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Cyclic ¢-contractions on S-complete Hausdorff uniform Spaces
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on a Hausdorff uniform space.
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INTRODUCTION

Let X be anonempty set and let 3 be a nonempty family of subsets of X x X . The
pair (X, ) is called a uniform space if it satisfies the following properties:

(i) if G isin @, then G contains the diagonal {( x,x):x e X};
(i) if G isin @ and H is a subset of X x X which contains (G, then } isin 4;
(i) if G and H arein 9,then G H isin 9;
(iv) if G isin ¥, then there exists 77 in 3, such that, whenever (x,y) and (v,2)
arein ff,then (x,z) isin G ;
(v)if G isin @, then {( y,x):(x,y) € G} isalsoin 9.

9 1is called the uniform structure of X and its elements are called entourages or

neighbourhoods or surroundings. In Bourbaki (1998) and Zeidler (1986), (X, ) is
called a quasiuniform space if property (v) is omitted. Some authors studied the theory
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of fixed point or common fixed point for contractive selfmappings in uniform space
(Altun (2011); Kubiak & Cho (1993); Turkoglu (2010); Wlodarczyk & Plebaniak
(2011); Valyi (1985))

Later, Aamri & El Moutawakil (2004, 2005) proved some common fixed
point theorems for some new contractive or expansive maps in uniform spaces by
introducing the notions of an A -distance and an E-distance.

For any set X, the diagonal {(x, x):xeX } will be denoted by A if no
confusion occurs. If V. /W e X x X, then VoW ={( x,y): there exists ze X
such that (x,z) €W and (z,y)eV} and ' = {(x,y):(y,x)eV}.

If Ve8 and (x,y)eV,(y,x)eV . x and y are said to be J/-close, and
a sequence {x, } in X is a Cauchy sequence for 3, if for any V' € .9, there exists
N =1 such that X, and x  are V-close for n,m 2 N . An uniformity 9 defines
a unique topology 7(%) on X for which the neighborhoods of x € X are the sets
Vix)= {y eX:(x, y) c V} when V runs over 9.

A sequence {x, } in Xis convergent to X for 4, if forany J/ € 4, there exists
ny €N such that x, € V' (x) for every n> n, and denote by lim, X, = Xx. A
uniform space (X,$) is said to be Hausdorff if and only if the intersection of all
the V € 9 reduces to the diagonal A of X; i.e., if (x,y) €V forall J ¢ @ implies
x = y. This guarantees the uniqueness of limits of sequences. J e 9 is said to be
symmetrical if }J = J~'. Since each ¥V €& contains a symmetrical W e @ and
if (x,y)eW then X and Yy are both W and V-close, then for our purpose, we
assume that each }J € & is symmetrical. When topological concepts are mentioned

in the context of a uniform space (X,$), they always refer to the topological space

(X,7(9) .

PRELIMINARIES

Definition 1. (Aamri & El Moutawakil (2004)) Let (X,8) be a uniform space. A
function p: X x X —[0, ) is said to be an A-distance if forany V' € 9 there exists
S > 0 such thatif p(z,x) <0 and p(z,y) <6 forsome z € X ,then (x,y) el .
Definition 2. (Aamri & El Moutawakil (2004)) Let (X,#) be a uniform space. A
function p: X x X —0, 0) is said to be an E-distance if

« (p)) Pis an A-distance,
) (pz) p(X,y)Sp(va)"‘P(Zay)' any,ZGX-
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There are very nice examples of E-distances in Aamri & El Moutawakil (2004).
Some of these examples compare the concept of E-distance with W-distance, which is
introduced by Montes & Charris (2001), on uniform spaces. Every W-distance is an
E-distance, but the converse may not be true.

The following Lemma contain some useful properties of A-distances. It is stated in
Aamri & El Moutawakil (2004). The proof is straightforward.

Lemma 1. Let (X,%) be a Hausdorff uniform space and p be an A-distance on X.
Let {x,} and {),} be sequences in X and {@,} , {$,} be sequences in [0,00)
converging to 0. Then, for x,y,z € X, the following holds:

(a) If P(xnaJ’) <a, and p(xnaz) < ﬂn forall n € N, then ¥ = z . In particular,
if p(x,y)=0 and p(x,2) =0, then ¥y =2,
(b) if p(x,,y,)<a, and p(x,,z) < B, forall ne N, then {y,} converges toz,
(¢) if p(x,,x,)<a, for all n,meN with m>n, then {x,} is a Cauchy
sequence in (X, 9) .
Let (X,9) be a uniform space with an A-distance P. A sequence in X is P-Cauchy
if it satisfies the usual metric condition. That is, for every g > () there exists

n, €N such that p(x,,x,)<eg forall n,m>n,. There are several concepts of
completeness in this setting.

Definition 3. Let (X, $) be a uniform space and P be an 4-distance on X.

* Xis S-complete uniform space if every P-Cauchy sequence {x,}, there exists x in
X with limn%wp(xn ’x) =0.

*  Xis P-Cauchy complete if every P-Cauchy sequence {X,}, there exists x in X with
limy—« X, = X with respect to 7(%) .

« T:X—>X s said to be P-continuous if limy_e P(X,,Xx)=0 implies that
limyspTx,, Tx)=0 .

Remark 1. Let (X,9) be a Hausdorff uniform space and let {x,} be a P-Cauchy
sequence. Suppose that X is S-complete, then there exists x e X such that
lim, e P(X,,%) = 0. Lemma 1 (b) then gives lim,_»X, = X with respect to the
topology T (9) . Therefore S-completeness implies P-Cauchy completeness.

We recall the concept of a cyclic @ -contraction on a metric space and some classes
of comparison functions.

Definition 4. (Kirk et al. (2003)) Let X be a nonempty set, m a positive integer and
T:X — X amapping. X = u:’i , 4, is said to be a cyclic representation of X with
respect to 7'if
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« A4,,i=1,2,---,m are nonempty sets,
I(4)c 4, ,T(4, )= A4,,T(4,)c 4, .

Definition 5. (Pacurar & Rus(2010)) Let (X,d) be a metric space, m a positive
integer, A,,A,, -+, A, nonempty subsets of X and X =U! 4. An operator
T:X — X isacyclic ¢-contracti0n if

« X = U;il A,- is a cyclic representation of X with respect to 7,

«d(Tx,Ty)<(d(x,y)), forany x€ 4, y€ Ay, i=12,---,m, where
A, = A and ¢:[0,00) = [0,00) a non-decreasing, continuous function
satisfying ¢(¢) > 0 forall > () and ¢(0)=0.

Definition 6. (Berinde (1997)) A function ¢ :[0,00) — [0, 0) is called a comparison
function if it satisfies:

< P is increasing,

« {¢"(t)} converges to 0 as pp —» o0, forall ¢ € [0,00).
Definition 7. (Berinde (1997)) A function ¢:[0,00) — [0,00) is called a (c)-
comparison function if:

* @ is increasing,

« there exist k, € N, a €(0,1) and a convergent series of nonnegative terms

wa V, such that
k=1 K+l k

g () <ag (H)+v,
for k >k, and any ¢ € [0,00).

In Berinde (1997) the following are also proved:

Lemma 2. (Berinde (1997)) If @ :[0,00) = [0,90) is a (c)-comparison function,
then the following hold:

* @ is comparison function,
c #(t)<t,forany >0,
s @ is continuous at 0 and #(0)=0,

« the series Z;ﬁk () converges for any ¢ € (0,00).
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MAIN RESULT

Before we state our main results, we give a formulation of cyclic @ -contraction in the
setting of uniform spaces.

Definition 8. Let (X, 19) be a uniform space, m a positive integer, Al,Az,. .-, Am
nonempty subsets of X and X =", 4,. Let P be an E-distance on X. An operator
T:X — X isacyclic ¢ -contraction if

« X =U, 4 is a cyclic representation of X with respect to 7,

« p(Ix.Ty)<o(p(x,y)), for any xe€ 4, yeA,,, i=1.2,---,m, where
A

m+1
satisfying ¢(¢) > 0 forall > ( and #(0)=0.

Theorem 1. Let (X,¥) be an S-complete Hausdorff uniform space such that P

be a E-distance on X and m a positive integer, 4,,4,, -, 4, nonempty closed

subsets of X respect to the topological space (X,7($) and X =U! 4. Let

= A, and @:[0,00) —>[0,00) a non-decreasing, continuous function

@:[0,00) > 0,00) is a (c)-comparison function and 7: X — X be a cyclic ¢

-contraction and P-continuous. Then 7 has a unique fixed point z € N}, 4, .
Proof. Take x, € X and consider the sequence given by

x,,=Ix,,n=0,1,2,--.

n+l

If there exists 7, € N such that X, +1 = ¥, then, since X e =Tx =x, . the

0 ngy

part of existence of the fixed point is proved. Suppose that x,,, # x, forany n € N . Then,

n+l
since X = U 4, forany 5> there exists i, € {1,2,---,m} such that X, ; € Ain

and X, € 4; ,,. Since T'is a cyclic ¢ -contraction, we have
n

plx,,x,.)=pTx, .Tx,)
<o(p(x,,,x,) (0.1)

From (1) and taking into account that the monotonicity of ¢, we get

p(x,,x,.0) <P(p(x,.,x,)
<PP(p(x,55%,)

<@ (p(xg,x)))s
for any 5 € N. Since P is an E-distance we obtain that

p(xn"xm)Sp(xn’an)+”'+p(‘xm—1"xm)>
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so for ¢ =1 we have that
p(‘xn’anI) <¢"(p(xy,x,) +"'+¢n+q71(p(xo’x1))-

In the sequel, we will prove that {x } is a P-Cauchy sequence. Denoting

S, =>0" (p(xx,)),n 20,
k=0

then we have
p(xn > xn+q) < Sn+q—1 - Sn—l : (02)

As ¢ is a (c)-comparison function, supposing P(X,,X;) >0, by Lemma 2, (iv),
it follows that

> (plxox) <o,

so there is § € 0,00) such that

]imSn =§.

n—0

Then by (2) we obtain that

px,,x,.,)—>0asn—> oo,

which shows that {X,} is a P-Cauchy sequence in the S-complete space X. So there
exists x € X such that lim,_. pP(x,,x) =0. In what follows, we prove that x is
a fixed point of 7. In fact, since ]im,_,»X, =X and, as X =U! 4, is a cyclic
representation of X with respect to 7, the sequence {x, } has infinite terms in each **
forie {1 2,0, m} .Since 4; is closed for every i, it follows that X € ﬂ;A"’ thus we
take a subsequence X, of {x, } with X, L A._; (the existence of this subsequence
is guaranteed by the above mentioned comment). Since 7 is P-continuous we have

limp(x,,,Tx)=1limpTx,,Tx)=0.

n—>0 n—>0

From Lemma 1 (a) we have x = Tx and, therefore, x is a fixed point of 7.

Finally, in order to prove the uniqueness of the fixed point, suppose that ¥,z € X
with y and z fixed points of 7. The cyclic character of 7" and the fact that y, z e X
are fixed points of 7, imply that ¥,z € N, A4, . Using the contractive condition we
obtain

p(y,2)=pTy,Iz)<o(p(y,z))<p(y,z),ifp(y,z)>0.
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From the last inequality we get
p(y,z)=0.
Hence, also p(»,¥) =0 and, consequently, ¥ = z . This finishes the proof.

Corollary 1. Let (X,d) be a complete metric space and m a positive integer,
A, A,,--, A, nonempty closed subsets of Xand X = U} 4, . Let T: X — X be

acyclic @ -contraction and P-continuous. Then T has a unique fixed point z € N} 4, .

Proof. By Theorem 1, it is enough set $={U_|&>0} .

Corollary 2. Let (X,$) be a S-complete Hausdorff uniform space such that P be a
E-distance on X and m a positive integer, 4, 4,,--+, A, nonempty closed subsets of X
respect to the topological space (X, 7($) -Let 7: X —» X be a and P-continuous
operator such that

« X =U| 4 is a cyclic representation with respect to 7 and

« p(Ix,Ty) <kp(x,¥) for any xe€d, yed,, i=12,---,m, where
Ay =4 and 0<k <1.

Then 7 has a unique fixed point z € N, 4, .

Proof. By Theorem 1, it is enough set @(¢) = kt.
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