D, D,, D,, D, and quanDA perform equivalently. Other
classifiers perform competitively for colon cancer data.
For small round blue cell tumor data, splsda and quanDA
do not perform well. The near perfect classification is
observed in D, D,, D,, D, and NSC for SRBCT data.
For lymphoma data, NSC, D, and D, achieve perfect
classification because the three classifiers assign all the
test gene expression levels in all repetitions correctly.
Other competing classifiers perform well in all repetition.
For prostate cancer data, NSC, splsda, D, D,, D, and D,
perform better than other classification methods.

Itis observed that D, demonstrates a better performance
in terms of proportion of correct classification over
quanDA as shown in Table 2. This signifies that the use
of componentwise median in gene expression classification
yields a better performance in distance-based classification
than quantile based counterpart. In all the real data
examples, D , D,, D, and D, perform better than DD, and



DD,. However, DD, and DD, performs competitively
with splsda and quanDA.

One of the advantages of distance based classifiers
(D,, D,, D, and D,) over NSC, QuanDA, splsda, SCRDA
and SVM is its computational simplicity and cost in terms
of computation time. Figure 1 presents computation time
for implementing various classification methods for gene
expression data over 1000 repetitions. It is shown in
Figure 3 that D , D,, D, and D, are least computationally
expensive. DD, and DD, generate smaller computational
cost than any of NSC, QuanDA, splsda, SCRDA and SVM
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but higher computation time than D , D,, D, and D,. For
distance to mean based method (D,), we observe the least
computation time for all the datasets except Lymphoma
data. QuanDA achieves the highest computation time
for all the datasets. splsda and SVM also have high
computation time. Distance based classification rule based
on sample mean vector may be affected by outlying gene
expression levels in the data. This has been discussed in
literature. However, the difficulty can be overcome using
trimmed mean (see Hubert and Van Driessen (2004) for
parametric approach and Masse (2009) for nonparametric
approach).

Table 1: Mean and standard deviation, in parenthesis of proportions, of correct classification of simulated data examples.

Example SVM splsda QuanDA SCRDA INN 5NN NSC D, D, D, D, DD, DD,
1 0.845 0.8037 0.8071 0.5252 0.6669 0.7328 0.865 0.8383 0.853 0.8228 0.8287 0.7776 0.7737
(0.04) (0.05) (0.04) (0.05) (0.05) (0.05) (0.03) (0.04) (0.04) (0.04) (0.05) (0.05) (0.05)

2 0.8962 0.7583 0.9098 0.7429 0.6727 0.7246 0.8875 0.6632 0.8717 0.966 0.9229 0.6532 0.83
(0.04) (0.08) (0.04) (0.07) (0.06) (0.07) (0.05) (0.16) (0.05) (0.02) (0.09) (0.08) (0.08)

3 0.8116 0.5785 0.7779 0.4553 0.5532 0.6374 0.8136 0.8025 0.8329 0.801 0.8068 0.7415 0.7349
(0.03) (0.05) (0.03) (0.04) (0.04) (0.04) (0.03) (0.03) (0.02) (0.03) (0.03) (0.04) (0.04)

Table 2: Mean and standard deviation, in parenthesis of proportions, of correct classification of real data examples.

Dataset SVM splsda  quanDA SCRDA  NSC D, D, D, D, DD, DD,
Leukaemia  0.9995 09491 09764  0.9894  0.9985  0.9977  0.9991  0.9949 0998  0.9206  0.9275
(0.01) (0.05) (0.04) (0.03) (0.01) (0.01) (0.01) (0.02) (0.01) (0.08) (0.08)
Colon 09138  0.8366 09171  0.8419  0.8955 09111 09161 09251 09234  0.891 0.8958
(0.04) (0.05) (0.04) (0.05) (0.04) (0.04) (0.04) (0.03) (0.03) (0.06) (0.05)
SRBCT 0.6574  0.6705  0.6899  0.9778  0.9991  0.9236 09746  0.9941  0.9802  0.8466  0.8878
(0.06) (0.10) (0.06) (0.03) (0.01) 0.07) (0.03) (0.02) (0.04) 0.07) (0.06)
Lymphoma  0.9879 0.95 0.9887  0.9999  1.0000  0.9998  1.0000  1.0000  0.9999  0.9494  0.9517
(0.03) (0.05) (0.03) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.06) (0.05)
Prostate 0.94 0.9368  0.8596  0.8902  0.9452 0934 09486 09308  0.931 0.8801  0.8863
(0.03) (0.03) (0.05) (0.04) (0.03) (0.03) (0.03) (0.04) (0.03) (0.06) (0.05)
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5. Conclusion

Some distance functions are surveyed, formulated
and discussed in this paper with aim of presenting
computationally simpleand efficient classificationmethods
for gene expression data. The distance functions employed
in the classification methods include average distance and
its L, version, L, distance to class mean vector, L, distance
to class componentwise median and their distribution
based versions. All these classifiers are computationally
simple and very cheap in terms of computational cost and
their results can be easily interpreted. The distance based
methods discussed in this paper perform competitively
with some other classification methods in literature as
illustrated in our numerical examples. This supports a
claim (Hand, 2006) that simple classification methods like
D, D, D, D, DD, and DD, tend to have comparative
performance to more complicated classification methods.
Also, the proposed methods can be implemented for
multiclass extensions.

In order to implement the classification methods
based on distribution function of some distance measures
discussed in this paper, distance of each training
observation in each class is first computed with respect
to other observations in the class. Second, distance of
each test observation is computed with respect to training
observations in each competing class. Third, compute the
distribution function of distance of each test observation.
The test observations are then assigned to the class with
the least distribution value.

400
~fl— Prostate
300
= |ymphoma
200
== SRBCT

100 m-— Colon

Computation time

0 - v
D4 DD1 DD4 NSC

—4— | eukemia

DI D2 D3
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4000
3000
2000
1000

—&—Leukemia
m-— Colon

=& SRBCT

Computation time

={d=Lymphoma

—g#— Prostate

QuanDA SCRDA SVM

Splsda

Fig. 1. Computation time (in seconds) for implementing
various classification methods and computing proportions
of correct classification of the methods for gene expression
data over 1000 repetitions.

References

Alizadeh, A., Eisen, M.B., Davis, R.E., Ma, C.,
Lossos, 1.S., Rosenwald, A., Boldrick, J.C., Sabet, H.

. Staudt, L.M. (2000). Distinct types of diffuse large
B-cell lymphoma identified by gene expression profiling.
Nature, 403(6769):503-511

Alon, U.,Barkai, N., Notterman, D.A., Gish, K., Ybarra,
S., Mack, D. & Levine, A.J. (1999). Broad patterns of
gene expression revealed by clustering analysis of tumor
and normal colon tissues probed by oligonucleotide
arrays. Proceedings of the National Academy of Sciences
of the United States of America, 96(12):6745-6750

Chakraborty, A. & Chaudhuri, P. (2014). The deepest
point for distributions in infinite dimensional spaces.
Statistical Methodology, 20:27-39

Chung, D. & Keles, S. (2010). Sparse Partial Least
Squares Classification for High Dimensional Data.
Statistical Applications in Genetics & Molecular Biology,
9(1), Article 17.

Colak, C., Colak, M.C., Ermis, N., Erdil, N. & Ozdemir,
R. (2016). Prediction of cholesterol level in patients with
myocardial infarction based on medical data mining
methods. Kuwait Journal of Science, 43(3):86-90.

Cover, T.M. (1968). Rates of convergence for nearest
neighbor procedures. Proc. Hawaii Int’l Conf. Systems
Sciences. Western Periodicals, Honolulu. 413-415.

Dabney, A.R. (2005). Classification of microarrays to
nearest centroids. Bioinformatics, 21(22):4148-4154.

Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W.,
Schummer, M., Haussler, D. (2000). Support Vector
Machine classification and validation of cancer tissue
samples using microarray expression data. Bioinformatics,
16:906-914.

Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C.,
Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L.,
Downing, J.R., Caligiuri, M.A., Bloomfield, C.D.,
Lander, E.S. (1999). Molecular classification of cancer:
class discovery and class prediction by gene expression
monitoring, Science, 286:531-537.

Guo, Y., Hastie, T. & Tibshirani, R. (2007). Regularized
linear discriminant analysis and its application in micro-
arrays. Biostatistics, 8:86-100.

Hall, P., Titterington, D.M. & Xue, J. (2009). Median



Based classifiers for High Dimensional Data. Journal of
the American Statistical Association, 104(488):1597-
1608.

Hall, P. & Pham, T. (2010). Optimal properties of
centroid-based classifiers for very high-dimensional data.
The Annals of Statistics, 38(2):1071-1093.

Hand, D.J. (2006). Classifier technology & the illusion of
progress, Statistical Science, 21(1):1-14.

Hastie, T., Tibshirani, R. & Friedman, J. (2001). The
elements of statistical learning: data mining, inference
and prediction. Springer, New York. Chapter 16.

Hennig, C. & Viroli, C. (2016). Quantile-based classifiers.
Biometrika, 103(2):435-446.

Hubert, M. & Van Driessen, K. (2004). Fast and robust
discriminant analysis. Computational Statistics and Data
Analysis, 45:301-320.

Khan, J., Wei, J.S., Ringner, M., Saal, L.H., Ladanyi,
M., Westermann, F., Berthold, F., Schwab, M.,
Antonescu, C.R., Peterson, C. & Meltzer, P.S. (2001).
Classification and diagnostic prediction of cancers using
gene expression profiling and artificial neural networks.
Nature Medicine, 7:673-679.

Klassen, M. & Kim, N. (2009). Nearest shrunken centroid
as feature selection in microarray data. Proceeding of
computers and their applications, 227-232.

Li, B. and Yu, Q. (2008). Classification of functional
data: A segmentation approach. Computational Statistics
and Data Analysis, 52:4790-480

Liu,R.Y., Parelius, J.M. & Singh, K. (1999). Multivariate
analysis by data depth: Descriptive statistics, graphics and
inference. The Annals of Statistics, 27:783-858.

Masse, J.C. (2009). Multivariate Trimmed means based
on the Tukey depth, Journal of Statistical Planning and
Inference, 139(2):366-384

Singh, D., Febbo, P., Ross, K., Jackson, D., Manola,
J., Ladd, C., Tamayo, P., Renshaw, A., Damico, A.,
Richie, J., Lander, E., Loda, M., Kantoff, P., Golub,
T. & Sellers, W. (2002). Gene expression correlates of
clinical prostate cancer behaviour. Cancer Cell, 1:203-
209.

Tibshirani, R., Hastie, T., Narasimhan, B. & Chu, G.
(2002). Diagnosis of multiple cancer type by shrunken
centroid. Proceedings of the National Academy of

Olusola Samuel Makinde 38

Sciences, USA, 99(10):6567-6572.

Vanitha, C.D.A., Devaraj, D. & Venkatesulu, M.,
(2015). Gene expression data classification using support
vector machine and mutual information-based gene
selection. Procedia Computer Science, 47:13-21.

Wang, L., Zhu, J. & Zou, H. (2008). Hybrid huberized
support vector machines for microarray classification and
gene selection. Bioinformatics, 24(3):412-419.

Submitted: 03/01/2018
13/05/2018
27/11/2018

Revised:
Accepted:



39 Gene expression data classification: some distance-based methods

SLSb J5 500 Y g 51
Ljﬁ«)ﬁidﬁ-ﬂjﬁj@b%ﬂ\:\m&\wwy\w
osmakinde@futa.edu.ng : 5l

: |
B e ST (Sl Gasbad o 456 e AW 2 Y SULS  SwdS e » micro-array SUL de yores
wsauw,u\my%wasjcw\u,m%ngwwwwc\,ﬁ\vs.(Lfg-\M\anga-ﬂfj\
Pl e Gl del B 2ol w25 BLAN I3 Gam b bl oS el a2 Y1 (g sl 05 Wa3sT 1S T Lyl
ozl g g QIS (55 BLL J) o il s il J) Bl a5 BT Jas g o3 2 s g cdLl I
$5S ol ot Jebd Jlamas I Ol el L5 plaseal o35 Bl Sl e ol ] e Cinadll sel 43
I3 001 0o 5 Bl 1 Ol oo 5 2 sl 5] Ol s O g g1 O jon 5 8 ks § i #0855 LI el e 2o
el s ,S Il Caatdl 3 b el & lie ks o) ol UL i 3 oes ol y3 &Ny 15 il del 58 Goas
.;;u.\q;.ﬁzj\é,b@Qu@y@\@wgios}.w\u\y\gajﬂ\qm\éyﬁ;\>ie

EHUC/JORSERIRES ISP ¥ WO P PR SVE Y PUUPN EOPENR B4 S P oW PP SEM (P [JOCR





