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ABSTRACT 
In this paper, we apply the concept of cyclic φ -contraction for presenting a fixed point theorem 
on a Hausdorff uniform space.
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INTRODUCTION

Let X  be a nonempty set and let ϑ  be a nonempty family of subsets of XX × . The 
pair ),( ϑX  is called a uniform space if it satisfies the following properties:

(i) if G  is in ϑ , then G  contains the diagonal {( }:), Xxxx ∈ ;

(ii) if G  is in ϑ  and H  is a subset of XX ×  which contains G , then H  is in ϑ ;

(iii) if G  and H  are in ϑ , then HG∩  is in ϑ ;

(iv) if G  is in ϑ , then there exists H  in ϑ , such that, whenever ),( yx  and ),( zy  
are in H , then ),( zx  is in G ;

(v) if G  is in ϑ , then {( }),(:), Gyxxy ∈  is also in ϑ .

ϑ  is called the uniform structure of X  and its elements are called entourages or 
neighbourhoods or surroundings. In Bourbaki (1998) and Zeidler (1986), ),( ϑX  is 
called a quasiuniform space if property (v) is omitted. Some authors studied the theory 
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of fixed point or common fixed point for contractive selfmappings in uniform space 
(Altun (2011); Kubiak & Cho (1993); Turkoglu (2010); Wlodarczyk & Plebaniak 
(2011); Vályi (1985))

Later, Aamri & El Moutawakil (2004, 2005) proved some common fixed 
point theorems for some new contractive or expansive maps in uniform spaces by 
introducing the notions of an A -distance and an E-distance.

For any set X , the diagonal {( }:), Xxxx ∈  will be denoted by ∆  if no 
confusion occurs. If XXWV ×∈, , then =WV D {( :),{ yx  there exists Xz∈  
such that  ),( Wzx ∈ and }),( Vyz ∈  and =1V −  {( }),(:), Vxyyx ∈ .

If ϑ∈V  and VxyVyx ∈∈ ),(,),(  , x  and y  are said to be V -close, and 
a sequence }{ nx  in X is a Cauchy sequence for ϑ , if for any ϑ∈V , there exists 

1≥N  such that nx  and mx  are V-close for Nmn ≥, . An uniformity ϑ  defines 
a unique topology )(ϑτ  on X for which the neighborhoods of Xx∈  are the sets 

}),(:{=)( VyxXyxV ∈∈  when V runs over ϑ .

A sequence }{ nx  in X is convergent to x  for ϑ , if for any ϑ∈V , there exists 
N∈0n  such that )(xVxn ∈  for every 0nn ≥  and denote by xxnn =lim ∞→ . A 

uniform space ),( ϑX  is said to be Hausdorff if and only if the intersection of all 
the ϑ∈V  reduces to the diagonal ∆  of X, i.e., if Vyx ∈),(  for all ϑ∈V  implies 

yx = . This guarantees the uniqueness of limits of sequences. ϑ∈V  is said to be 
symmetrical if 1= −VV . Since each ϑ∈V  contains a symmetrical ϑ∈W  and 
if Wyx ∈),(  then x  and y  are both W and V-close, then for our purpose, we 
assume that each ϑ∈V  is symmetrical. When topological concepts are mentioned 
in the context of a uniform space ),( ϑX , they always refer to the topological space 

))(,( ϑτX .

PRELIMINARIES

Definition 1. (Aamri & El Moutawakil (2004)) Let ),( ϑX  be a uniform space. A 
function : × XXp  →[0, )∞  is said to be an A-distance if for any ϑ∈V  there exists 

0>δ  such that if δ≤),( xzp  and δ≤),( yzp  for some Xz∈ , then Vyx ∈),( .

Definition 2. (Aamri & El Moutawakil (2004)) Let ),( ϑX  be a uniform space. A 

function : →× XXp 0, )∞  is said to be an E-distance if

     • )( 1p  P is an A-distance,

    • )( 2p  ,(),(),( yzpzxpyxp +≤ ). .,, Xzyx ∈∀  
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There are very nice examples of E-distances in Aamri & El Moutawakil (2004). 
Some of these examples compare the concept of E-distance with W-distance, which is 
introduced by Montes & Charris (2001), on uniform spaces. Every W-distance is an 
E-distance, but the converse may not be true.

The following Lemma contain some useful properties of A-distances. It is stated in 
Aamri & El Moutawakil (2004). The proof is straightforward.

Lemma 1.  Let ),( ϑX  be a Hausdorff uniform space and p be an A-distance on X. 
Let }{ nx  and }{ ny  be sequences in X and }{ nα  , }{ nβ  be sequences in )[0,∞  
converging to 0. Then, for ,,, Xzyx ∈  the following holds:

 (a)   If nn yxp α≤),(  and nn zxp β≤),(  for all N∈n , then zy = . In particular, 
if 0=),( yxp  and 0=),( zxp , then zy = ,

 (b)   if nnn yxp α≤),(  and nn zxp β≤),(  for all N∈n , then }{ ny  converges to z,

 (c)   if nmn xxp α≤),(  for all N∈mn,  with nm > , then }{ nx  is a Cauchy 
sequence in ),( ϑX .

Let ),( ϑX  be a uniform space with an A-distance P. A sequence in X is P-Cauchy 
if it satisfies the usual metric condition. That is, for every 0>ε  there exists 

N∈0n  such that ε<),( mn xxp  for all 0, nmn ≥ . There are several concepts of 
completeness in this setting.

Definition 3. Let ),( ϑX  be a uniform space and P be an A-distance on X.

 •  X is S-complete uniform space if every P-Cauchy sequence }{ nx , there exists x in 
X with 0=),(lim xxp nn ∞→ .

•  X is P-Cauchy complete if every P-Cauchy sequence }{ nx , there exists x in X with 
xxnn =lim ∞→  with respect to )(ϑτ  .

•  XXT →:  is said to be P-continuous if 0=),(lim xxp nn ∞→  implies that 
( , ) = 0limn np Tx Tx→∞  . 

Remark 1.  Let ),( ϑX  be a Hausdorff uniform space and let }{ nx  be a P-Cauchy 
sequence. Suppose that X is S-complete, then there exists Xx∈  such that 

0=),(lim xxp nn ∞→ . Lemma 1 (b) then gives xxnn =lim ∞→  with respect to the 
topology )(ϑτ . Therefore S-completeness implies P-Cauchy completeness.

We recall the concept of a cyclic φ -contraction on a metric space and some classes 
of comparison functions.

Definition 4. (Kirk  et al. (2003)) Let X be a nonempty set, m a positive integer and 
XXT →:  a mapping. i

m
i AX 1== ∪  is said to be a cyclic representation of X with 

respect to T if
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• miAi ,1,2,=, "  are nonempty sets,

• 1121 )(,)(,,)( AATAATAAT mmm ⊂⊂⊂ −" . 

Definition 5. (Pacurar & Rus(2010)) Let ),( dX  be a metric space, m a positive 
integer, mAAA ,,, 21 "  nonempty subsets of X and i

m
i AX 1== ∪ . An operator 

XXT →:  is a cyclic φ -contraction if

• i
m
i AX 1== ∪  is a cyclic representation of X with respect to T,

•  ( , ) ( ( , ))d Tx Ty d x yϕ≤ , for any iAx∈ , 1+∈ iAy , mi ,1,2,= " , where 

11 = AAm+  and )[0,: →∞φ  [0, )∞  a non-decreasing, continuous function 

satisfying 0>)(tφ  for all 0>t  and 0=(0)φ . 

Definition 6. (Berinde (1997)) A function :[0, )ϕ ∞ → [0, )∞  is called a comparison 
function if it satisfies:

 • φ  is increasing,

 • ({ tnφ  )} converges to 0 as ∞→n , for all t ∈ [0, )∞ . 

Definition 7. (Berinde (1997)) A function :[0, )ϕ ∞ → [0, )∞  is called a (c)-
comparison function if:

• φ  is increasing,

•  there exist ,0 N∈k  (0,1)∈a  and a convergent series of nonnegative terms 

kk
v∑∞

1=  such that 
,)()(1

k
kk vtat +≤+ φφ

for 0kk ≥  and any t ∈ [0, )∞ . 

In Berinde (1997) the following are also proved:

Lemma 2. (Berinde (1997)) If :[0, )ϕ ∞ → [0, )∞  is a (c)-comparison function, 
then the following hold:

 • φ  is comparison function,

• tt <)(φ , for any 0>t ,

• φ  is continuous at 0 and 0=(0)φ ,

• the series )(
0=

tk
k
φ∑∞

 converges for any )(0,∞∈t . 
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MAIN RESULT

Before we state our main results, we give a formulation of cyclic φ -contraction in the 
setting of uniform spaces.

Definition 8. Let ),( ϑX  be a uniform space, m a positive integer, mAAA ,,, 21 "  
nonempty subsets of X and i

m
i AX 1== ∪ . Let P be an E-distance on X. An operator 

XXT →:  is a cyclic φ -contraction if

• i
m
i AX 1== ∪  is a cyclic representation of X with respect to T,

•  ( , ) ( ( , ))p Tx Ty p x yϕ≤ , for any iAx∈ , 1+∈ iAy , mi ,1,2,= " , where 

11 = AAm+  and :[0, )ϕ ∞ →[0, )∞  a non-decreasing, continuous function 

satisfying 0>)(tφ  for all 0>t  and 0=(0)φ . 

Theorem 1.  Let ),( ϑX  be an S-complete Hausdorff uniform space such that P 
be a E-distance on X and m a positive integer, mAAA ,,, 21 "  nonempty closed 
subsets of X respect to the topological space ))(,( ϑτX  and i

m
i AX 1== ∪ . Let 

:[0, ) 0, )ϕ ∞ → ∞  is a (c)-comparison function and XXT →:  be a cyclic φ
-contraction and P-continuous. Then T has a unique fixed point i

m
i Az 1=∩∈ .

Proof. Take Xx ∈0  and consider the sequence given by 

1 = , = 0,1,2, .n nx Tx n+ "

If there exists N∈0n  such that 010
= nn xx +  then, since 10 0 0

= =n n nx Tx x+ , the 

part of existence of the fixed point is proved. Suppose that nn xx ≠+1  for any N∈n . Then, 

since i
m
i AX 1== ∪ , for any 0>n  there exists },{1,2, min "∈  such that nin Ax ∈−1  

and 1+∈
nin Ax . Since T is a cyclic φ -contraction, we have 

         1 1( , ) = ( , )n n n np x x p Tx Tx+ −

                  )),(( 1 nn xxp −≤ φ         (0.1)

From (1) and taking into account that the monotonicity of φ , we get

           )),((),( 11 nnnn xxpxxp −+ ≤ φ             

                  )),((( 12 −−≤ nn xxpφφ

                 #

               )),,(( 10 xxpnφ≤

for any N∈n . Since P is an E-distance we obtain that 

,(),(),( 11 mmnnmn xxpxxpxxp −+ ++≤ " ),
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so for 1≥q  we have that 

)).,(()),((),( 10
1

10 xxpxxpxxp qnn
qnn

−+
+ ++≤ φφ "

In the sequel, we will prove that }{ nx  is a P-Cauchy sequence. Denoting 

0 1
=0

= ( ( , )), 0,
n

k
n

k
S p x x nϕ ≥∑

then we have  

          
.),( 11 −−++ −≤ nqnqnn SSxxp
               (0.2)

As φ  is a (c)-comparison function, supposing 0>),( 10 xxp , by Lemma 2, (iv), 
it follows that 

,<)),(( 10
0=

∞∑
∞

xxpk

k
φ

so there is 0, )S ∈ ∞  such that 

.=lim SSn
n ∞→

Then by (2) we obtain that 

( , ) 0n n qp x x + →  as n ,→∞

which shows that }{ nx  is a P-Cauchy sequence in the S-complete space X. So there 
exists Xx∈  such that 0=),(lim xxp nn ∞→ . In what follows, we prove that x is 
a fixed point of T. In fact, since xxnn =lim ∞→  and, as i

m
i AX 1== ∪  is a cyclic 

representation of X with respect to T, the sequence }{ nx  has infinite terms in each iA  
for { }mi ,1,2,"∈ . Since iA  is closed for every i, it follows that ,

1= i
m

i
Ax ∩∈  thus we 

take a subsequence knx  of }{ nx  with 1−∈ ikn Ax  (the existence of this subsequence 
is guaranteed by the above mentioned comment). Since T is P-continuous we have 

1( , ) = ( , ) = 0.lim limn n
n n

p x Tx p Tx Tx+
→∞ →∞

From Lemma 1 (a) we have x = Tx and, therefore, x is a fixed point of T.

Finally, in order to prove the uniqueness of the fixed point, suppose that Xzy ∈,  
with y and z fixed points of T. The cyclic character of T and the fact that Xzy ∈,  
are fixed points of T, imply that i

m
i Azy 1=, ∩∈ . Using the contractive condition we 

obtain 
( , ) = ( , ) ( ( , )) < ( , ), if ( , ) > 0.p y z p Ty Tz p y z p y z p y zϕ≤
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From the last inequality we get
( , ) = 0.p y z

Hence, also 0=),( yyp  and, consequently, zy = . This finishes the proof.

Corollary 1. Let ),( dX  be a complete metric space and m a positive integer, 

mAAA ,,, 21 "  nonempty closed subsets of X and i
m
i AX 1== ∪ . Let XXT →:  be 

a cyclic φ -contraction and P-continuous. Then T has a unique fixed point i
m
i Az 1=∩∈ .

Proof. By Theorem 1, it is enough set = { | > 0}U εϑ ε .

Corollary 2. Let ),( ϑX  be a S-complete Hausdorff uniform space such that P be a 
E-distance on X and m a positive integer, mAAA ,,, 21 "  nonempty closed subsets of X 
respect to the topological space ))(,( ϑτX . Let XXT →:  be a and P-continuous 
operator such that

• i
m
i AX 1== ∪  is a cyclic representation with respect to T and

•   ( , ) ( , )p Tx Ty kp x y≤ for any iAx∈ , 1+∈ iAy , mi ,1,2,= " , where 

11 = AAm+  and 1<<0 k . 

Then T has a unique fixed point i
m
i Az 1=∩∈ .

Proof. By Theorem 1, it is enough set t =)(φ  kt.
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