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Abstract
The problem of boundary layer flow of a non-Newtonian power-law fluid (which is assumed to be incompressible) 
is considered. Existence and uniqueness of similarity solutions are considered for all values of the power-law 
index  n>0. Conditions are determined (values of n and various parameters within the problem) where existence 
and uniqueness of solutions hold and where they do not hold. Exact solutions in some cases are exhibited. 
The asymptotic behavior of solutions is also determined for all values of n>0 of the non-Newtonian fluid.
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1. Introduction

The problem of boundary layer flow of non-Newtonian 
fluids has been  the focus of many studies in the last 
couple of decades as it has appeared in many applications 
relating to industry, mechanics, and applied mathematics. 
This scientific problem that arises from applications 
to  fluid mechanics is modeled by a boundary value 
problem on a semi-infinite domain which involves a 
third order non-linear ordinary differential equation. A 
transformation to a finite  domain naturally results in a non-
linear singular boundary value problem of the third order.

Earlier modeling of boundary-layer power-law 
fluid problems can be found in Acrivos et al. (1960). 
However, more on the modeling and derivation of the 
problem can be found in Pakdemirli (1994), Astarita & 
Marrucci (1974), Schlichting (1979), and Bohme (1987). 
We remark that using a Crocco variable formulation 
Nachman & Talliafero (1979) studied existence and 
uniqueness for the mathematical problem involving a 
Newtonian fluid. Existence and uniqueness for both 
Newtonian and non-Newtonian fluids were examined 
by studying the problem within its semi-infinite domain 
by Guedda & Hammouch (2008) and Guedda (2009). 
Wei & Al-Ashhab (2014) applied a transformation to a 
finite domain to establish existence and uniqueness and 
study properties of solutions for non-Newtonian fluids. 

Many other authors contributed to this rich problem 
that is difficult to study in full generality, see for example 
Ece & Büyük (2002), Denier & Dabrowski (2004), 

and Blasius (1908) to mention a few. It is noted that 
Rahman et al. (2017) studied a time varying fluid flow 
problem in the presence of a magnetic field, while a 
similar mathematical model was considered in Marin 
& Lupu (1998) in the context of thermoelasticity and 
harmonic vibrations. The work by Howell et al. (1997) 
on power-law fluids discussed this non-Newtonian 
problem in the context of momentum and heat 
transfer, and it was an important physical contribution. 
Indeed however, many questions remain unanswered.

The most commonly used model in non-Newtonian fluid 
mechanics is the Ostwald-de Waele model with a power-
law rheology which is characterized by a power-law index 
n. The value n=1 corresponds to a Newtonian fluid, while 
n>1  describes a dilatant or shear-thickening fluid and 
0<n<1 describes pseudo-plastic or shear-thinning fluid.

In this paper we look to apply a Crocco variable 
transformation to study properties of solutions, existence 
and uniqueness, as well as the asymptotic behavior for 
a general version (relatively speaking) of the problem 
involving a non-Newtonian fluid with initial conditions 
not set a priori, but rather left arbitrary. It is important 
to note that in Al-Ashhab (2015), a somewhat similar 
technique was utilized to establish a single equation for 
both positive and negative curvatures, and to investigate 
the asymptotic behavior but for a simpler version of the 
problem with a somewhat simpler governing ODE. This 
enables the discovery of new results and aspects of the 
problem, and also enables the analysis of the asymptotic 
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behavior of solutions. This also enables the exhibition of 
exact solutions in some cases. Crocco variables within 
this context also enable the exploration of a relatively 
new and peculiar result that uniqueness of solutions do 
not always hold. Those results are further discussed using 
numerical evidence (in the last section of the paper).

2. Governing equations

A brief derivation of the problem is given here: The 
model used here is the Ostwald-de Waele model with 
a power-law rheology, where the relationship between 
the shear stress τxy and the strain rate      is 
governed by (see for example Pakdemirli (1994), 
Astarita & Marrucci (1974), or Schlichting (1979) 
for full physical derivation and more details):
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  is governed by (see for 
example Pakdemirli (1994), Astarita & Marrucci 
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𝜏𝜏() = 𝑘𝑘(/𝑢𝑢)/

012𝑢𝑢)) .                                         (1) 
 
   The shear stress 𝜏𝜏() here is a component of the 
stress tensor, however a discussion of the stress 
tensor is beyond the scope of this paper. The 
physical problem is defined by a two dimensional 
incompressible non-Newtonian steady-state 
laminar fluid flow on a semi-infinite plate, where 
the flow is governed by equation (1). The 𝑥𝑥-
direction is parallel to a bounding plate situated at 
𝑦𝑦 = 0, while the 𝑦𝑦-direction is perpendicular to 
this bounding plate. The (so-called boundary 
layer) governing equations are the continuity and 
momentum equations as follows: 
 
𝑢𝑢( + 𝑣𝑣) = 0,                                                       (2) 
 
 
𝑢𝑢𝑢𝑢( + 𝑣𝑣𝑢𝑢) = 𝜈𝜈	(/𝑢𝑢)/

012𝑢𝑢)))                            (3) 
 
where 𝑢𝑢 and 𝑣𝑣 are the velocity components in the 
𝑥𝑥 and 𝑦𝑦 directions respectively. Observe that, 
physically, the bounding plate is at 𝑦𝑦 = 0 where a 

zero velocity parallel to the plate 𝑢𝑢(𝑥𝑥, 0) defines a 
no-slip condition at this bounding plate. On the 
other hand a zero velocity perpendicular to the 
plate 𝑣𝑣(𝑥𝑥, 0) implies an impermeable bounding 
plate. In what follows it shall be assumed that 
𝑣𝑣(𝑥𝑥, 0) ≠ 0, which implies that the bounding 
plate is porous. The boundary conditions are: 
 

𝑢𝑢(𝑥𝑥, 0) = 𝑈𝑈=(𝑥𝑥),					𝑣𝑣(𝑥𝑥, 0) = 𝑉𝑉=(𝑥𝑥),							 
                            (4) 
   𝑢𝑢(𝑥𝑥, 𝑦𝑦) → 0  as  𝑦𝑦 → ∞                     
 
where 𝑈𝑈=(𝑥𝑥) = 𝑢𝑢=𝑥𝑥A  (which represents the 
stretching velocity) and 𝑉𝑉=(𝑥𝑥) = 𝑣𝑣=𝑥𝑥

B(CDEF)ED
DGF 	 

(which represents the suction/injection velocity).  
 
    Now let 𝜓𝜓 = 𝜓𝜓(𝑥𝑥, 𝑦𝑦) be a function that satisfies 
𝑢𝑢 = 𝜓𝜓), 𝑣𝑣 = −𝜓𝜓(  𝜓𝜓here is referred to as the 
stream function). This transforms problem (2-4) 
into: 
 
𝜓𝜓)𝜓𝜓() − 𝜓𝜓(𝜓𝜓)) = 𝜈𝜈J|𝜓𝜓))|012𝜓𝜓))L)               (5) 
 
with conditions 
 
𝜓𝜓)(𝑥𝑥, 0) = 𝑢𝑢=𝑥𝑥A,			𝜓𝜓((𝑥𝑥, 0) = −𝑣𝑣=𝑥𝑥

B(CDEF)ED
DGF 	 

                                                                            (6) 
𝜓𝜓)(𝑥𝑥, 𝑦𝑦) → 0    as   𝑦𝑦 → ∞                                 
 
Introduce a function 𝑓𝑓 and parameter 𝜂𝜂 via:  
 
𝜓𝜓(𝑥𝑥, 𝑦𝑦) = 𝐷𝐷𝑥𝑥P𝑓𝑓(𝜂𝜂),					𝜂𝜂 = 𝐸𝐸 )

(R
                        (7) 

 
This is called a similarity transformation, where 𝑓𝑓 
is referred to as the dimensionless stream function 
and 𝜂𝜂 is the similarity variable. Substituting (7) 
into (5) yields the following equation: 
 
𝜈𝜈𝐷𝐷0𝐸𝐸S0T2𝑥𝑥(P1SU)01U(|𝑓𝑓VV|012𝑓𝑓VV)V

+ 	𝛼𝛼𝐷𝐷S𝐸𝐸S𝑥𝑥S(P1U)12𝑓𝑓𝑓𝑓VV
= (𝛼𝛼 − 𝛽𝛽)𝐷𝐷S𝐸𝐸S𝑥𝑥S(P1U)12	(𝑓𝑓V)S 

 
 
 
which simplifies to an ordinary differential 
equation, namely: 
 
(|𝑓𝑓VV|012𝑓𝑓VV)V + 	𝛼𝛼𝑓𝑓𝑓𝑓VV = (𝛼𝛼 − 𝛽𝛽)	(𝑓𝑓V)S             
 
(8) 
 
if and only if 𝛼𝛼(2 − 𝑛𝑛) + 𝛽𝛽(2𝑛𝑛 − 1) = 1, 𝛼𝛼 −
𝛽𝛽 = 𝑚𝑚, and where in this context one assumes 
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(1)
The shear stress τxy here is a component of the stress 

tensor, however a discussion of the stress tensor is beyond 
the scope of this paper. The physical problem is defined 
by a two dimensional incompressible non-Newtonian 
steady-state laminar fluid flow on a semi-infinite 
plate, where the flow is governed by equation (1). The 
x-direction is parallel to a bounding plate situated at y=0, 
while the y-direction is perpendicular to this bounding 
plate. The (so-called boundary layer) governing equations 
are the continuity and momentum equations as follows:
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incompressible non-Newtonian steady-state 
laminar fluid flow on a semi-infinite plate, where 
the flow is governed by equation (1). The 𝑥𝑥-
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where 𝑢𝑢 and 𝑣𝑣 are the velocity components in the 
𝑥𝑥 and 𝑦𝑦 directions respectively. Observe that, 
physically, the bounding plate is at 𝑦𝑦 = 0 where a 

zero velocity parallel to the plate 𝑢𝑢(𝑥𝑥, 0) defines a 
no-slip condition at this bounding plate. On the 
other hand a zero velocity perpendicular to the 
plate 𝑣𝑣(𝑥𝑥, 0) implies an impermeable bounding 
plate. In what follows it shall be assumed that 
𝑣𝑣(𝑥𝑥, 0) ≠ 0, which implies that the bounding 
plate is porous. The boundary conditions are: 
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    Now let 𝜓𝜓 = 𝜓𝜓(𝑥𝑥, 𝑦𝑦) be a function that satisfies 
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𝛽𝛽 = 𝑚𝑚, and where in this context one assumes 
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impermeable bounding plate. In what follows it shall 
be assumed that v(x,0) ≠ 0, which implies that the 
bounding plate is porous. The boundary conditions are:
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where Uw (x)=uw xm  (which represents the stretching 
velocity) and                                  (which represents the 
suction/injection velocity). 

Now let ψ=ψ(x,y) be a function that satisfies 
u=ψy, v=-ψx where ψ is referred to as the stream 
function). This transforms problem (2-4) into:
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enables the exhibition of exact solutions in some 
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enable the exploration of a relatively new and 
peculiar result that uniqueness of solutions do not 
always hold. Those results are further discussed 
using numerical evidence (in the last section of 
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relationship between the shear stress 𝜏𝜏() and the 
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derivation and more details): 
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   The shear stress 𝜏𝜏() here is a component of the 
stress tensor, however a discussion of the stress 
tensor is beyond the scope of this paper. The 
physical problem is defined by a two dimensional 
incompressible non-Newtonian steady-state 
laminar fluid flow on a semi-infinite plate, where 
the flow is governed by equation (1). The 𝑥𝑥-
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this bounding plate. The (so-called boundary 
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where 𝑢𝑢 and 𝑣𝑣 are the velocity components in the 
𝑥𝑥 and 𝑦𝑦 directions respectively. Observe that, 
physically, the bounding plate is at 𝑦𝑦 = 0 where a 

zero velocity parallel to the plate 𝑢𝑢(𝑥𝑥, 0) defines a 
no-slip condition at this bounding plate. On the 
other hand a zero velocity perpendicular to the 
plate 𝑣𝑣(𝑥𝑥, 0) implies an impermeable bounding 
plate. In what follows it shall be assumed that 
𝑣𝑣(𝑥𝑥, 0) ≠ 0, which implies that the bounding 
plate is porous. The boundary conditions are: 
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incompressible non-Newtonian steady-state 
laminar fluid flow on a semi-infinite plate, where 
the flow is governed by equation (1). The 𝑥𝑥-
direction is parallel to a bounding plate situated at 
𝑦𝑦 = 0, while the 𝑦𝑦-direction is perpendicular to 
this bounding plate. The (so-called boundary 
layer) governing equations are the continuity and 
momentum equations as follows: 
 
𝑢𝑢( + 𝑣𝑣) = 0,                                                       (2) 
 
 
𝑢𝑢𝑢𝑢( + 𝑣𝑣𝑢𝑢) = 𝜈𝜈	(/𝑢𝑢)/

012𝑢𝑢)))                            (3) 
 
where 𝑢𝑢 and 𝑣𝑣 are the velocity components in the 
𝑥𝑥 and 𝑦𝑦 directions respectively. Observe that, 
physically, the bounding plate is at 𝑦𝑦 = 0 where a 
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no-slip condition at this bounding plate. On the 
other hand a zero velocity perpendicular to the 
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(|𝑓𝑓VV|012𝑓𝑓VV)V + 	𝛼𝛼𝑓𝑓𝑓𝑓VV = (𝛼𝛼 − 𝛽𝛽)	(𝑓𝑓V)S             
 
(8) 
 
if and only if 𝛼𝛼(2 − 𝑛𝑛) + 𝛽𝛽(2𝑛𝑛 − 1) = 1, 𝛼𝛼 −
𝛽𝛽 = 𝑚𝑚, and where in this context one assumes 

(5)

with conditions
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(relatively speaking) of the problem involving a 
non-Newtonian fluid with initial conditions not set 
a priori, but rather left arbitrary. It is important to 
note that in Al-Ashhab (2015), a somewhat 
similar technique was utilized to establish a single 
equation for both positive and negative curvatures, 
and to investigate the asymptotic behavior but for 
a simpler version of the problem with a somewhat 
simpler governing ODE. This enables the 
discovery of new results and aspects of the 
problem, and also enables the analysis of the 
asymptotic behavior of solutions. This also 
enables the exhibition of exact solutions in some 
cases. Crocco variables within this context also 
enable the exploration of a relatively new and 
peculiar result that uniqueness of solutions do not 
always hold. Those results are further discussed 
using numerical evidence (in the last section of 
the paper). 
 
2. Governing equations 
 
A brief derivation of the problem is given here: 
The model used here is the Ostwald-de Waele 
model with a power-law rheology, where the 
relationship between the shear stress 𝜏𝜏() and the 
strain rate  𝑢𝑢) =

+,
+)

  is governed by (see for 
example Pakdemirli (1994), Astarita & Marrucci 
(1974), or Schlichting (1979) for full physical 
derivation and more details): 
 
𝜏𝜏() = 𝑘𝑘(/𝑢𝑢)/

012𝑢𝑢)) .                                         (1) 
 
   The shear stress 𝜏𝜏() here is a component of the 
stress tensor, however a discussion of the stress 
tensor is beyond the scope of this paper. The 
physical problem is defined by a two dimensional 
incompressible non-Newtonian steady-state 
laminar fluid flow on a semi-infinite plate, where 
the flow is governed by equation (1). The 𝑥𝑥-
direction is parallel to a bounding plate situated at 
𝑦𝑦 = 0, while the 𝑦𝑦-direction is perpendicular to 
this bounding plate. The (so-called boundary 
layer) governing equations are the continuity and 
momentum equations as follows: 
 
𝑢𝑢( + 𝑣𝑣) = 0,                                                       (2) 
 
 
𝑢𝑢𝑢𝑢( + 𝑣𝑣𝑢𝑢) = 𝜈𝜈	(/𝑢𝑢)/

012𝑢𝑢)))                            (3) 
 
where 𝑢𝑢 and 𝑣𝑣 are the velocity components in the 
𝑥𝑥 and 𝑦𝑦 directions respectively. Observe that, 
physically, the bounding plate is at 𝑦𝑦 = 0 where a 

zero velocity parallel to the plate 𝑢𝑢(𝑥𝑥, 0) defines a 
no-slip condition at this bounding plate. On the 
other hand a zero velocity perpendicular to the 
plate 𝑣𝑣(𝑥𝑥, 0) implies an impermeable bounding 
plate. In what follows it shall be assumed that 
𝑣𝑣(𝑥𝑥, 0) ≠ 0, which implies that the bounding 
plate is porous. The boundary conditions are: 
 

𝑢𝑢(𝑥𝑥, 0) = 𝑈𝑈=(𝑥𝑥),					𝑣𝑣(𝑥𝑥, 0) = 𝑉𝑉=(𝑥𝑥),							 
                            (4) 
   𝑢𝑢(𝑥𝑥, 𝑦𝑦) → 0  as  𝑦𝑦 → ∞                     
 
where 𝑈𝑈=(𝑥𝑥) = 𝑢𝑢=𝑥𝑥A  (which represents the 
stretching velocity) and 𝑉𝑉=(𝑥𝑥) = 𝑣𝑣=𝑥𝑥
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(which represents the suction/injection velocity).  
 
    Now let 𝜓𝜓 = 𝜓𝜓(𝑥𝑥, 𝑦𝑦) be a function that satisfies 
𝑢𝑢 = 𝜓𝜓), 𝑣𝑣 = −𝜓𝜓(  𝜓𝜓here is referred to as the 
stream function). This transforms problem (2-4) 
into: 
 
𝜓𝜓)𝜓𝜓() − 𝜓𝜓(𝜓𝜓)) = 𝜈𝜈J|𝜓𝜓))|012𝜓𝜓))L)               (5) 
 
with conditions 
 
𝜓𝜓)(𝑥𝑥, 0) = 𝑢𝑢=𝑥𝑥A,			𝜓𝜓((𝑥𝑥, 0) = −𝑣𝑣=𝑥𝑥

B(CDEF)ED
DGF 	 

                                                                            (6) 
𝜓𝜓)(𝑥𝑥, 𝑦𝑦) → 0    as   𝑦𝑦 → ∞                                 
 
Introduce a function 𝑓𝑓 and parameter 𝜂𝜂 via:  
 
𝜓𝜓(𝑥𝑥, 𝑦𝑦) = 𝐷𝐷𝑥𝑥P𝑓𝑓(𝜂𝜂),					𝜂𝜂 = 𝐸𝐸 )

(R
                        (7) 

 
This is called a similarity transformation, where 𝑓𝑓 
is referred to as the dimensionless stream function 
and 𝜂𝜂 is the similarity variable. Substituting (7) 
into (5) yields the following equation: 
 
𝜈𝜈𝐷𝐷0𝐸𝐸S0T2𝑥𝑥(P1SU)01U(|𝑓𝑓VV|012𝑓𝑓VV)V

+ 	𝛼𝛼𝐷𝐷S𝐸𝐸S𝑥𝑥S(P1U)12𝑓𝑓𝑓𝑓VV
= (𝛼𝛼 − 𝛽𝛽)𝐷𝐷S𝐸𝐸S𝑥𝑥S(P1U)12	(𝑓𝑓V)S 

 
 
 
which simplifies to an ordinary differential 
equation, namely: 
 
(|𝑓𝑓VV|012𝑓𝑓VV)V + 	𝛼𝛼𝑓𝑓𝑓𝑓VV = (𝛼𝛼 − 𝛽𝛽)	(𝑓𝑓V)S             
 
(8) 
 
if and only if 𝛼𝛼(2 − 𝑛𝑛) + 𝛽𝛽(2𝑛𝑛 − 1) = 1, 𝛼𝛼 −
𝛽𝛽 = 𝑚𝑚, and where in this context one assumes 

(6)

Samer Al-Ashhab 
 

(relatively speaking) of the problem involving a 
non-Newtonian fluid with initial conditions not set 
a priori, but rather left arbitrary. It is important to 
note that in Al-Ashhab (2015), a somewhat 
similar technique was utilized to establish a single 
equation for both positive and negative curvatures, 
and to investigate the asymptotic behavior but for 
a simpler version of the problem with a somewhat 
simpler governing ODE. This enables the 
discovery of new results and aspects of the 
problem, and also enables the analysis of the 
asymptotic behavior of solutions. This also 
enables the exhibition of exact solutions in some 
cases. Crocco variables within this context also 
enable the exploration of a relatively new and 
peculiar result that uniqueness of solutions do not 
always hold. Those results are further discussed 
using numerical evidence (in the last section of 
the paper). 
 
2. Governing equations 
 
A brief derivation of the problem is given here: 
The model used here is the Ostwald-de Waele 
model with a power-law rheology, where the 
relationship between the shear stress 𝜏𝜏() and the 
strain rate  𝑢𝑢) =

+,
+)

  is governed by (see for 
example Pakdemirli (1994), Astarita & Marrucci 
(1974), or Schlichting (1979) for full physical 
derivation and more details): 
 
𝜏𝜏() = 𝑘𝑘(/𝑢𝑢)/

012𝑢𝑢)) .                                         (1) 
 
   The shear stress 𝜏𝜏() here is a component of the 
stress tensor, however a discussion of the stress 
tensor is beyond the scope of this paper. The 
physical problem is defined by a two dimensional 
incompressible non-Newtonian steady-state 
laminar fluid flow on a semi-infinite plate, where 
the flow is governed by equation (1). The 𝑥𝑥-
direction is parallel to a bounding plate situated at 
𝑦𝑦 = 0, while the 𝑦𝑦-direction is perpendicular to 
this bounding plate. The (so-called boundary 
layer) governing equations are the continuity and 
momentum equations as follows: 
 
𝑢𝑢( + 𝑣𝑣) = 0,                                                       (2) 
 
 
𝑢𝑢𝑢𝑢( + 𝑣𝑣𝑢𝑢) = 𝜈𝜈	(/𝑢𝑢)/

012𝑢𝑢)))                            (3) 
 
where 𝑢𝑢 and 𝑣𝑣 are the velocity components in the 
𝑥𝑥 and 𝑦𝑦 directions respectively. Observe that, 
physically, the bounding plate is at 𝑦𝑦 = 0 where a 

zero velocity parallel to the plate 𝑢𝑢(𝑥𝑥, 0) defines a 
no-slip condition at this bounding plate. On the 
other hand a zero velocity perpendicular to the 
plate 𝑣𝑣(𝑥𝑥, 0) implies an impermeable bounding 
plate. In what follows it shall be assumed that 
𝑣𝑣(𝑥𝑥, 0) ≠ 0, which implies that the bounding 
plate is porous. The boundary conditions are: 
 

𝑢𝑢(𝑥𝑥, 0) = 𝑈𝑈=(𝑥𝑥),					𝑣𝑣(𝑥𝑥, 0) = 𝑉𝑉=(𝑥𝑥),							 
                            (4) 
   𝑢𝑢(𝑥𝑥, 𝑦𝑦) → 0  as  𝑦𝑦 → ∞                     
 
where 𝑈𝑈=(𝑥𝑥) = 𝑢𝑢=𝑥𝑥A  (which represents the 
stretching velocity) and 𝑉𝑉=(𝑥𝑥) = 𝑣𝑣=𝑥𝑥
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(which represents the suction/injection velocity).  
 
    Now let 𝜓𝜓 = 𝜓𝜓(𝑥𝑥, 𝑦𝑦) be a function that satisfies 
𝑢𝑢 = 𝜓𝜓), 𝑣𝑣 = −𝜓𝜓(  𝜓𝜓here is referred to as the 
stream function). This transforms problem (2-4) 
into: 
 
𝜓𝜓)𝜓𝜓() − 𝜓𝜓(𝜓𝜓)) = 𝜈𝜈J|𝜓𝜓))|012𝜓𝜓))L)               (5) 
 
with conditions 
 
𝜓𝜓)(𝑥𝑥, 0) = 𝑢𝑢=𝑥𝑥A,			𝜓𝜓((𝑥𝑥, 0) = −𝑣𝑣=𝑥𝑥

B(CDEF)ED
DGF 	 

                                                                            (6) 
𝜓𝜓)(𝑥𝑥, 𝑦𝑦) → 0    as   𝑦𝑦 → ∞                                 
 
Introduce a function 𝑓𝑓 and parameter 𝜂𝜂 via:  
 
𝜓𝜓(𝑥𝑥, 𝑦𝑦) = 𝐷𝐷𝑥𝑥P𝑓𝑓(𝜂𝜂),					𝜂𝜂 = 𝐸𝐸 )

(R
                        (7) 

 
This is called a similarity transformation, where 𝑓𝑓 
is referred to as the dimensionless stream function 
and 𝜂𝜂 is the similarity variable. Substituting (7) 
into (5) yields the following equation: 
 
𝜈𝜈𝐷𝐷0𝐸𝐸S0T2𝑥𝑥(P1SU)01U(|𝑓𝑓VV|012𝑓𝑓VV)V

+ 	𝛼𝛼𝐷𝐷S𝐸𝐸S𝑥𝑥S(P1U)12𝑓𝑓𝑓𝑓VV
= (𝛼𝛼 − 𝛽𝛽)𝐷𝐷S𝐸𝐸S𝑥𝑥S(P1U)12	(𝑓𝑓V)S 

 
 
 
which simplifies to an ordinary differential 
equation, namely: 
 
(|𝑓𝑓VV|012𝑓𝑓VV)V + 	𝛼𝛼𝑓𝑓𝑓𝑓VV = (𝛼𝛼 − 𝛽𝛽)	(𝑓𝑓V)S             
 
(8) 
 
if and only if 𝛼𝛼(2 − 𝑛𝑛) + 𝛽𝛽(2𝑛𝑛 − 1) = 1, 𝛼𝛼 −
𝛽𝛽 = 𝑚𝑚, and where in this context one assumes 

Introduce a function f and parameter η via: 
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(relatively speaking) of the problem involving a 
non-Newtonian fluid with initial conditions not set 
a priori, but rather left arbitrary. It is important to 
note that in Al-Ashhab (2015), a somewhat 
similar technique was utilized to establish a single 
equation for both positive and negative curvatures, 
and to investigate the asymptotic behavior but for 
a simpler version of the problem with a somewhat 
simpler governing ODE. This enables the 
discovery of new results and aspects of the 
problem, and also enables the analysis of the 
asymptotic behavior of solutions. This also 
enables the exhibition of exact solutions in some 
cases. Crocco variables within this context also 
enable the exploration of a relatively new and 
peculiar result that uniqueness of solutions do not 
always hold. Those results are further discussed 
using numerical evidence (in the last section of 
the paper). 
 
2. Governing equations 
 
A brief derivation of the problem is given here: 
The model used here is the Ostwald-de Waele 
model with a power-law rheology, where the 
relationship between the shear stress 𝜏𝜏() and the 
strain rate  𝑢𝑢) =

+,
+)

  is governed by (see for 
example Pakdemirli (1994), Astarita & Marrucci 
(1974), or Schlichting (1979) for full physical 
derivation and more details): 
 
𝜏𝜏() = 𝑘𝑘(/𝑢𝑢)/

012𝑢𝑢)) .                                         (1) 
 
   The shear stress 𝜏𝜏() here is a component of the 
stress tensor, however a discussion of the stress 
tensor is beyond the scope of this paper. The 
physical problem is defined by a two dimensional 
incompressible non-Newtonian steady-state 
laminar fluid flow on a semi-infinite plate, where 
the flow is governed by equation (1). The 𝑥𝑥-
direction is parallel to a bounding plate situated at 
𝑦𝑦 = 0, while the 𝑦𝑦-direction is perpendicular to 
this bounding plate. The (so-called boundary 
layer) governing equations are the continuity and 
momentum equations as follows: 
 
𝑢𝑢( + 𝑣𝑣) = 0,                                                       (2) 
 
 
𝑢𝑢𝑢𝑢( + 𝑣𝑣𝑢𝑢) = 𝜈𝜈	(/𝑢𝑢)/

012𝑢𝑢)))                            (3) 
 
where 𝑢𝑢 and 𝑣𝑣 are the velocity components in the 
𝑥𝑥 and 𝑦𝑦 directions respectively. Observe that, 
physically, the bounding plate is at 𝑦𝑦 = 0 where a 

zero velocity parallel to the plate 𝑢𝑢(𝑥𝑥, 0) defines a 
no-slip condition at this bounding plate. On the 
other hand a zero velocity perpendicular to the 
plate 𝑣𝑣(𝑥𝑥, 0) implies an impermeable bounding 
plate. In what follows it shall be assumed that 
𝑣𝑣(𝑥𝑥, 0) ≠ 0, which implies that the bounding 
plate is porous. The boundary conditions are: 
 

𝑢𝑢(𝑥𝑥, 0) = 𝑈𝑈=(𝑥𝑥),					𝑣𝑣(𝑥𝑥, 0) = 𝑉𝑉=(𝑥𝑥),							 
                            (4) 
   𝑢𝑢(𝑥𝑥, 𝑦𝑦) → 0  as  𝑦𝑦 → ∞                     
 
where 𝑈𝑈=(𝑥𝑥) = 𝑢𝑢=𝑥𝑥A  (which represents the 
stretching velocity) and 𝑉𝑉=(𝑥𝑥) = 𝑣𝑣=𝑥𝑥
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(which represents the suction/injection velocity).  
 
    Now let 𝜓𝜓 = 𝜓𝜓(𝑥𝑥, 𝑦𝑦) be a function that satisfies 
𝑢𝑢 = 𝜓𝜓), 𝑣𝑣 = −𝜓𝜓(  𝜓𝜓here is referred to as the 
stream function). This transforms problem (2-4) 
into: 
 
𝜓𝜓)𝜓𝜓() − 𝜓𝜓(𝜓𝜓)) = 𝜈𝜈J|𝜓𝜓))|012𝜓𝜓))L)               (5) 
 
with conditions 
 
𝜓𝜓)(𝑥𝑥, 0) = 𝑢𝑢=𝑥𝑥A,			𝜓𝜓((𝑥𝑥, 0) = −𝑣𝑣=𝑥𝑥

B(CDEF)ED
DGF 	 

                                                                            (6) 
𝜓𝜓)(𝑥𝑥, 𝑦𝑦) → 0    as   𝑦𝑦 → ∞                                 
 
Introduce a function 𝑓𝑓 and parameter 𝜂𝜂 via:  
 
𝜓𝜓(𝑥𝑥, 𝑦𝑦) = 𝐷𝐷𝑥𝑥P𝑓𝑓(𝜂𝜂),					𝜂𝜂 = 𝐸𝐸 )

(R
                        (7) 

 
This is called a similarity transformation, where 𝑓𝑓 
is referred to as the dimensionless stream function 
and 𝜂𝜂 is the similarity variable. Substituting (7) 
into (5) yields the following equation: 
 
𝜈𝜈𝐷𝐷0𝐸𝐸S0T2𝑥𝑥(P1SU)01U(|𝑓𝑓VV|012𝑓𝑓VV)V

+ 	𝛼𝛼𝐷𝐷S𝐸𝐸S𝑥𝑥S(P1U)12𝑓𝑓𝑓𝑓VV
= (𝛼𝛼 − 𝛽𝛽)𝐷𝐷S𝐸𝐸S𝑥𝑥S(P1U)12	(𝑓𝑓V)S 

 
 
 
which simplifies to an ordinary differential 
equation, namely: 
 
(|𝑓𝑓VV|012𝑓𝑓VV)V + 	𝛼𝛼𝑓𝑓𝑓𝑓VV = (𝛼𝛼 − 𝛽𝛽)	(𝑓𝑓V)S             
 
(8) 
 
if and only if 𝛼𝛼(2 − 𝑛𝑛) + 𝛽𝛽(2𝑛𝑛 − 1) = 1, 𝛼𝛼 −
𝛽𝛽 = 𝑚𝑚, and where in this context one assumes 

(7)

This is called a similarity transformation, where f 
is referred to as the dimensionless stream function 
and η is the similarity variable. Substituting 
(7) into (5) yields the following equation:

which  simplifies  to  an  ordinary  differential  equation, 
namely:

(8)

if and only if α(2-n)+β(2n-1)=1,α-β=m, and where in 
this context one assumes νD(n-2) E(2n+1)=1. The boundary 
conditions are transformed to:

Asymptotic Behavior and Existence of Similarity Solutions for a Boundary Layer Flow Problem 
 
 
𝜈𝜈𝐷𝐷01S𝐸𝐸S0T2 = 1. The boundary conditions are 
transformed to: 

𝑓𝑓(0) = −
𝑣𝑣=
𝛼𝛼𝐷𝐷	, 				𝑓𝑓

V(0) =
𝑢𝑢=
𝐷𝐷𝐸𝐸	,	 

                                                                            (9) 
𝑓𝑓V(∞) = lim

_→`
𝑓𝑓V(𝜂𝜂) = 0 

This power-law problem (8-9) has in fact been 
studied by many authors, but not in its full 
generality. Some authors set some boundary 
conditions (and/or some of the other parameters) 
to zero. Others fixed the values of some of the 
parameters a priori, or considered certain 
values/ranges of the power-law index 𝑛𝑛. 

    It is worthwhile noting here that for the special 
case of Newtonian fluids 𝑛𝑛 = 1 with   𝑚𝑚 = 𝑢𝑢= =
𝑣𝑣= = 0,  and an adjustment of the condition at 
infinity to lim

a→`
𝑓𝑓V(𝜂𝜂) = 𝐶𝐶 ≠ 0 one obtains the 

Blasius equation (see Blasius (1908)). In Guedda 
(2009) and references therein the authors 
considered a power-law velocity profile where 
they adjusted the condition at infinity to the 
following: lim

_→`
𝑓𝑓V(𝜂𝜂) = 𝐶𝐶𝜂𝜂c but with 𝑢𝑢= = 𝑣𝑣= =

0. A full derivation can be found in those 
references mentioned above, and where we note 
that the researchers added the condition 𝛼𝛼 =
𝛽𝛽(1 + 𝜎𝜎) which resulted from the derivation 
process, and determined existence/non-existence 
of similarity solutions for certain ranges of 𝜎𝜎 and 
n. It should be emphasized here that the case 𝐶𝐶 =
0 was not included as a special case of their 
solution (due to the approach that they used). 
 
    We shall study the general case 𝑚𝑚 ≠ 0, 𝑢𝑢= ≠ 0,  
and 𝑣𝑣= ≠ 0 (we may allude to the case 𝑚𝑚 = 0 
briefly to introduce our approach but then move 
on to the general case with 𝑚𝑚 ≠ 0). All values of 
𝑛𝑛 > 0	are considered. In Guedda & Hammouch 
(2009) the authors studied a somewhat similar 
problem but considered values of 𝑛𝑛 > 1 only, and 
a certain range of the parameters 𝛼𝛼 and 𝑚𝑚. We 
look to expand the range of those parameters, 
where we use a different approach and study 
solutions as well as their asymptotic behavior. 
Illustrations to highlight the results are also 
included. Now by setting 𝑎𝑎 = − fg

Ph
	,			𝜖𝜖 = ,g

hj
  the 

power-law problem (8-9) takes the form: 
 
(|𝑓𝑓VV|012𝑓𝑓VV)V + 𝛼𝛼𝑓𝑓𝑓𝑓VV − 𝑚𝑚(𝑓𝑓V)S = 0             (10) 
 
subject to 
 

𝑓𝑓(0) = 𝑎𝑎, 𝑓𝑓V(0) = 𝜖𝜖, 	𝑓𝑓V(∞) = 0                   (11) 
 
We assume negative curvature solutions: 𝑓𝑓VV < 0. 
This is the assumption in much of the literature, 
however positive curvatures are also considered 
frequently. In the case where 𝑓𝑓VV < 0 we must 
have 𝜖𝜖 > 0 (this is the case when for example 
𝑢𝑢= > 0, 𝐷𝐷 > 0, and 𝐸𝐸 > 0 are all positive) and 
𝑓𝑓′ ≥ 0 on the entire solution domain. 
 
Remark We note that replacing 𝑎𝑎 by −𝑎𝑎 and 𝜖𝜖 by 
−𝜖𝜖 yields a transformation of negative curvature 
solutions to positive curvature solutions since if 
𝑓𝑓, 𝑓𝑓′,	and 𝑓𝑓′′ all change sign, then the last two 
terms of the ODE in (10) will not change sign. 
Yet, the first term will change sign. Transferring 
the negative sign introduced in the first term to the 
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(relatively speaking) of the problem involving a 
non-Newtonian fluid with initial conditions not set 
a priori, but rather left arbitrary. It is important to 
note that in Al-Ashhab (2015), a somewhat 
similar technique was utilized to establish a single 
equation for both positive and negative curvatures, 
and to investigate the asymptotic behavior but for 
a simpler version of the problem with a somewhat 
simpler governing ODE. This enables the 
discovery of new results and aspects of the 
problem, and also enables the analysis of the 
asymptotic behavior of solutions. This also 
enables the exhibition of exact solutions in some 
cases. Crocco variables within this context also 
enable the exploration of a relatively new and 
peculiar result that uniqueness of solutions do not 
always hold. Those results are further discussed 
using numerical evidence (in the last section of 
the paper). 
 
2. Governing equations 
 
A brief derivation of the problem is given here: 
The model used here is the Ostwald-de Waele 
model with a power-law rheology, where the 
relationship between the shear stress 𝜏𝜏() and the 
strain rate  𝑢𝑢) =

+,
+)

  is governed by (see for 
example Pakdemirli (1994), Astarita & Marrucci 
(1974), or Schlichting (1979) for full physical 
derivation and more details): 
 
𝜏𝜏() = 𝑘𝑘(/𝑢𝑢)/

012𝑢𝑢)) .                                         (1) 
 
   The shear stress 𝜏𝜏() here is a component of the 
stress tensor, however a discussion of the stress 
tensor is beyond the scope of this paper. The 
physical problem is defined by a two dimensional 
incompressible non-Newtonian steady-state 
laminar fluid flow on a semi-infinite plate, where 
the flow is governed by equation (1). The 𝑥𝑥-
direction is parallel to a bounding plate situated at 
𝑦𝑦 = 0, while the 𝑦𝑦-direction is perpendicular to 
this bounding plate. The (so-called boundary 
layer) governing equations are the continuity and 
momentum equations as follows: 
 
𝑢𝑢( + 𝑣𝑣) = 0,                                                       (2) 
 
 
𝑢𝑢𝑢𝑢( + 𝑣𝑣𝑢𝑢) = 𝜈𝜈	(/𝑢𝑢)/

012𝑢𝑢)))                            (3) 
 
where 𝑢𝑢 and 𝑣𝑣 are the velocity components in the 
𝑥𝑥 and 𝑦𝑦 directions respectively. Observe that, 
physically, the bounding plate is at 𝑦𝑦 = 0 where a 

zero velocity parallel to the plate 𝑢𝑢(𝑥𝑥, 0) defines a 
no-slip condition at this bounding plate. On the 
other hand a zero velocity perpendicular to the 
plate 𝑣𝑣(𝑥𝑥, 0) implies an impermeable bounding 
plate. In what follows it shall be assumed that 
𝑣𝑣(𝑥𝑥, 0) ≠ 0, which implies that the bounding 
plate is porous. The boundary conditions are: 
 

𝑢𝑢(𝑥𝑥, 0) = 𝑈𝑈=(𝑥𝑥),					𝑣𝑣(𝑥𝑥, 0) = 𝑉𝑉=(𝑥𝑥),							 
                            (4) 
   𝑢𝑢(𝑥𝑥, 𝑦𝑦) → 0  as  𝑦𝑦 → ∞                     
 
where 𝑈𝑈=(𝑥𝑥) = 𝑢𝑢=𝑥𝑥A  (which represents the 
stretching velocity) and 𝑉𝑉=(𝑥𝑥) = 𝑣𝑣=𝑥𝑥
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(which represents the suction/injection velocity).  
 
    Now let 𝜓𝜓 = 𝜓𝜓(𝑥𝑥, 𝑦𝑦) be a function that satisfies 
𝑢𝑢 = 𝜓𝜓), 𝑣𝑣 = −𝜓𝜓(  𝜓𝜓here is referred to as the 
stream function). This transforms problem (2-4) 
into: 
 
𝜓𝜓)𝜓𝜓() − 𝜓𝜓(𝜓𝜓)) = 𝜈𝜈J|𝜓𝜓))|012𝜓𝜓))L)               (5) 
 
with conditions 
 
𝜓𝜓)(𝑥𝑥, 0) = 𝑢𝑢=𝑥𝑥A,			𝜓𝜓((𝑥𝑥, 0) = −𝑣𝑣=𝑥𝑥
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𝜓𝜓)(𝑥𝑥, 𝑦𝑦) → 0    as   𝑦𝑦 → ∞                                 
 
Introduce a function 𝑓𝑓 and parameter 𝜂𝜂 via:  
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(R
                        (7) 

 
This is called a similarity transformation, where 𝑓𝑓 
is referred to as the dimensionless stream function 
and 𝜂𝜂 is the similarity variable. Substituting (7) 
into (5) yields the following equation: 
 
𝜈𝜈𝐷𝐷0𝐸𝐸S0T2𝑥𝑥(P1SU)01U(|𝑓𝑓VV|012𝑓𝑓VV)V

+ 	𝛼𝛼𝐷𝐷S𝐸𝐸S𝑥𝑥S(P1U)12𝑓𝑓𝑓𝑓VV
= (𝛼𝛼 − 𝛽𝛽)𝐷𝐷S𝐸𝐸S𝑥𝑥S(P1U)12	(𝑓𝑓V)S 

 
 
 
which simplifies to an ordinary differential 
equation, namely: 
 
(|𝑓𝑓VV|012𝑓𝑓VV)V + 	𝛼𝛼𝑓𝑓𝑓𝑓VV = (𝛼𝛼 − 𝛽𝛽)	(𝑓𝑓V)S             
 
(8) 
 
if and only if 𝛼𝛼(2 − 𝑛𝑛) + 𝛽𝛽(2𝑛𝑛 − 1) = 1, 𝛼𝛼 −
𝛽𝛽 = 𝑚𝑚, and where in this context one assumes 
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non-Newtonian fluid with initial conditions not set 
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a somewhat similar problem but considered values 
of n>1 only, and a certain range of the parameters 
α and m. We look to expand the range of those 
parameters, where we use a different approach and 
study solutions as well as their asymptotic behavior. 
Illustrations to highlight the results are also included. 
Now by setting                          the power-law problem 
(8-9) takes the form:
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𝜈𝜈𝐷𝐷01S𝐸𝐸S0T2 = 1. The boundary conditions are 
transformed to: 

𝑓𝑓(0) = −
𝑣𝑣=
𝛼𝛼𝐷𝐷	, 				𝑓𝑓

V(0) =
𝑢𝑢=
𝐷𝐷𝐸𝐸	,	 

                                                                            (9) 
𝑓𝑓V(∞) = lim

_→`
𝑓𝑓V(𝜂𝜂) = 0 

This power-law problem (8-9) has in fact been 
studied by many authors, but not in its full 
generality. Some authors set some boundary 
conditions (and/or some of the other parameters) 
to zero. Others fixed the values of some of the 
parameters a priori, or considered certain 
values/ranges of the power-law index 𝑛𝑛. 

    It is worthwhile noting here that for the special 
case of Newtonian fluids 𝑛𝑛 = 1 with   𝑚𝑚 = 𝑢𝑢= =
𝑣𝑣= = 0,  and an adjustment of the condition at 
infinity to lim

a→`
𝑓𝑓V(𝜂𝜂) = 𝐶𝐶 ≠ 0 one obtains the 

Blasius equation (see Blasius (1908)). In Guedda 
(2009) and references therein the authors 
considered a power-law velocity profile where 
they adjusted the condition at infinity to the 
following: lim

_→`
𝑓𝑓V(𝜂𝜂) = 𝐶𝐶𝜂𝜂c but with 𝑢𝑢= = 𝑣𝑣= =

0. A full derivation can be found in those 
references mentioned above, and where we note 
that the researchers added the condition 𝛼𝛼 =
𝛽𝛽(1 + 𝜎𝜎) which resulted from the derivation 
process, and determined existence/non-existence 
of similarity solutions for certain ranges of 𝜎𝜎 and 
n. It should be emphasized here that the case 𝐶𝐶 =
0 was not included as a special case of their 
solution (due to the approach that they used). 
 
    We shall study the general case 𝑚𝑚 ≠ 0, 𝑢𝑢= ≠ 0,  
and 𝑣𝑣= ≠ 0 (we may allude to the case 𝑚𝑚 = 0 
briefly to introduce our approach but then move 
on to the general case with 𝑚𝑚 ≠ 0). All values of 
𝑛𝑛 > 0	are considered. In Guedda & Hammouch 
(2009) the authors studied a somewhat similar 
problem but considered values of 𝑛𝑛 > 1 only, and 
a certain range of the parameters 𝛼𝛼 and 𝑚𝑚. We 
look to expand the range of those parameters, 
where we use a different approach and study 
solutions as well as their asymptotic behavior. 
Illustrations to highlight the results are also 
included. Now by setting 𝑎𝑎 = − fg

Ph
	,			𝜖𝜖 = ,g

hj
  the 

power-law problem (8-9) takes the form: 
 
(|𝑓𝑓VV|012𝑓𝑓VV)V + 𝛼𝛼𝑓𝑓𝑓𝑓VV − 𝑚𝑚(𝑓𝑓V)S = 0             (10) 
 
subject to 
 

𝑓𝑓(0) = 𝑎𝑎, 𝑓𝑓V(0) = 𝜖𝜖, 	𝑓𝑓V(∞) = 0                   (11) 
 
We assume negative curvature solutions: 𝑓𝑓VV < 0. 
This is the assumption in much of the literature, 
however positive curvatures are also considered 
frequently. In the case where 𝑓𝑓VV < 0 we must 
have 𝜖𝜖 > 0 (this is the case when for example 
𝑢𝑢= > 0, 𝐷𝐷 > 0, and 𝐸𝐸 > 0 are all positive) and 
𝑓𝑓′ ≥ 0 on the entire solution domain. 
 
Remark We note that replacing 𝑎𝑎 by −𝑎𝑎 and 𝜖𝜖 by 
−𝜖𝜖 yields a transformation of negative curvature 
solutions to positive curvature solutions since if 
𝑓𝑓, 𝑓𝑓′,	and 𝑓𝑓′′ all change sign, then the last two 
terms of the ODE in (10) will not change sign. 
Yet, the first term will change sign. Transferring 
the negative sign introduced in the first term to the 
other two will then show that a negative 𝑓𝑓′′ 
increases whereas a positive 𝑓𝑓′′ decreases with 
both eventually reaching 0. 
 
3. Asymptotic behavior and existence of 
solutions 
 
In this section, we study the asymptotic behavior 
of solutions for different values of the power-law 
index 𝑛𝑛. Apply a Crocco variable transformation 
to problem (10-11) with the following variables: 
 
𝑧𝑧 = 𝑓𝑓V(𝜂𝜂),			ℎ(𝑧𝑧) = J−𝑓𝑓′′(𝜂𝜂)L0                       (12) 
 
This leads to the problem consisting of the 
equation: 
 
ℎVV(𝑧𝑧) = ((−𝛼𝛼 + 2𝑚𝑚)𝑧𝑧 − AoCpq(o)

0p(o)
)	ℎ1

F
D(𝑧𝑧),    (13) 

 
for 0 < 𝑧𝑧 < 𝜖𝜖, subject to:  ℎ(0) = 0, ℎV(𝜖𝜖) =
𝛼𝛼𝑎𝑎 − ArC

sqq(t)
 .  Observe that ℎ(𝑧𝑧)	must be a positive 

function and 𝑧𝑧 > 0, therefore the only solutions of 
relevance here are the ones in the first quadrant. 
By letting 𝐴𝐴 = −𝛼𝛼 + 2𝑚𝑚, 𝐵𝐵 = −A

0
 we obtain and 

study the equivalent problem:  
 
ℎVV(𝑧𝑧) = w	𝐴𝐴𝑧𝑧 + 𝐵𝐵𝑧𝑧S p

q(o)
p(o)

	x ℎ1
F
D(𝑧𝑧)                  (14)     

 
for 0 < 𝑧𝑧 < 𝜖𝜖, subject to 
 
ℎ(0) = 0, 		ℎV(𝜖𝜖) = 𝛼𝛼𝑎𝑎 − ArC

sqq(t)
                        (15) 

 
3.1 The case 𝐵𝐵 = 0 
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subject to
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𝜈𝜈𝐷𝐷01S𝐸𝐸S0T2 = 1. The boundary conditions are 
transformed to: 

𝑓𝑓(0) = −
𝑣𝑣=
𝛼𝛼𝐷𝐷	, 				𝑓𝑓

V(0) =
𝑢𝑢=
𝐷𝐷𝐸𝐸	,	 

                                                                            (9) 
𝑓𝑓V(∞) = lim

_→`
𝑓𝑓V(𝜂𝜂) = 0 

This power-law problem (8-9) has in fact been 
studied by many authors, but not in its full 
generality. Some authors set some boundary 
conditions (and/or some of the other parameters) 
to zero. Others fixed the values of some of the 
parameters a priori, or considered certain 
values/ranges of the power-law index 𝑛𝑛. 

    It is worthwhile noting here that for the special 
case of Newtonian fluids 𝑛𝑛 = 1 with   𝑚𝑚 = 𝑢𝑢= =
𝑣𝑣= = 0,  and an adjustment of the condition at 
infinity to lim

a→`
𝑓𝑓V(𝜂𝜂) = 𝐶𝐶 ≠ 0 one obtains the 

Blasius equation (see Blasius (1908)). In Guedda 
(2009) and references therein the authors 
considered a power-law velocity profile where 
they adjusted the condition at infinity to the 
following: lim

_→`
𝑓𝑓V(𝜂𝜂) = 𝐶𝐶𝜂𝜂c but with 𝑢𝑢= = 𝑣𝑣= =

0. A full derivation can be found in those 
references mentioned above, and where we note 
that the researchers added the condition 𝛼𝛼 =
𝛽𝛽(1 + 𝜎𝜎) which resulted from the derivation 
process, and determined existence/non-existence 
of similarity solutions for certain ranges of 𝜎𝜎 and 
n. It should be emphasized here that the case 𝐶𝐶 =
0 was not included as a special case of their 
solution (due to the approach that they used). 
 
    We shall study the general case 𝑚𝑚 ≠ 0, 𝑢𝑢= ≠ 0,  
and 𝑣𝑣= ≠ 0 (we may allude to the case 𝑚𝑚 = 0 
briefly to introduce our approach but then move 
on to the general case with 𝑚𝑚 ≠ 0). All values of 
𝑛𝑛 > 0	are considered. In Guedda & Hammouch 
(2009) the authors studied a somewhat similar 
problem but considered values of 𝑛𝑛 > 1 only, and 
a certain range of the parameters 𝛼𝛼 and 𝑚𝑚. We 
look to expand the range of those parameters, 
where we use a different approach and study 
solutions as well as their asymptotic behavior. 
Illustrations to highlight the results are also 
included. Now by setting 𝑎𝑎 = − fg

Ph
	,			𝜖𝜖 = ,g

hj
  the 

power-law problem (8-9) takes the form: 
 
(|𝑓𝑓VV|012𝑓𝑓VV)V + 𝛼𝛼𝑓𝑓𝑓𝑓VV − 𝑚𝑚(𝑓𝑓V)S = 0             (10) 
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𝑓𝑓(0) = 𝑎𝑎, 𝑓𝑓V(0) = 𝜖𝜖, 	𝑓𝑓V(∞) = 0                   (11) 
 
We assume negative curvature solutions: 𝑓𝑓VV < 0. 
This is the assumption in much of the literature, 
however positive curvatures are also considered 
frequently. In the case where 𝑓𝑓VV < 0 we must 
have 𝜖𝜖 > 0 (this is the case when for example 
𝑢𝑢= > 0, 𝐷𝐷 > 0, and 𝐸𝐸 > 0 are all positive) and 
𝑓𝑓′ ≥ 0 on the entire solution domain. 
 
Remark We note that replacing 𝑎𝑎 by −𝑎𝑎 and 𝜖𝜖 by 
−𝜖𝜖 yields a transformation of negative curvature 
solutions to positive curvature solutions since if 
𝑓𝑓, 𝑓𝑓′,	and 𝑓𝑓′′ all change sign, then the last two 
terms of the ODE in (10) will not change sign. 
Yet, the first term will change sign. Transferring 
the negative sign introduced in the first term to the 
other two will then show that a negative 𝑓𝑓′′ 
increases whereas a positive 𝑓𝑓′′ decreases with 
both eventually reaching 0. 
 
3. Asymptotic behavior and existence of 
solutions 
 
In this section, we study the asymptotic behavior 
of solutions for different values of the power-law 
index 𝑛𝑛. Apply a Crocco variable transformation 
to problem (10-11) with the following variables: 
 
𝑧𝑧 = 𝑓𝑓V(𝜂𝜂),			ℎ(𝑧𝑧) = J−𝑓𝑓′′(𝜂𝜂)L0                       (12) 
 
This leads to the problem consisting of the 
equation: 
 
ℎVV(𝑧𝑧) = ((−𝛼𝛼 + 2𝑚𝑚)𝑧𝑧 − AoCpq(o)
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F
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for 0 < 𝑧𝑧 < 𝜖𝜖, subject to:  ℎ(0) = 0, ℎV(𝜖𝜖) =
𝛼𝛼𝑎𝑎 − ArC

sqq(t)
 .  Observe that ℎ(𝑧𝑧)	must be a positive 

function and 𝑧𝑧 > 0, therefore the only solutions of 
relevance here are the ones in the first quadrant. 
By letting 𝐴𝐴 = −𝛼𝛼 + 2𝑚𝑚, 𝐵𝐵 = −A

0
 we obtain and 

study the equivalent problem:  
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3.1 The case 𝐵𝐵 = 0 

(11)
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increases whereas a positive 𝑓𝑓′′ decreases with 
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function and 𝑧𝑧 > 0, therefore the only solutions of 
relevance here are the ones in the first quadrant. 
By letting 𝐴𝐴 = −𝛼𝛼 + 2𝑚𝑚, 𝐵𝐵 = −A
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generality. Some authors set some boundary 
conditions (and/or some of the other parameters) 
to zero. Others fixed the values of some of the 
parameters a priori, or considered certain 
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    It is worthwhile noting here that for the special 
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𝛽𝛽(1 + 𝜎𝜎) which resulted from the derivation 
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a certain range of the parameters 𝛼𝛼 and 𝑚𝑚. We 
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𝑢𝑢= > 0, 𝐷𝐷 > 0, and 𝐸𝐸 > 0 are all positive) and 
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Remark We note that replacing 𝑎𝑎 by −𝑎𝑎 and 𝜖𝜖 by 
−𝜖𝜖 yields a transformation of negative curvature 
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the negative sign introduced in the first term to the 
other two will then show that a negative 𝑓𝑓′′ 
increases whereas a positive 𝑓𝑓′′ decreases with 
both eventually reaching 0. 
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In this section, we study the asymptotic behavior 
of solutions for different values of the power-law 
index 𝑛𝑛. Apply a Crocco variable transformation 
to problem (10-11) with the following variables: 
 
𝑧𝑧 = 𝑓𝑓V(𝜂𝜂),			ℎ(𝑧𝑧) = J−𝑓𝑓′′(𝜂𝜂)L0                       (12) 
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 .  Observe that ℎ(𝑧𝑧)	must be a positive 

function and 𝑧𝑧 > 0, therefore the only solutions of 
relevance here are the ones in the first quadrant. 
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    It is worthwhile noting here that for the special 
case of Newtonian fluids 𝑛𝑛 = 1 with   𝑚𝑚 = 𝑢𝑢= =
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n. It should be emphasized here that the case 𝐶𝐶 =
0 was not included as a special case of their 
solution (due to the approach that they used). 
 
    We shall study the general case 𝑚𝑚 ≠ 0, 𝑢𝑢= ≠ 0,  
and 𝑣𝑣= ≠ 0 (we may allude to the case 𝑚𝑚 = 0 
briefly to introduce our approach but then move 
on to the general case with 𝑚𝑚 ≠ 0). All values of 
𝑛𝑛 > 0	are considered. In Guedda & Hammouch 
(2009) the authors studied a somewhat similar 
problem but considered values of 𝑛𝑛 > 1 only, and 
a certain range of the parameters 𝛼𝛼 and 𝑚𝑚. We 
look to expand the range of those parameters, 
where we use a different approach and study 
solutions as well as their asymptotic behavior. 
Illustrations to highlight the results are also 
included. Now by setting 𝑎𝑎 = − fg
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Asymptotic Behavior and Existence of Similarity Solutions for a Boundary Layer Flow Problem 
 
 
𝜈𝜈𝐷𝐷01S𝐸𝐸S0T2 = 1. The boundary conditions are 
transformed to: 

𝑓𝑓(0) = −
𝑣𝑣=
𝛼𝛼𝐷𝐷	, 				𝑓𝑓

V(0) =
𝑢𝑢=
𝐷𝐷𝐸𝐸	,	 

                                                                            (9) 
𝑓𝑓V(∞) = lim

_→`
𝑓𝑓V(𝜂𝜂) = 0 

This power-law problem (8-9) has in fact been 
studied by many authors, but not in its full 
generality. Some authors set some boundary 
conditions (and/or some of the other parameters) 
to zero. Others fixed the values of some of the 
parameters a priori, or considered certain 
values/ranges of the power-law index 𝑛𝑛. 

    It is worthwhile noting here that for the special 
case of Newtonian fluids 𝑛𝑛 = 1 with   𝑚𝑚 = 𝑢𝑢= =
𝑣𝑣= = 0,  and an adjustment of the condition at 
infinity to lim

a→`
𝑓𝑓V(𝜂𝜂) = 𝐶𝐶 ≠ 0 one obtains the 

Blasius equation (see Blasius (1908)). In Guedda 
(2009) and references therein the authors 
considered a power-law velocity profile where 
they adjusted the condition at infinity to the 
following: lim

_→`
𝑓𝑓V(𝜂𝜂) = 𝐶𝐶𝜂𝜂c but with 𝑢𝑢= = 𝑣𝑣= =

0. A full derivation can be found in those 
references mentioned above, and where we note 
that the researchers added the condition 𝛼𝛼 =
𝛽𝛽(1 + 𝜎𝜎) which resulted from the derivation 
process, and determined existence/non-existence 
of similarity solutions for certain ranges of 𝜎𝜎 and 
n. It should be emphasized here that the case 𝐶𝐶 =
0 was not included as a special case of their 
solution (due to the approach that they used). 
 
    We shall study the general case 𝑚𝑚 ≠ 0, 𝑢𝑢= ≠ 0,  
and 𝑣𝑣= ≠ 0 (we may allude to the case 𝑚𝑚 = 0 
briefly to introduce our approach but then move 
on to the general case with 𝑚𝑚 ≠ 0). All values of 
𝑛𝑛 > 0	are considered. In Guedda & Hammouch 
(2009) the authors studied a somewhat similar 
problem but considered values of 𝑛𝑛 > 1 only, and 
a certain range of the parameters 𝛼𝛼 and 𝑚𝑚. We 
look to expand the range of those parameters, 
where we use a different approach and study 
solutions as well as their asymptotic behavior. 
Illustrations to highlight the results are also 
included. Now by setting 𝑎𝑎 = − fg

Ph
	,			𝜖𝜖 = ,g

hj
  the 

power-law problem (8-9) takes the form: 
 
(|𝑓𝑓VV|012𝑓𝑓VV)V + 𝛼𝛼𝑓𝑓𝑓𝑓VV − 𝑚𝑚(𝑓𝑓V)S = 0             (10) 
 
subject to 
 

𝑓𝑓(0) = 𝑎𝑎, 𝑓𝑓V(0) = 𝜖𝜖, 	𝑓𝑓V(∞) = 0                   (11) 
 
We assume negative curvature solutions: 𝑓𝑓VV < 0. 
This is the assumption in much of the literature, 
however positive curvatures are also considered 
frequently. In the case where 𝑓𝑓VV < 0 we must 
have 𝜖𝜖 > 0 (this is the case when for example 
𝑢𝑢= > 0, 𝐷𝐷 > 0, and 𝐸𝐸 > 0 are all positive) and 
𝑓𝑓′ ≥ 0 on the entire solution domain. 
 
Remark We note that replacing 𝑎𝑎 by −𝑎𝑎 and 𝜖𝜖 by 
−𝜖𝜖 yields a transformation of negative curvature 
solutions to positive curvature solutions since if 
𝑓𝑓, 𝑓𝑓′,	and 𝑓𝑓′′ all change sign, then the last two 
terms of the ODE in (10) will not change sign. 
Yet, the first term will change sign. Transferring 
the negative sign introduced in the first term to the 
other two will then show that a negative 𝑓𝑓′′ 
increases whereas a positive 𝑓𝑓′′ decreases with 
both eventually reaching 0. 
 
3. Asymptotic behavior and existence of 
solutions 
 
In this section, we study the asymptotic behavior 
of solutions for different values of the power-law 
index 𝑛𝑛. Apply a Crocco variable transformation 
to problem (10-11) with the following variables: 
 
𝑧𝑧 = 𝑓𝑓V(𝜂𝜂),			ℎ(𝑧𝑧) = J−𝑓𝑓′′(𝜂𝜂)L0                       (12) 
 
This leads to the problem consisting of the 
equation: 
 
ℎVV(𝑧𝑧) = ((−𝛼𝛼 + 2𝑚𝑚)𝑧𝑧 − AoCpq(o)

0p(o)
)	ℎ1

F
D(𝑧𝑧),    (13) 

 
for 0 < 𝑧𝑧 < 𝜖𝜖, subject to:  ℎ(0) = 0, ℎV(𝜖𝜖) =
𝛼𝛼𝑎𝑎 − ArC

sqq(t)
 .  Observe that ℎ(𝑧𝑧)	must be a positive 

function and 𝑧𝑧 > 0, therefore the only solutions of 
relevance here are the ones in the first quadrant. 
By letting 𝐴𝐴 = −𝛼𝛼 + 2𝑚𝑚, 𝐵𝐵 = −A

0
 we obtain and 

study the equivalent problem:  
 
ℎVV(𝑧𝑧) = w	𝐴𝐴𝑧𝑧 + 𝐵𝐵𝑧𝑧S p

q(o)
p(o)

	x ℎ1
F
D(𝑧𝑧)                  (14)     

 
for 0 < 𝑧𝑧 < 𝜖𝜖, subject to 
 
ℎ(0) = 0, 		ℎV(𝜖𝜖) = 𝛼𝛼𝑎𝑎 − ArC

sqq(t)
                        (15) 

 
3.1 The case 𝐵𝐵 = 0 

when m=0 in our derivation process since             . To 
discuss the asymptotic behavior of       (and consequently 
f) as η→∞ let h(z) be represented by h(z)≈ kzp  
for z close to 0 (z > 0), and for some parameters k 
and p. Observe that k must be positive since h(z) is a 
positive function so that for   A < 0 and 0 < n <      we have: 
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3.1 The case 𝐵𝐵 = 0 
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We first consider the case where 𝐵𝐵 = 0. This 
happens when 𝑚𝑚 = 0 in our derivation process 
since 𝐵𝐵 = −A

0
.  To discuss the asymptotic 

behavior of 𝑓𝑓V (and consequently 𝑓𝑓) as η → ∞ let 
ℎ(𝑧𝑧) be represented by ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{  for z close to 
0 (z > 0), and for some parameters k and 𝑝𝑝. 
Observe that k must be positive since ℎ(𝑧𝑧) is a 
positive function so that for  𝐴𝐴 < 0 and 0 < 𝑛𝑛 < 2

S
  

we have:  
 
𝑝𝑝 = }0

0T2
,											𝑘𝑘2T

F
D = ~

{({12)
                           (16) 

 

This implies that  𝑝𝑝 < 1 and consequently 𝑘𝑘 > 0 
which is consistent with the fact that ℎ(𝑧𝑧) must be 
a positive function. In fact ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{ in its own 
right is an exact solution to (14) which satisfies 
(15) if ℎV(𝜖𝜖) = 𝑘𝑘𝑝𝑝𝜖𝜖{12 = 𝛼𝛼𝛼𝛼 = 𝛼𝛼𝑓𝑓(0) > 0.  

Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (derivatives of 𝑓𝑓	as 
given above in (12)) and integrating the resulting 
equation, yields:  
 
𝑓𝑓V ≈ (	wS10

0T2
	𝑘𝑘

F
Dx 𝜂𝜂 + 𝐾𝐾	)

DGF
DEC	                             (17) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant (of 
integration). In other words: 
 
𝑓𝑓V → 	c ⋅ 𝜂𝜂

DGF
DEC	 as 𝜂𝜂 → ∞                                   (18) 

 
for 0 < 𝑛𝑛 < 2

S
 and for some constant 𝑐𝑐 > 0, where 

in fact 𝑐𝑐 = wS10
0T2

	𝑘𝑘
F
Dx

DGF
DEC. Observe that 𝑓𝑓V tends to 

zero as 𝜂𝜂 → ∞, while 
 
𝑓𝑓 → 	 01S

S012
c ⋅ 𝜂𝜂

CDEF
DEC + 𝐿𝐿                                     (19) 

 
where 𝐿𝐿	is a constant. Note that 𝑓𝑓	does not tend to 
constant as 𝜂𝜂 → ∞	since the exponent S012

01S
> 0.  

 
Now for 	𝑛𝑛 > 2

S
,  let  ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧 + 𝜅𝜅𝑧𝑧{  for 𝑧𝑧	close 

to 0 (𝑧𝑧 > 0). This yields a value of 𝑝𝑝 = 3 − 2
0
 

(observe that 𝑝𝑝 > 1), and it can be shown that the 
equation 𝜅𝜅𝑝𝑝(𝑝𝑝 − 1)𝜅𝜅

F
D = 𝐴𝐴 relates 𝑘𝑘 > 0 to 𝜅𝜅. 

Observe that this works for positive 𝐴𝐴 as well as 
negative 𝐴𝐴. This is the case where 𝜅𝜅 is positive 

when 𝐴𝐴 is positive, and it is negative when 𝐴𝐴 is 
negative. However, 𝑘𝑘	is positive in both cases. 
Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (12) and integrating 
the resulting equation yields:  
 
𝑓𝑓V ≈ (	w210

0
(𝑘𝑘)

F
Dx 𝜂𝜂 + 𝐾𝐾	)

D
DEF                           (20) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant. Therefore 
we have: 
 
𝑓𝑓V → 	c ⋅ 	𝜂𝜂

D
DEF   as    𝜂𝜂 → ∞,                             (21) 

 
for  2

S
< 𝑛𝑛 < 1 and for some constant 𝑐𝑐 > 0, 

which in turn implies that: 
 
𝑓𝑓 → 012

S012
⋅ 𝑐𝑐 ⋅ 	𝜂𝜂

CDEF
DEF + 𝑓𝑓                                  (22) 

 
so that 𝑓𝑓 tends to a constant 𝑓𝑓   as  𝜂𝜂 → ∞ since 
the exponent on 𝜂𝜂 is negative. On the other hand, 
observe that if 𝑛𝑛 > 1 the first term in (20) is 
negative, and then in the case of even radicals on 
exponents the equation will terminate and cannot 
be extended with infinite 𝜂𝜂, otherwise 𝑓𝑓′ will be 
negative or become unbounded which is a 
contradiction: In fact equation (20) suggests that 
𝑓𝑓′ and 𝑓𝑓′′ reach zero at a finite value of 𝜂𝜂 when 
the expression in parentheses reaches zero. This 
shows the natural and crucial result that for 𝑛𝑛 >
1, 𝑓𝑓′ goes to zero very rapidly and may reach zero 
at a finite 𝜂𝜂 which is consistent with the results 
obtained in Wei & Al-Ashhab (2014) for a similar 
equation. Finally observe that, in this case of 𝑛𝑛 >
1, 𝑓𝑓 tends to a constant as 𝜂𝜂 → ∞ since 𝑓𝑓′ reaches 
zero at finite 𝜂𝜂 as discussed above. 
 
    For 𝑛𝑛 = 1/2, observe that we may assume an 
approximation of the form ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧(ln 𝑧𝑧){	 near 
𝑧𝑧 = 0, where substituting back into (14) yields 

𝑝𝑝 = 2
}
, and 𝑘𝑘 = w~

{
x
F
à = (3𝐴𝐴)

F
à which for negative 

𝐴𝐴 does yield the positive (since 𝑧𝑧 ≈ 0 with 𝑧𝑧 > 0) 
approximate solution ℎ(𝑧𝑧) ≈ (3𝐴𝐴)

F
à𝑧𝑧(ln 𝑧𝑧)

F
à, and 

where it can be concluded that a solution 
satisfying (14-15) exists, but with possibly 
additional conditions on the parameters of the 
problem. This in turn yields an asymptotic 
behavior of the form 𝑓𝑓V → (𝑘𝑘S𝜂𝜂 + 𝐾𝐾)12. 
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terms of the Crocco variables (12) and integrating 
the resulting equation yields:  
 
𝑓𝑓V ≈ (	w210

0
(𝑘𝑘)

F
Dx 𝜂𝜂 + 𝐾𝐾	)

D
DEF                           (20) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant. Therefore 
we have: 
 
𝑓𝑓V → 	c ⋅ 	𝜂𝜂

D
DEF   as    𝜂𝜂 → ∞,                             (21) 

 
for  2

S
< 𝑛𝑛 < 1 and for some constant 𝑐𝑐 > 0, 

which in turn implies that: 
 
𝑓𝑓 → 012

S012
⋅ 𝑐𝑐 ⋅ 	𝜂𝜂

CDEF
DEF + 𝑓𝑓                                  (22) 

 
so that 𝑓𝑓 tends to a constant 𝑓𝑓   as  𝜂𝜂 → ∞ since 
the exponent on 𝜂𝜂 is negative. On the other hand, 
observe that if 𝑛𝑛 > 1 the first term in (20) is 
negative, and then in the case of even radicals on 
exponents the equation will terminate and cannot 
be extended with infinite 𝜂𝜂, otherwise 𝑓𝑓′ will be 
negative or become unbounded which is a 
contradiction: In fact equation (20) suggests that 
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where it can be concluded that a solution 
satisfying (14-15) exists, but with possibly 
additional conditions on the parameters of the 
problem. This in turn yields an asymptotic 
behavior of the form 𝑓𝑓V → (𝑘𝑘S𝜂𝜂 + 𝐾𝐾)12. 
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This implies that  p < 1 and consequently k >0 which 
is consistent with the fact that h(z) must be a positive 
function. In fact h(z)≈ kzp in its own right is an exact 
solution to (14) which satisfies (15) if h'(ϵ)=kpϵp-1= αa= 
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of the Crocco variables (derivatives of f as given 
above in (12)) and integrating the resulting equation, 
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for large η and where K is a constant (of integration). In 
other words:
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when 𝐴𝐴 is positive, and it is negative when 𝐴𝐴 is 
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𝑓𝑓′ and 𝑓𝑓′′ reach zero at a finite value of 𝜂𝜂 when 
the expression in parentheses reaches zero. This 
shows the natural and crucial result that for 𝑛𝑛 >
1, 𝑓𝑓′ goes to zero very rapidly and may reach zero 
at a finite 𝜂𝜂 which is consistent with the results 
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to 0 (𝑧𝑧 > 0). This yields a value of 𝑝𝑝 = 3 − 2
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(observe that 𝑝𝑝 > 1), and it can be shown that the 
equation 𝜅𝜅𝑝𝑝(𝑝𝑝 − 1)𝜅𝜅

F
D = 𝐴𝐴 relates 𝑘𝑘 > 0 to 𝜅𝜅. 

Observe that this works for positive 𝐴𝐴 as well as 
negative 𝐴𝐴. This is the case where 𝜅𝜅 is positive 

when 𝐴𝐴 is positive, and it is negative when 𝐴𝐴 is 
negative. However, 𝑘𝑘	is positive in both cases. 
Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (12) and integrating 
the resulting equation yields:  
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for large 𝜂𝜂 and where 𝐾𝐾 is a constant. Therefore 
we have: 
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so that 𝑓𝑓 tends to a constant 𝑓𝑓   as  𝜂𝜂 → ∞ since 
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observe that if 𝑛𝑛 > 1 the first term in (20) is 
negative, and then in the case of even radicals on 
exponents the equation will terminate and cannot 
be extended with infinite 𝜂𝜂, otherwise 𝑓𝑓′ will be 
negative or become unbounded which is a 
contradiction: In fact equation (20) suggests that 
𝑓𝑓′ and 𝑓𝑓′′ reach zero at a finite value of 𝜂𝜂 when 
the expression in parentheses reaches zero. This 
shows the natural and crucial result that for 𝑛𝑛 >
1, 𝑓𝑓′ goes to zero very rapidly and may reach zero 
at a finite 𝜂𝜂 which is consistent with the results 
obtained in Wei & Al-Ashhab (2014) for a similar 
equation. Finally observe that, in this case of 𝑛𝑛 >
1, 𝑓𝑓 tends to a constant as 𝜂𝜂 → ∞ since 𝑓𝑓′ reaches 
zero at finite 𝜂𝜂 as discussed above. 
 
    For 𝑛𝑛 = 1/2, observe that we may assume an 
approximation of the form ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧(ln 𝑧𝑧){	 near 
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𝐴𝐴 does yield the positive (since 𝑧𝑧 ≈ 0 with 𝑧𝑧 > 0) 
approximate solution ℎ(𝑧𝑧) ≈ (3𝐴𝐴)
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à, and 

where it can be concluded that a solution 
satisfying (14-15) exists, but with possibly 
additional conditions on the parameters of the 
problem. This in turn yields an asymptotic 
behavior of the form 𝑓𝑓V → (𝑘𝑘S𝜂𝜂 + 𝐾𝐾)12. 
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F
à𝑧𝑧(ln 𝑧𝑧)

F
à, and 

where it can be concluded that a solution 
satisfying (14-15) exists, but with possibly 
additional conditions on the parameters of the 
problem. This in turn yields an asymptotic 
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zero at finite 𝜂𝜂 as discussed above. 
 
    For 𝑛𝑛 = 1/2, observe that we may assume an 
approximation of the form ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧(ln 𝑧𝑧){	 near 
𝑧𝑧 = 0, where substituting back into (14) yields 
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problem. This in turn yields an asymptotic 
behavior of the form 𝑓𝑓V → (𝑘𝑘S𝜂𝜂 + 𝐾𝐾)12. 
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(15) if ℎV(𝜖𝜖) = 𝑘𝑘𝑝𝑝𝜖𝜖{12 = 𝛼𝛼𝛼𝛼 = 𝛼𝛼𝑓𝑓(0) > 0.  
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approximation of the form ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧(ln 𝑧𝑧){	 near 
𝑧𝑧 = 0, where substituting back into (14) yields 
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satisfying (14-15) exists, but with possibly 
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problem. This in turn yields an asymptotic 
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where it can be concluded that a solution 
satisfying (14-15) exists, but with possibly 
additional conditions on the parameters of the 
problem. This in turn yields an asymptotic 
behavior of the form 𝑓𝑓V → (𝑘𝑘S𝜂𝜂 + 𝐾𝐾)12. 
 Remark  As for the case n > 0,  notice that for n >     we 

have p > 1  since          from (16) above, and 
that works with positive k, so it does lead to a solution. 
The asymptotic behavior then follows equations (17) 
and (18) for     < n < 2. As for n > 2, equation (17) suggests 
very rapid decline to zero for f ', since the first term 
in (17) is negative. Therefore, K must be positive 
since by assumption f ' (0)=ϵ>0, f ' >0 on the entire 
solution domain. Thus, this fact suggests that f ' reaches 
zero at some finite η which makes the expression in 
parentheses equal zero. Lastly, observe that for n=2 we 
have h(z)=kz2,  f ''(η)=     and the asymptotic 
behavior takes the form f '→       , again showing a 
rapid decline of f ' (η) to zero. These solutions require 
h ' (ϵ)=αa >0 (here  m=0 since B=0 and h(z)=(-f '' (η))n from 
(12) above so that as f ' and f '' strictly decrease to 0 then 
h(z) strictly decreases to 0. Observe in our arguments z 
moves left from ϵ to 0 and therefore h ' (z) > 0 on (0,ϵ]. If 
A>0,n<       solutions do not exist as will be shown shortly.

3.1.1. Proof of existence and uniqueness for B= 0
We choose to include a proof on existence and uniqueness, 
but avoid rigorous mathematical styles. To this end, 
observe that while it may not be difficult to establish 
existence and uniqueness of solutions to (14-15) that 
extend back to a point (0,b>0), we still need to discuss 
existence and uniqueness of solutions that approach the 
origin (0,0). Existence of a solution that approaches (0,0) 
can be established by simple arguments (as a limiting 
case of solutions through (0,b) where b>0). As for 
uniqueness of such a solution observe that multiplying 
both sides of (14) by       and integrating yields: 
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Remark  As for the case 𝑛𝑛 > 0,  notice that for 
𝑛𝑛 > 2

S
  we have 𝑝𝑝 > 1	 since 𝑝𝑝 = }0

0T2
 from (16) 

above, and that works with positive 𝑘𝑘, so it does 
lead to a solution. The asymptotic behavior then 
follows equations (17) and (18) for 2

S
< 𝑛𝑛 < 2. As 

for 𝑛𝑛 > 2, equation (17) suggests very rapid 
decline to zero for 𝑓𝑓V, since the first term in (17) is 
negative. Therefore, 𝐾𝐾 must be positive since by 
assumption 𝑓𝑓V(0) = 𝜖𝜖 > 0, 𝑓𝑓V > 0 on the entire 
solution domain. Thus, this fact suggests that 𝑓𝑓V 
reaches zero at some finite 𝜂𝜂 which makes the 
expression in parentheses equal zero. Lastly, 
observe that for 𝑛𝑛 = 2 we have ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧S,	 
𝑓𝑓VV(𝜂𝜂) = √𝑘𝑘𝑓𝑓V(𝜂𝜂) and the asymptotic behavior 
takes the form𝑓𝑓V → 𝑐𝑐𝑒𝑒1√ã_, again showing a rapid 
decline of 𝑓𝑓V(𝜂𝜂) to zero. These solutions require 
ℎV(𝜖𝜖) = 𝛼𝛼𝛼𝛼 > 0 (here 𝑚𝑚 = 0 since 𝐵𝐵 = 0 and 
ℎ(𝑧𝑧) = J−𝑓𝑓VV(𝜂𝜂)L0 from (12) above so that as 𝑓𝑓′ 
and 𝑓𝑓VV strictly decrease to 0 then ℎ(𝑧𝑧) strictly 
decreases to 0. Observe in our arguments 𝑧𝑧 moves 
left from 𝜖𝜖 to 0 and therefore ℎV(𝑧𝑧) > 0 on (0, 𝜖𝜖]). 
If 𝐴𝐴 > 0, 𝑛𝑛 < 2

S
 solutions do not exist as will be 

shown shortly. 

3.1.1. Proof of existence and uniqueness for B= 0 
 
We choose to include a proof on existence and 
uniqueness, but avoid rigorous mathematical 
styles. To this end, observe that while it may not 
be difficult to establish existence and uniqueness 
of solutions to (14-15) that extend back to a point 
(0,𝑏𝑏 > 0), we still need to discuss existence and 
uniqueness of solutions that approach the origin 
(0,0). Existence of a solution that approaches (0,0) 
can be established by simple arguments (as a 
limiting case of solutions through (0,𝑏𝑏) where 𝑏𝑏 >
0). As for uniqueness of such a solution observe 
that multiplying both sides of (14) by ℎV(𝑧𝑧) and 
integrating yields:  
 

(ℎV(𝑧𝑧))S − (ℎV(𝛼𝛼))S =
2𝐴𝐴

1 − 1𝑛𝑛
	(	𝑧𝑧ℎ21

2
0(𝑧𝑧) − 

																												𝛼𝛼ℎ21
F
D(𝛼𝛼) − ∫ ℎ21

F
D(𝜇𝜇)𝑑𝑑𝜇𝜇	)o

ë     (23) 
 
Therefore, if there are two solutions approaching 
the origin but with different initial conditions (say 
same ℎ(𝑧𝑧) but different ℎ′(𝑧𝑧) then that will lead to 

a contradiction: Suppose that ℎ2	is a solution 
through the origin. Now, take another solution ℎS 
to (14) with initial conditions ℎS(𝑧𝑧) = ℎ2(𝑧𝑧)	and 
ℎSV (𝑧𝑧) > ℎ2V (𝑧𝑧), i.e. a larger ℎSV (𝑧𝑧),. The two 
solutions may not intersect at any point 𝛼𝛼 < 𝑧𝑧,	 
since if they did we should have ℎ2V (𝛼𝛼) > ℎSV (𝛼𝛼) 
(the condition ℎSV (𝑧𝑧) > ℎ2V (𝑧𝑧) implies that 
ℎS(𝜇𝜇) < ℎ2(𝜇𝜇) within the interval (𝛼𝛼, 𝑧𝑧) so that 
geometrically ℎS	is under ℎ2	within (𝛼𝛼, 𝑧𝑧)). Now 
the first two terms on the right hand side of (23), 
namely  𝑧𝑧ℎ21

F
D(𝑧𝑧) − 𝛼𝛼ℎ21

F
D(𝛼𝛼), would be the same 

for ℎ2	 and ℎS	 and therefore we have: 
 
(ℎSV (𝛼𝛼))S − (ℎ2V (𝛼𝛼))S = 	 (ℎSV (𝑧𝑧))S − (ℎ2V (𝑧𝑧))S		 

																					+ S~
21FD

∫ (ℎS
21FD(𝜇𝜇) − ℎ2

21FD(𝜇𝜇))𝑑𝑑𝜇𝜇	o
ë   (24) 

 
which implies that ℎSV (𝛼𝛼) > ℎ2V (𝛼𝛼)  since the right 
hand side is positive for 𝑛𝑛 > 1 and for 2

S
< 𝑛𝑛 < 1 

(ℎS(𝜇𝜇) < ℎ2(𝜇𝜇)  within the interval (𝛼𝛼, 𝑧𝑧) and 
𝐴𝐴 < 0). In fact this argument can be made with 
𝛼𝛼 = 0 where the two solutions cannot cross each 
other or meet at the origin. Observe that in our 
arguments if 𝑛𝑛 > 1	then the second term and the 
integral in (23) are finite, the same can be said for 
2
S
< 𝑛𝑛 < 1 (but not for 0 < 𝑛𝑛 < 2

S
) due to the 

asymptotic behavior discussed earlier. Thus we 
have established: 
 
Theorem 1 There is a unique solution to (14) 
subject to (15) for 𝑛𝑛 > 2

S
, 𝐴𝐴 < 0 and 𝐵𝐵 = 0. 

 
Remark For 𝑛𝑛 = 1, notice that equation (23) is 
replaced by 
(ℎV(𝑧𝑧))S − (ℎV(𝛼𝛼))S = 	2𝐴𝐴	(𝑧𝑧 lnJℎ(𝑧𝑧)L 

											−𝛼𝛼 ln(ℎ(𝛼𝛼)) − í ln(ℎ(𝜇𝜇)) 𝑑𝑑𝜇𝜇)
o

ë

 

Using similar arguments to the ones above, the 
same uniqueness result can be established for the 
Newtonian case where 𝑛𝑛 = 1. 
 
    Now, for 𝐴𝐴 > 0	and 𝑛𝑛 < 2

S
, a solution does not 

exist due to the following argument. That is, recall 
from our analysis that for 𝐴𝐴 < 0, 𝑛𝑛 < 2

S
,  solutions 

exhibit infinite first and second order derivatives 
of ℎ(𝑧𝑧). If a solution approaching the origin exists 
for 𝐴𝐴 > 0	 its second derivative should be larger, 
or “more infinite”, than was the case for 𝐴𝐴 < 0 (in 
absolute values) since now the fact that ℎVV(𝑧𝑧) > 0  
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Remark  As for the case 𝑛𝑛 > 0,  notice that for 
𝑛𝑛 > 2

S
  we have 𝑝𝑝 > 1	 since 𝑝𝑝 = }0

0T2
 from (16) 

above, and that works with positive 𝑘𝑘, so it does 
lead to a solution. The asymptotic behavior then 
follows equations (17) and (18) for 2

S
< 𝑛𝑛 < 2. As 

for 𝑛𝑛 > 2, equation (17) suggests very rapid 
decline to zero for 𝑓𝑓V, since the first term in (17) is 
negative. Therefore, 𝐾𝐾 must be positive since by 
assumption 𝑓𝑓V(0) = 𝜖𝜖 > 0, 𝑓𝑓V > 0 on the entire 
solution domain. Thus, this fact suggests that 𝑓𝑓V 
reaches zero at some finite 𝜂𝜂 which makes the 
expression in parentheses equal zero. Lastly, 
observe that for 𝑛𝑛 = 2 we have ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧S,	 
𝑓𝑓VV(𝜂𝜂) = √𝑘𝑘𝑓𝑓V(𝜂𝜂) and the asymptotic behavior 
takes the form𝑓𝑓V → 𝑐𝑐𝑒𝑒1√ã_, again showing a rapid 
decline of 𝑓𝑓V(𝜂𝜂) to zero. These solutions require 
ℎV(𝜖𝜖) = 𝛼𝛼𝛼𝛼 > 0 (here 𝑚𝑚 = 0 since 𝐵𝐵 = 0 and 
ℎ(𝑧𝑧) = J−𝑓𝑓VV(𝜂𝜂)L0 from (12) above so that as 𝑓𝑓′ 
and 𝑓𝑓VV strictly decrease to 0 then ℎ(𝑧𝑧) strictly 
decreases to 0. Observe in our arguments 𝑧𝑧 moves 
left from 𝜖𝜖 to 0 and therefore ℎV(𝑧𝑧) > 0 on (0, 𝜖𝜖]). 
If 𝐴𝐴 > 0, 𝑛𝑛 < 2

S
 solutions do not exist as will be 

shown shortly. 

3.1.1. Proof of existence and uniqueness for B= 0 
 
We choose to include a proof on existence and 
uniqueness, but avoid rigorous mathematical 
styles. To this end, observe that while it may not 
be difficult to establish existence and uniqueness 
of solutions to (14-15) that extend back to a point 
(0,𝑏𝑏 > 0), we still need to discuss existence and 
uniqueness of solutions that approach the origin 
(0,0). Existence of a solution that approaches (0,0) 
can be established by simple arguments (as a 
limiting case of solutions through (0,𝑏𝑏) where 𝑏𝑏 >
0). As for uniqueness of such a solution observe 
that multiplying both sides of (14) by ℎV(𝑧𝑧) and 
integrating yields:  
 

(ℎV(𝑧𝑧))S − (ℎV(𝛼𝛼))S =
2𝐴𝐴

1 − 1𝑛𝑛
	(	𝑧𝑧ℎ21

2
0(𝑧𝑧) − 

																												𝛼𝛼ℎ21
F
D(𝛼𝛼) − ∫ ℎ21

F
D(𝜇𝜇)𝑑𝑑𝜇𝜇	)o

ë     (23) 
 
Therefore, if there are two solutions approaching 
the origin but with different initial conditions (say 
same ℎ(𝑧𝑧) but different ℎ′(𝑧𝑧) then that will lead to 

a contradiction: Suppose that ℎ2	is a solution 
through the origin. Now, take another solution ℎS 
to (14) with initial conditions ℎS(𝑧𝑧) = ℎ2(𝑧𝑧)	and 
ℎSV (𝑧𝑧) > ℎ2V (𝑧𝑧), i.e. a larger ℎSV (𝑧𝑧),. The two 
solutions may not intersect at any point 𝛼𝛼 < 𝑧𝑧,	 
since if they did we should have ℎ2V (𝛼𝛼) > ℎSV (𝛼𝛼) 
(the condition ℎSV (𝑧𝑧) > ℎ2V (𝑧𝑧) implies that 
ℎS(𝜇𝜇) < ℎ2(𝜇𝜇) within the interval (𝛼𝛼, 𝑧𝑧) so that 
geometrically ℎS	is under ℎ2	within (𝛼𝛼, 𝑧𝑧)). Now 
the first two terms on the right hand side of (23), 
namely  𝑧𝑧ℎ21

F
D(𝑧𝑧) − 𝛼𝛼ℎ21

F
D(𝛼𝛼), would be the same 

for ℎ2	 and ℎS	 and therefore we have: 
 
(ℎSV (𝛼𝛼))S − (ℎ2V (𝛼𝛼))S = 	 (ℎSV (𝑧𝑧))S − (ℎ2V (𝑧𝑧))S		 

																					+ S~
21FD

∫ (ℎS
21FD(𝜇𝜇) − ℎ2

21FD(𝜇𝜇))𝑑𝑑𝜇𝜇	o
ë   (24) 

 
which implies that ℎSV (𝛼𝛼) > ℎ2V (𝛼𝛼)  since the right 
hand side is positive for 𝑛𝑛 > 1 and for 2

S
< 𝑛𝑛 < 1 

(ℎS(𝜇𝜇) < ℎ2(𝜇𝜇)  within the interval (𝛼𝛼, 𝑧𝑧) and 
𝐴𝐴 < 0). In fact this argument can be made with 
𝛼𝛼 = 0 where the two solutions cannot cross each 
other or meet at the origin. Observe that in our 
arguments if 𝑛𝑛 > 1	then the second term and the 
integral in (23) are finite, the same can be said for 
2
S
< 𝑛𝑛 < 1 (but not for 0 < 𝑛𝑛 < 2

S
) due to the 

asymptotic behavior discussed earlier. Thus we 
have established: 
 
Theorem 1 There is a unique solution to (14) 
subject to (15) for 𝑛𝑛 > 2

S
, 𝐴𝐴 < 0 and 𝐵𝐵 = 0. 

 
Remark For 𝑛𝑛 = 1, notice that equation (23) is 
replaced by 
(ℎV(𝑧𝑧))S − (ℎV(𝛼𝛼))S = 	2𝐴𝐴	(𝑧𝑧 lnJℎ(𝑧𝑧)L 

											−𝛼𝛼 ln(ℎ(𝛼𝛼)) − í ln(ℎ(𝜇𝜇)) 𝑑𝑑𝜇𝜇)
o

ë

 

Using similar arguments to the ones above, the 
same uniqueness result can be established for the 
Newtonian case where 𝑛𝑛 = 1. 
 
    Now, for 𝐴𝐴 > 0	and 𝑛𝑛 < 2

S
, a solution does not 

exist due to the following argument. That is, recall 
from our analysis that for 𝐴𝐴 < 0, 𝑛𝑛 < 2

S
,  solutions 

exhibit infinite first and second order derivatives 
of ℎ(𝑧𝑧). If a solution approaching the origin exists 
for 𝐴𝐴 > 0	 its second derivative should be larger, 
or “more infinite”, than was the case for 𝐴𝐴 < 0 (in 
absolute values) since now the fact that ℎVV(𝑧𝑧) > 0  
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We first consider the case where 𝐵𝐵 = 0. This 
happens when 𝑚𝑚 = 0 in our derivation process 
since 𝐵𝐵 = −A

0
.  To discuss the asymptotic 

behavior of 𝑓𝑓V (and consequently 𝑓𝑓) as η → ∞ let 
ℎ(𝑧𝑧) be represented by ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{  for z close to 
0 (z > 0), and for some parameters k and 𝑝𝑝. 
Observe that k must be positive since ℎ(𝑧𝑧) is a 
positive function so that for  𝐴𝐴 < 0 and 0 < 𝑛𝑛 < 2

S
  

we have:  
 
𝑝𝑝 = }0

0T2
,											𝑘𝑘2T

F
D = ~

{({12)
                           (16) 

 

This implies that  𝑝𝑝 < 1 and consequently 𝑘𝑘 > 0 
which is consistent with the fact that ℎ(𝑧𝑧) must be 
a positive function. In fact ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{ in its own 
right is an exact solution to (14) which satisfies 
(15) if ℎV(𝜖𝜖) = 𝑘𝑘𝑝𝑝𝜖𝜖{12 = 𝛼𝛼𝛼𝛼 = 𝛼𝛼𝑓𝑓(0) > 0.  

Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (derivatives of 𝑓𝑓	as 
given above in (12)) and integrating the resulting 
equation, yields:  
 
𝑓𝑓V ≈ (	wS10

0T2
	𝑘𝑘

F
Dx 𝜂𝜂 + 𝐾𝐾	)

DGF
DEC	                             (17) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant (of 
integration). In other words: 
 
𝑓𝑓V → 	c ⋅ 𝜂𝜂

DGF
DEC	 as 𝜂𝜂 → ∞                                   (18) 

 
for 0 < 𝑛𝑛 < 2

S
 and for some constant 𝑐𝑐 > 0, where 

in fact 𝑐𝑐 = wS10
0T2

	𝑘𝑘
F
Dx

DGF
DEC. Observe that 𝑓𝑓V tends to 

zero as 𝜂𝜂 → ∞, while 
 
𝑓𝑓 → 	 01S

S012
c ⋅ 𝜂𝜂

CDEF
DEC + 𝐿𝐿                                     (19) 

 
where 𝐿𝐿	is a constant. Note that 𝑓𝑓	does not tend to 
constant as 𝜂𝜂 → ∞	since the exponent S012

01S
> 0.  

 
Now for 	𝑛𝑛 > 2

S
,  let  ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧 + 𝜅𝜅𝑧𝑧{  for 𝑧𝑧	close 

to 0 (𝑧𝑧 > 0). This yields a value of 𝑝𝑝 = 3 − 2
0
 

(observe that 𝑝𝑝 > 1), and it can be shown that the 
equation 𝜅𝜅𝑝𝑝(𝑝𝑝 − 1)𝜅𝜅

F
D = 𝐴𝐴 relates 𝑘𝑘 > 0 to 𝜅𝜅. 

Observe that this works for positive 𝐴𝐴 as well as 
negative 𝐴𝐴. This is the case where 𝜅𝜅 is positive 

when 𝐴𝐴 is positive, and it is negative when 𝐴𝐴 is 
negative. However, 𝑘𝑘	is positive in both cases. 
Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (12) and integrating 
the resulting equation yields:  
 
𝑓𝑓V ≈ (	w210

0
(𝑘𝑘)

F
Dx 𝜂𝜂 + 𝐾𝐾	)

D
DEF                           (20) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant. Therefore 
we have: 
 
𝑓𝑓V → 	c ⋅ 	𝜂𝜂

D
DEF   as    𝜂𝜂 → ∞,                             (21) 

 
for  2

S
< 𝑛𝑛 < 1 and for some constant 𝑐𝑐 > 0, 

which in turn implies that: 
 
𝑓𝑓 → 012

S012
⋅ 𝑐𝑐 ⋅ 	𝜂𝜂

CDEF
DEF + 𝑓𝑓                                  (22) 

 
so that 𝑓𝑓 tends to a constant 𝑓𝑓   as  𝜂𝜂 → ∞ since 
the exponent on 𝜂𝜂 is negative. On the other hand, 
observe that if 𝑛𝑛 > 1 the first term in (20) is 
negative, and then in the case of even radicals on 
exponents the equation will terminate and cannot 
be extended with infinite 𝜂𝜂, otherwise 𝑓𝑓′ will be 
negative or become unbounded which is a 
contradiction: In fact equation (20) suggests that 
𝑓𝑓′ and 𝑓𝑓′′ reach zero at a finite value of 𝜂𝜂 when 
the expression in parentheses reaches zero. This 
shows the natural and crucial result that for 𝑛𝑛 >
1, 𝑓𝑓′ goes to zero very rapidly and may reach zero 
at a finite 𝜂𝜂 which is consistent with the results 
obtained in Wei & Al-Ashhab (2014) for a similar 
equation. Finally observe that, in this case of 𝑛𝑛 >
1, 𝑓𝑓 tends to a constant as 𝜂𝜂 → ∞ since 𝑓𝑓′ reaches 
zero at finite 𝜂𝜂 as discussed above. 
 
    For 𝑛𝑛 = 1/2, observe that we may assume an 
approximation of the form ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧(ln 𝑧𝑧){	 near 
𝑧𝑧 = 0, where substituting back into (14) yields 

𝑝𝑝 = 2
}
, and 𝑘𝑘 = w~

{
x
F
à = (3𝐴𝐴)

F
à which for negative 

𝐴𝐴 does yield the positive (since 𝑧𝑧 ≈ 0 with 𝑧𝑧 > 0) 
approximate solution ℎ(𝑧𝑧) ≈ (3𝐴𝐴)

F
à𝑧𝑧(ln 𝑧𝑧)

F
à, and 

where it can be concluded that a solution 
satisfying (14-15) exists, but with possibly 
additional conditions on the parameters of the 
problem. This in turn yields an asymptotic 
behavior of the form 𝑓𝑓V → (𝑘𝑘S𝜂𝜂 + 𝐾𝐾)12. 
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Remark  As for the case 𝑛𝑛 > 0,  notice that for 
𝑛𝑛 > 2

S
  we have 𝑝𝑝 > 1	 since 𝑝𝑝 = }0

0T2
 from (16) 

above, and that works with positive 𝑘𝑘, so it does 
lead to a solution. The asymptotic behavior then 
follows equations (17) and (18) for 2

S
< 𝑛𝑛 < 2. As 

for 𝑛𝑛 > 2, equation (17) suggests very rapid 
decline to zero for 𝑓𝑓V, since the first term in (17) is 
negative. Therefore, 𝐾𝐾 must be positive since by 
assumption 𝑓𝑓V(0) = 𝜖𝜖 > 0, 𝑓𝑓V > 0 on the entire 
solution domain. Thus, this fact suggests that 𝑓𝑓V 
reaches zero at some finite 𝜂𝜂 which makes the 
expression in parentheses equal zero. Lastly, 
observe that for 𝑛𝑛 = 2 we have ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧S,	 
𝑓𝑓VV(𝜂𝜂) = √𝑘𝑘𝑓𝑓V(𝜂𝜂) and the asymptotic behavior 
takes the form𝑓𝑓V → 𝑐𝑐𝑒𝑒1√ã_, again showing a rapid 
decline of 𝑓𝑓V(𝜂𝜂) to zero. These solutions require 
ℎV(𝜖𝜖) = 𝛼𝛼𝛼𝛼 > 0 (here 𝑚𝑚 = 0 since 𝐵𝐵 = 0 and 
ℎ(𝑧𝑧) = J−𝑓𝑓VV(𝜂𝜂)L0 from (12) above so that as 𝑓𝑓′ 
and 𝑓𝑓VV strictly decrease to 0 then ℎ(𝑧𝑧) strictly 
decreases to 0. Observe in our arguments 𝑧𝑧 moves 
left from 𝜖𝜖 to 0 and therefore ℎV(𝑧𝑧) > 0 on (0, 𝜖𝜖]). 
If 𝐴𝐴 > 0, 𝑛𝑛 < 2

S
 solutions do not exist as will be 

shown shortly. 

3.1.1. Proof of existence and uniqueness for B= 0 
 
We choose to include a proof on existence and 
uniqueness, but avoid rigorous mathematical 
styles. To this end, observe that while it may not 
be difficult to establish existence and uniqueness 
of solutions to (14-15) that extend back to a point 
(0,𝑏𝑏 > 0), we still need to discuss existence and 
uniqueness of solutions that approach the origin 
(0,0). Existence of a solution that approaches (0,0) 
can be established by simple arguments (as a 
limiting case of solutions through (0,𝑏𝑏) where 𝑏𝑏 >
0). As for uniqueness of such a solution observe 
that multiplying both sides of (14) by ℎV(𝑧𝑧) and 
integrating yields:  
 

(ℎV(𝑧𝑧))S − (ℎV(𝛼𝛼))S =
2𝐴𝐴

1 − 1𝑛𝑛
	(	𝑧𝑧ℎ21

2
0(𝑧𝑧) − 

																												𝛼𝛼ℎ21
F
D(𝛼𝛼) − ∫ ℎ21

F
D(𝜇𝜇)𝑑𝑑𝜇𝜇	)o

ë     (23) 
 
Therefore, if there are two solutions approaching 
the origin but with different initial conditions (say 
same ℎ(𝑧𝑧) but different ℎ′(𝑧𝑧) then that will lead to 

a contradiction: Suppose that ℎ2	is a solution 
through the origin. Now, take another solution ℎS 
to (14) with initial conditions ℎS(𝑧𝑧) = ℎ2(𝑧𝑧)	and 
ℎSV (𝑧𝑧) > ℎ2V (𝑧𝑧), i.e. a larger ℎSV (𝑧𝑧),. The two 
solutions may not intersect at any point 𝛼𝛼 < 𝑧𝑧,	 
since if they did we should have ℎ2V (𝛼𝛼) > ℎSV (𝛼𝛼) 
(the condition ℎSV (𝑧𝑧) > ℎ2V (𝑧𝑧) implies that 
ℎS(𝜇𝜇) < ℎ2(𝜇𝜇) within the interval (𝛼𝛼, 𝑧𝑧) so that 
geometrically ℎS	is under ℎ2	within (𝛼𝛼, 𝑧𝑧)). Now 
the first two terms on the right hand side of (23), 
namely  𝑧𝑧ℎ21

F
D(𝑧𝑧) − 𝛼𝛼ℎ21

F
D(𝛼𝛼), would be the same 

for ℎ2	 and ℎS	 and therefore we have: 
 
(ℎSV (𝛼𝛼))S − (ℎ2V (𝛼𝛼))S = 	 (ℎSV (𝑧𝑧))S − (ℎ2V (𝑧𝑧))S		 

																					+ S~
21FD

∫ (ℎS
21FD(𝜇𝜇) − ℎ2

21FD(𝜇𝜇))𝑑𝑑𝜇𝜇	o
ë   (24) 

 
which implies that ℎSV (𝛼𝛼) > ℎ2V (𝛼𝛼)  since the right 
hand side is positive for 𝑛𝑛 > 1 and for 2

S
< 𝑛𝑛 < 1 

(ℎS(𝜇𝜇) < ℎ2(𝜇𝜇)  within the interval (𝛼𝛼, 𝑧𝑧) and 
𝐴𝐴 < 0). In fact this argument can be made with 
𝛼𝛼 = 0 where the two solutions cannot cross each 
other or meet at the origin. Observe that in our 
arguments if 𝑛𝑛 > 1	then the second term and the 
integral in (23) are finite, the same can be said for 
2
S
< 𝑛𝑛 < 1 (but not for 0 < 𝑛𝑛 < 2

S
) due to the 

asymptotic behavior discussed earlier. Thus we 
have established: 
 
Theorem 1 There is a unique solution to (14) 
subject to (15) for 𝑛𝑛 > 2

S
, 𝐴𝐴 < 0 and 𝐵𝐵 = 0. 

 
Remark For 𝑛𝑛 = 1, notice that equation (23) is 
replaced by 
(ℎV(𝑧𝑧))S − (ℎV(𝛼𝛼))S = 	2𝐴𝐴	(𝑧𝑧 lnJℎ(𝑧𝑧)L 

											−𝛼𝛼 ln(ℎ(𝛼𝛼)) − í ln(ℎ(𝜇𝜇)) 𝑑𝑑𝜇𝜇)
o

ë

 

Using similar arguments to the ones above, the 
same uniqueness result can be established for the 
Newtonian case where 𝑛𝑛 = 1. 
 
    Now, for 𝐴𝐴 > 0	and 𝑛𝑛 < 2

S
, a solution does not 

exist due to the following argument. That is, recall 
from our analysis that for 𝐴𝐴 < 0, 𝑛𝑛 < 2

S
,  solutions 

exhibit infinite first and second order derivatives 
of ℎ(𝑧𝑧). If a solution approaching the origin exists 
for 𝐴𝐴 > 0	 its second derivative should be larger, 
or “more infinite”, than was the case for 𝐴𝐴 < 0 (in 
absolute values) since now the fact that ℎVV(𝑧𝑧) > 0  
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Remark  As for the case 𝑛𝑛 > 0,  notice that for 
𝑛𝑛 > 2

S
  we have 𝑝𝑝 > 1	 since 𝑝𝑝 = }0

0T2
 from (16) 

above, and that works with positive 𝑘𝑘, so it does 
lead to a solution. The asymptotic behavior then 
follows equations (17) and (18) for 2

S
< 𝑛𝑛 < 2. As 

for 𝑛𝑛 > 2, equation (17) suggests very rapid 
decline to zero for 𝑓𝑓V, since the first term in (17) is 
negative. Therefore, 𝐾𝐾 must be positive since by 
assumption 𝑓𝑓V(0) = 𝜖𝜖 > 0, 𝑓𝑓V > 0 on the entire 
solution domain. Thus, this fact suggests that 𝑓𝑓V 
reaches zero at some finite 𝜂𝜂 which makes the 
expression in parentheses equal zero. Lastly, 
observe that for 𝑛𝑛 = 2 we have ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧S,	 
𝑓𝑓VV(𝜂𝜂) = √𝑘𝑘𝑓𝑓V(𝜂𝜂) and the asymptotic behavior 
takes the form𝑓𝑓V → 𝑐𝑐𝑒𝑒1√ã_, again showing a rapid 
decline of 𝑓𝑓V(𝜂𝜂) to zero. These solutions require 
ℎV(𝜖𝜖) = 𝛼𝛼𝛼𝛼 > 0 (here 𝑚𝑚 = 0 since 𝐵𝐵 = 0 and 
ℎ(𝑧𝑧) = J−𝑓𝑓VV(𝜂𝜂)L0 from (12) above so that as 𝑓𝑓′ 
and 𝑓𝑓VV strictly decrease to 0 then ℎ(𝑧𝑧) strictly 
decreases to 0. Observe in our arguments 𝑧𝑧 moves 
left from 𝜖𝜖 to 0 and therefore ℎV(𝑧𝑧) > 0 on (0, 𝜖𝜖]). 
If 𝐴𝐴 > 0, 𝑛𝑛 < 2

S
 solutions do not exist as will be 

shown shortly. 

3.1.1. Proof of existence and uniqueness for B= 0 
 
We choose to include a proof on existence and 
uniqueness, but avoid rigorous mathematical 
styles. To this end, observe that while it may not 
be difficult to establish existence and uniqueness 
of solutions to (14-15) that extend back to a point 
(0,𝑏𝑏 > 0), we still need to discuss existence and 
uniqueness of solutions that approach the origin 
(0,0). Existence of a solution that approaches (0,0) 
can be established by simple arguments (as a 
limiting case of solutions through (0,𝑏𝑏) where 𝑏𝑏 >
0). As for uniqueness of such a solution observe 
that multiplying both sides of (14) by ℎV(𝑧𝑧) and 
integrating yields:  
 

(ℎV(𝑧𝑧))S − (ℎV(𝛼𝛼))S =
2𝐴𝐴

1 − 1𝑛𝑛
	(	𝑧𝑧ℎ21

2
0(𝑧𝑧) − 

																												𝛼𝛼ℎ21
F
D(𝛼𝛼) − ∫ ℎ21

F
D(𝜇𝜇)𝑑𝑑𝜇𝜇	)o

ë     (23) 
 
Therefore, if there are two solutions approaching 
the origin but with different initial conditions (say 
same ℎ(𝑧𝑧) but different ℎ′(𝑧𝑧) then that will lead to 

a contradiction: Suppose that ℎ2	is a solution 
through the origin. Now, take another solution ℎS 
to (14) with initial conditions ℎS(𝑧𝑧) = ℎ2(𝑧𝑧)	and 
ℎSV (𝑧𝑧) > ℎ2V (𝑧𝑧), i.e. a larger ℎSV (𝑧𝑧),. The two 
solutions may not intersect at any point 𝛼𝛼 < 𝑧𝑧,	 
since if they did we should have ℎ2V (𝛼𝛼) > ℎSV (𝛼𝛼) 
(the condition ℎSV (𝑧𝑧) > ℎ2V (𝑧𝑧) implies that 
ℎS(𝜇𝜇) < ℎ2(𝜇𝜇) within the interval (𝛼𝛼, 𝑧𝑧) so that 
geometrically ℎS	is under ℎ2	within (𝛼𝛼, 𝑧𝑧)). Now 
the first two terms on the right hand side of (23), 
namely  𝑧𝑧ℎ21

F
D(𝑧𝑧) − 𝛼𝛼ℎ21

F
D(𝛼𝛼), would be the same 

for ℎ2	 and ℎS	 and therefore we have: 
 
(ℎSV (𝛼𝛼))S − (ℎ2V (𝛼𝛼))S = 	 (ℎSV (𝑧𝑧))S − (ℎ2V (𝑧𝑧))S		 

																					+ S~
21FD

∫ (ℎS
21FD(𝜇𝜇) − ℎ2

21FD(𝜇𝜇))𝑑𝑑𝜇𝜇	o
ë   (24) 

 
which implies that ℎSV (𝛼𝛼) > ℎ2V (𝛼𝛼)  since the right 
hand side is positive for 𝑛𝑛 > 1 and for 2

S
< 𝑛𝑛 < 1 

(ℎS(𝜇𝜇) < ℎ2(𝜇𝜇)  within the interval (𝛼𝛼, 𝑧𝑧) and 
𝐴𝐴 < 0). In fact this argument can be made with 
𝛼𝛼 = 0 where the two solutions cannot cross each 
other or meet at the origin. Observe that in our 
arguments if 𝑛𝑛 > 1	then the second term and the 
integral in (23) are finite, the same can be said for 
2
S
< 𝑛𝑛 < 1 (but not for 0 < 𝑛𝑛 < 2

S
) due to the 

asymptotic behavior discussed earlier. Thus we 
have established: 
 
Theorem 1 There is a unique solution to (14) 
subject to (15) for 𝑛𝑛 > 2

S
, 𝐴𝐴 < 0 and 𝐵𝐵 = 0. 

 
Remark For 𝑛𝑛 = 1, notice that equation (23) is 
replaced by 
(ℎV(𝑧𝑧))S − (ℎV(𝛼𝛼))S = 	2𝐴𝐴	(𝑧𝑧 lnJℎ(𝑧𝑧)L 

											−𝛼𝛼 ln(ℎ(𝛼𝛼)) − í ln(ℎ(𝜇𝜇)) 𝑑𝑑𝜇𝜇)
o

ë

 

Using similar arguments to the ones above, the 
same uniqueness result can be established for the 
Newtonian case where 𝑛𝑛 = 1. 
 
    Now, for 𝐴𝐴 > 0	and 𝑛𝑛 < 2

S
, a solution does not 

exist due to the following argument. That is, recall 
from our analysis that for 𝐴𝐴 < 0, 𝑛𝑛 < 2

S
,  solutions 

exhibit infinite first and second order derivatives 
of ℎ(𝑧𝑧). If a solution approaching the origin exists 
for 𝐴𝐴 > 0	 its second derivative should be larger, 
or “more infinite”, than was the case for 𝐴𝐴 < 0 (in 
absolute values) since now the fact that ℎVV(𝑧𝑧) > 0  
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We first consider the case where 𝐵𝐵 = 0. This 
happens when 𝑚𝑚 = 0 in our derivation process 
since 𝐵𝐵 = −A

0
.  To discuss the asymptotic 

behavior of 𝑓𝑓V (and consequently 𝑓𝑓) as η → ∞ let 
ℎ(𝑧𝑧) be represented by ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{  for z close to 
0 (z > 0), and for some parameters k and 𝑝𝑝. 
Observe that k must be positive since ℎ(𝑧𝑧) is a 
positive function so that for  𝐴𝐴 < 0 and 0 < 𝑛𝑛 < 2

S
  

we have:  
 
𝑝𝑝 = }0

0T2
,											𝑘𝑘2T

F
D = ~

{({12)
                           (16) 

 

This implies that  𝑝𝑝 < 1 and consequently 𝑘𝑘 > 0 
which is consistent with the fact that ℎ(𝑧𝑧) must be 
a positive function. In fact ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{ in its own 
right is an exact solution to (14) which satisfies 
(15) if ℎV(𝜖𝜖) = 𝑘𝑘𝑝𝑝𝜖𝜖{12 = 𝛼𝛼𝛼𝛼 = 𝛼𝛼𝑓𝑓(0) > 0.  

Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (derivatives of 𝑓𝑓	as 
given above in (12)) and integrating the resulting 
equation, yields:  
 
𝑓𝑓V ≈ (	wS10

0T2
	𝑘𝑘

F
Dx 𝜂𝜂 + 𝐾𝐾	)

DGF
DEC	                             (17) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant (of 
integration). In other words: 
 
𝑓𝑓V → 	c ⋅ 𝜂𝜂

DGF
DEC	 as 𝜂𝜂 → ∞                                   (18) 

 
for 0 < 𝑛𝑛 < 2

S
 and for some constant 𝑐𝑐 > 0, where 

in fact 𝑐𝑐 = wS10
0T2

	𝑘𝑘
F
Dx

DGF
DEC. Observe that 𝑓𝑓V tends to 

zero as 𝜂𝜂 → ∞, while 
 
𝑓𝑓 → 	 01S

S012
c ⋅ 𝜂𝜂

CDEF
DEC + 𝐿𝐿                                     (19) 

 
where 𝐿𝐿	is a constant. Note that 𝑓𝑓	does not tend to 
constant as 𝜂𝜂 → ∞	since the exponent S012

01S
> 0.  

 
Now for 	𝑛𝑛 > 2

S
,  let  ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧 + 𝜅𝜅𝑧𝑧{  for 𝑧𝑧	close 

to 0 (𝑧𝑧 > 0). This yields a value of 𝑝𝑝 = 3 − 2
0
 

(observe that 𝑝𝑝 > 1), and it can be shown that the 
equation 𝜅𝜅𝑝𝑝(𝑝𝑝 − 1)𝜅𝜅

F
D = 𝐴𝐴 relates 𝑘𝑘 > 0 to 𝜅𝜅. 

Observe that this works for positive 𝐴𝐴 as well as 
negative 𝐴𝐴. This is the case where 𝜅𝜅 is positive 

when 𝐴𝐴 is positive, and it is negative when 𝐴𝐴 is 
negative. However, 𝑘𝑘	is positive in both cases. 
Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (12) and integrating 
the resulting equation yields:  
 
𝑓𝑓V ≈ (	w210

0
(𝑘𝑘)

F
Dx 𝜂𝜂 + 𝐾𝐾	)

D
DEF                           (20) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant. Therefore 
we have: 
 
𝑓𝑓V → 	c ⋅ 	𝜂𝜂

D
DEF   as    𝜂𝜂 → ∞,                             (21) 

 
for  2

S
< 𝑛𝑛 < 1 and for some constant 𝑐𝑐 > 0, 

which in turn implies that: 
 
𝑓𝑓 → 012

S012
⋅ 𝑐𝑐 ⋅ 	𝜂𝜂

CDEF
DEF + 𝑓𝑓                                  (22) 

 
so that 𝑓𝑓 tends to a constant 𝑓𝑓   as  𝜂𝜂 → ∞ since 
the exponent on 𝜂𝜂 is negative. On the other hand, 
observe that if 𝑛𝑛 > 1 the first term in (20) is 
negative, and then in the case of even radicals on 
exponents the equation will terminate and cannot 
be extended with infinite 𝜂𝜂, otherwise 𝑓𝑓′ will be 
negative or become unbounded which is a 
contradiction: In fact equation (20) suggests that 
𝑓𝑓′ and 𝑓𝑓′′ reach zero at a finite value of 𝜂𝜂 when 
the expression in parentheses reaches zero. This 
shows the natural and crucial result that for 𝑛𝑛 >
1, 𝑓𝑓′ goes to zero very rapidly and may reach zero 
at a finite 𝜂𝜂 which is consistent with the results 
obtained in Wei & Al-Ashhab (2014) for a similar 
equation. Finally observe that, in this case of 𝑛𝑛 >
1, 𝑓𝑓 tends to a constant as 𝜂𝜂 → ∞ since 𝑓𝑓′ reaches 
zero at finite 𝜂𝜂 as discussed above. 
 
    For 𝑛𝑛 = 1/2, observe that we may assume an 
approximation of the form ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧(ln 𝑧𝑧){	 near 
𝑧𝑧 = 0, where substituting back into (14) yields 

𝑝𝑝 = 2
}
, and 𝑘𝑘 = w~

{
x
F
à = (3𝐴𝐴)

F
à which for negative 

𝐴𝐴 does yield the positive (since 𝑧𝑧 ≈ 0 with 𝑧𝑧 > 0) 
approximate solution ℎ(𝑧𝑧) ≈ (3𝐴𝐴)

F
à𝑧𝑧(ln 𝑧𝑧)

F
à, and 

where it can be concluded that a solution 
satisfying (14-15) exists, but with possibly 
additional conditions on the parameters of the 
problem. This in turn yields an asymptotic 
behavior of the form 𝑓𝑓V → (𝑘𝑘S𝜂𝜂 + 𝐾𝐾)12. 
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Remark  As for the case 𝑛𝑛 > 0,  notice that for 
𝑛𝑛 > 2

S
  we have 𝑝𝑝 > 1	 since 𝑝𝑝 = }0

0T2
 from (16) 

above, and that works with positive 𝑘𝑘, so it does 
lead to a solution. The asymptotic behavior then 
follows equations (17) and (18) for 2

S
< 𝑛𝑛 < 2. As 

for 𝑛𝑛 > 2, equation (17) suggests very rapid 
decline to zero for 𝑓𝑓V, since the first term in (17) is 
negative. Therefore, 𝐾𝐾 must be positive since by 
assumption 𝑓𝑓V(0) = 𝜖𝜖 > 0, 𝑓𝑓V > 0 on the entire 
solution domain. Thus, this fact suggests that 𝑓𝑓V 
reaches zero at some finite 𝜂𝜂 which makes the 
expression in parentheses equal zero. Lastly, 
observe that for 𝑛𝑛 = 2 we have ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧S,	 
𝑓𝑓VV(𝜂𝜂) = √𝑘𝑘𝑓𝑓V(𝜂𝜂) and the asymptotic behavior 
takes the form𝑓𝑓V → 𝑐𝑐𝑒𝑒1√ã_, again showing a rapid 
decline of 𝑓𝑓V(𝜂𝜂) to zero. These solutions require 
ℎV(𝜖𝜖) = 𝛼𝛼𝛼𝛼 > 0 (here 𝑚𝑚 = 0 since 𝐵𝐵 = 0 and 
ℎ(𝑧𝑧) = J−𝑓𝑓VV(𝜂𝜂)L0 from (12) above so that as 𝑓𝑓′ 
and 𝑓𝑓VV strictly decrease to 0 then ℎ(𝑧𝑧) strictly 
decreases to 0. Observe in our arguments 𝑧𝑧 moves 
left from 𝜖𝜖 to 0 and therefore ℎV(𝑧𝑧) > 0 on (0, 𝜖𝜖]). 
If 𝐴𝐴 > 0, 𝑛𝑛 < 2

S
 solutions do not exist as will be 

shown shortly. 

3.1.1. Proof of existence and uniqueness for B= 0 
 
We choose to include a proof on existence and 
uniqueness, but avoid rigorous mathematical 
styles. To this end, observe that while it may not 
be difficult to establish existence and uniqueness 
of solutions to (14-15) that extend back to a point 
(0,𝑏𝑏 > 0), we still need to discuss existence and 
uniqueness of solutions that approach the origin 
(0,0). Existence of a solution that approaches (0,0) 
can be established by simple arguments (as a 
limiting case of solutions through (0,𝑏𝑏) where 𝑏𝑏 >
0). As for uniqueness of such a solution observe 
that multiplying both sides of (14) by ℎV(𝑧𝑧) and 
integrating yields:  
 

(ℎV(𝑧𝑧))S − (ℎV(𝛼𝛼))S =
2𝐴𝐴

1 − 1𝑛𝑛
	(	𝑧𝑧ℎ21

2
0(𝑧𝑧) − 

																												𝛼𝛼ℎ21
F
D(𝛼𝛼) − ∫ ℎ21

F
D(𝜇𝜇)𝑑𝑑𝜇𝜇	)o

ë     (23) 
 
Therefore, if there are two solutions approaching 
the origin but with different initial conditions (say 
same ℎ(𝑧𝑧) but different ℎ′(𝑧𝑧) then that will lead to 

a contradiction: Suppose that ℎ2	is a solution 
through the origin. Now, take another solution ℎS 
to (14) with initial conditions ℎS(𝑧𝑧) = ℎ2(𝑧𝑧)	and 
ℎSV (𝑧𝑧) > ℎ2V (𝑧𝑧), i.e. a larger ℎSV (𝑧𝑧),. The two 
solutions may not intersect at any point 𝛼𝛼 < 𝑧𝑧,	 
since if they did we should have ℎ2V (𝛼𝛼) > ℎSV (𝛼𝛼) 
(the condition ℎSV (𝑧𝑧) > ℎ2V (𝑧𝑧) implies that 
ℎS(𝜇𝜇) < ℎ2(𝜇𝜇) within the interval (𝛼𝛼, 𝑧𝑧) so that 
geometrically ℎS	is under ℎ2	within (𝛼𝛼, 𝑧𝑧)). Now 
the first two terms on the right hand side of (23), 
namely  𝑧𝑧ℎ21

F
D(𝑧𝑧) − 𝛼𝛼ℎ21

F
D(𝛼𝛼), would be the same 

for ℎ2	 and ℎS	 and therefore we have: 
 
(ℎSV (𝛼𝛼))S − (ℎ2V (𝛼𝛼))S = 	 (ℎSV (𝑧𝑧))S − (ℎ2V (𝑧𝑧))S		 

																					+ S~
21FD

∫ (ℎS
21FD(𝜇𝜇) − ℎ2

21FD(𝜇𝜇))𝑑𝑑𝜇𝜇	o
ë   (24) 

 
which implies that ℎSV (𝛼𝛼) > ℎ2V (𝛼𝛼)  since the right 
hand side is positive for 𝑛𝑛 > 1 and for 2

S
< 𝑛𝑛 < 1 

(ℎS(𝜇𝜇) < ℎ2(𝜇𝜇)  within the interval (𝛼𝛼, 𝑧𝑧) and 
𝐴𝐴 < 0). In fact this argument can be made with 
𝛼𝛼 = 0 where the two solutions cannot cross each 
other or meet at the origin. Observe that in our 
arguments if 𝑛𝑛 > 1	then the second term and the 
integral in (23) are finite, the same can be said for 
2
S
< 𝑛𝑛 < 1 (but not for 0 < 𝑛𝑛 < 2

S
) due to the 

asymptotic behavior discussed earlier. Thus we 
have established: 
 
Theorem 1 There is a unique solution to (14) 
subject to (15) for 𝑛𝑛 > 2

S
, 𝐴𝐴 < 0 and 𝐵𝐵 = 0. 

 
Remark For 𝑛𝑛 = 1, notice that equation (23) is 
replaced by 
(ℎV(𝑧𝑧))S − (ℎV(𝛼𝛼))S = 	2𝐴𝐴	(𝑧𝑧 lnJℎ(𝑧𝑧)L 

											−𝛼𝛼 ln(ℎ(𝛼𝛼)) − í ln(ℎ(𝜇𝜇)) 𝑑𝑑𝜇𝜇)
o

ë

 

Using similar arguments to the ones above, the 
same uniqueness result can be established for the 
Newtonian case where 𝑛𝑛 = 1. 
 
    Now, for 𝐴𝐴 > 0	and 𝑛𝑛 < 2

S
, a solution does not 

exist due to the following argument. That is, recall 
from our analysis that for 𝐴𝐴 < 0, 𝑛𝑛 < 2

S
,  solutions 

exhibit infinite first and second order derivatives 
of ℎ(𝑧𝑧). If a solution approaching the origin exists 
for 𝐴𝐴 > 0	 its second derivative should be larger, 
or “more infinite”, than was the case for 𝐴𝐴 < 0 (in 
absolute values) since now the fact that ℎVV(𝑧𝑧) > 0  

(23)

Therefore, if there are two solutions approaching the 
origin but with different initial conditions (say same h(z) 
but different h'(z) then that will lead to a contradiction: 
Suppose that h1  is a solution through the origin. Now, 
take another solution h2 to (14) with initial conditions 
h2 (z)=h1 (z)  and                                   i.e. a larger              . The two 
solutions may not intersect at any point a<z,  since if they 
did we should have           (the condition 
    implies that h2(μ)<h1(μ) within 
the interval (a,z) so that geometrically h2  is under h1  
within (a,z)). Now the first two terms on the right hand 
side of (23), namely          would 
be the same for h1 and h2 and therefore we have:
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Remark  As for the case 𝑛𝑛 > 0,  notice that for 
𝑛𝑛 > 2

S
  we have 𝑝𝑝 > 1	 since 𝑝𝑝 = }0

0T2
 from (16) 

above, and that works with positive 𝑘𝑘, so it does 
lead to a solution. The asymptotic behavior then 
follows equations (17) and (18) for 2

S
< 𝑛𝑛 < 2. As 

for 𝑛𝑛 > 2, equation (17) suggests very rapid 
decline to zero for 𝑓𝑓V, since the first term in (17) is 
negative. Therefore, 𝐾𝐾 must be positive since by 
assumption 𝑓𝑓V(0) = 𝜖𝜖 > 0, 𝑓𝑓V > 0 on the entire 
solution domain. Thus, this fact suggests that 𝑓𝑓V 
reaches zero at some finite 𝜂𝜂 which makes the 
expression in parentheses equal zero. Lastly, 
observe that for 𝑛𝑛 = 2 we have ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧S,	 
𝑓𝑓VV(𝜂𝜂) = √𝑘𝑘𝑓𝑓V(𝜂𝜂) and the asymptotic behavior 
takes the form𝑓𝑓V → 𝑐𝑐𝑒𝑒1√ã_, again showing a rapid 
decline of 𝑓𝑓V(𝜂𝜂) to zero. These solutions require 
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decreases to 0. Observe in our arguments 𝑧𝑧 moves 
left from 𝜖𝜖 to 0 and therefore ℎV(𝑧𝑧) > 0 on (0, 𝜖𝜖]). 
If 𝐴𝐴 > 0, 𝑛𝑛 < 2

S
 solutions do not exist as will be 

shown shortly. 

3.1.1. Proof of existence and uniqueness for B= 0 
 
We choose to include a proof on existence and 
uniqueness, but avoid rigorous mathematical 
styles. To this end, observe that while it may not 
be difficult to establish existence and uniqueness 
of solutions to (14-15) that extend back to a point 
(0,𝑏𝑏 > 0), we still need to discuss existence and 
uniqueness of solutions that approach the origin 
(0,0). Existence of a solution that approaches (0,0) 
can be established by simple arguments (as a 
limiting case of solutions through (0,𝑏𝑏) where 𝑏𝑏 >
0). As for uniqueness of such a solution observe 
that multiplying both sides of (14) by ℎV(𝑧𝑧) and 
integrating yields:  
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Therefore, if there are two solutions approaching 
the origin but with different initial conditions (say 
same ℎ(𝑧𝑧) but different ℎ′(𝑧𝑧) then that will lead to 

a contradiction: Suppose that ℎ2	is a solution 
through the origin. Now, take another solution ℎS 
to (14) with initial conditions ℎS(𝑧𝑧) = ℎ2(𝑧𝑧)	and 
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ℎS(𝜇𝜇) < ℎ2(𝜇𝜇) within the interval (𝛼𝛼, 𝑧𝑧) so that 
geometrically ℎS	is under ℎ2	within (𝛼𝛼, 𝑧𝑧)). Now 
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which implies that ℎSV (𝛼𝛼) > ℎ2V (𝛼𝛼)  since the right 
hand side is positive for 𝑛𝑛 > 1 and for 2
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𝛼𝛼 = 0 where the two solutions cannot cross each 
other or meet at the origin. Observe that in our 
arguments if 𝑛𝑛 > 1	then the second term and the 
integral in (23) are finite, the same can be said for 
2
S
< 𝑛𝑛 < 1 (but not for 0 < 𝑛𝑛 < 2

S
) due to the 

asymptotic behavior discussed earlier. Thus we 
have established: 
 
Theorem 1 There is a unique solution to (14) 
subject to (15) for 𝑛𝑛 > 2

S
, 𝐴𝐴 < 0 and 𝐵𝐵 = 0. 

 
Remark For 𝑛𝑛 = 1, notice that equation (23) is 
replaced by 
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Using similar arguments to the ones above, the 
same uniqueness result can be established for the 
Newtonian case where 𝑛𝑛 = 1. 
 
    Now, for 𝐴𝐴 > 0	and 𝑛𝑛 < 2

S
, a solution does not 

exist due to the following argument. That is, recall 
from our analysis that for 𝐴𝐴 < 0, 𝑛𝑛 < 2

S
,  solutions 

exhibit infinite first and second order derivatives 
of ℎ(𝑧𝑧). If a solution approaching the origin exists 
for 𝐴𝐴 > 0	 its second derivative should be larger, 
or “more infinite”, than was the case for 𝐴𝐴 < 0 (in 
absolute values) since now the fact that ℎVV(𝑧𝑧) > 0  
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We choose to include a proof on existence and 
uniqueness, but avoid rigorous mathematical 
styles. To this end, observe that while it may not 
be difficult to establish existence and uniqueness 
of solutions to (14-15) that extend back to a point 
(0,𝑏𝑏 > 0), we still need to discuss existence and 
uniqueness of solutions that approach the origin 
(0,0). Existence of a solution that approaches (0,0) 
can be established by simple arguments (as a 
limiting case of solutions through (0,𝑏𝑏) where 𝑏𝑏 >
0). As for uniqueness of such a solution observe 
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Therefore, if there are two solutions approaching 
the origin but with different initial conditions (say 
same ℎ(𝑧𝑧) but different ℎ′(𝑧𝑧) then that will lead to 

a contradiction: Suppose that ℎ2	is a solution 
through the origin. Now, take another solution ℎS 
to (14) with initial conditions ℎS(𝑧𝑧) = ℎ2(𝑧𝑧)	and 
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    Now, for 𝐴𝐴 > 0	and 𝑛𝑛 < 2

S
, a solution does not 

exist due to the following argument. That is, recall 
from our analysis that for 𝐴𝐴 < 0, 𝑛𝑛 < 2

S
,  solutions 

exhibit infinite first and second order derivatives 
of ℎ(𝑧𝑧). If a solution approaching the origin exists 
for 𝐴𝐴 > 0	 its second derivative should be larger, 
or “more infinite”, than was the case for 𝐴𝐴 < 0 (in 
absolute values) since now the fact that ℎVV(𝑧𝑧) > 0  

Asymptotic Behavior and Existence of Similarity Solutions for a Boundary Layer Flow Problem 
 
 
Remark  As for the case 𝑛𝑛 > 0,  notice that for 
𝑛𝑛 > 2

S
  we have 𝑝𝑝 > 1	 since 𝑝𝑝 = }0

0T2
 from (16) 

above, and that works with positive 𝑘𝑘, so it does 
lead to a solution. The asymptotic behavior then 
follows equations (17) and (18) for 2

S
< 𝑛𝑛 < 2. As 

for 𝑛𝑛 > 2, equation (17) suggests very rapid 
decline to zero for 𝑓𝑓V, since the first term in (17) is 
negative. Therefore, 𝐾𝐾 must be positive since by 
assumption 𝑓𝑓V(0) = 𝜖𝜖 > 0, 𝑓𝑓V > 0 on the entire 
solution domain. Thus, this fact suggests that 𝑓𝑓V 
reaches zero at some finite 𝜂𝜂 which makes the 
expression in parentheses equal zero. Lastly, 
observe that for 𝑛𝑛 = 2 we have ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧S,	 
𝑓𝑓VV(𝜂𝜂) = √𝑘𝑘𝑓𝑓V(𝜂𝜂) and the asymptotic behavior 
takes the form𝑓𝑓V → 𝑐𝑐𝑒𝑒1√ã_, again showing a rapid 
decline of 𝑓𝑓V(𝜂𝜂) to zero. These solutions require 
ℎV(𝜖𝜖) = 𝛼𝛼𝛼𝛼 > 0 (here 𝑚𝑚 = 0 since 𝐵𝐵 = 0 and 
ℎ(𝑧𝑧) = J−𝑓𝑓VV(𝜂𝜂)L0 from (12) above so that as 𝑓𝑓′ 
and 𝑓𝑓VV strictly decrease to 0 then ℎ(𝑧𝑧) strictly 
decreases to 0. Observe in our arguments 𝑧𝑧 moves 
left from 𝜖𝜖 to 0 and therefore ℎV(𝑧𝑧) > 0 on (0, 𝜖𝜖]). 
If 𝐴𝐴 > 0, 𝑛𝑛 < 2

S
 solutions do not exist as will be 

shown shortly. 

3.1.1. Proof of existence and uniqueness for B= 0 
 
We choose to include a proof on existence and 
uniqueness, but avoid rigorous mathematical 
styles. To this end, observe that while it may not 
be difficult to establish existence and uniqueness 
of solutions to (14-15) that extend back to a point 
(0,𝑏𝑏 > 0), we still need to discuss existence and 
uniqueness of solutions that approach the origin 
(0,0). Existence of a solution that approaches (0,0) 
can be established by simple arguments (as a 
limiting case of solutions through (0,𝑏𝑏) where 𝑏𝑏 >
0). As for uniqueness of such a solution observe 
that multiplying both sides of (14) by ℎV(𝑧𝑧) and 
integrating yields:  
 

(ℎV(𝑧𝑧))S − (ℎV(𝛼𝛼))S =
2𝐴𝐴

1 − 1𝑛𝑛
	(	𝑧𝑧ℎ21

2
0(𝑧𝑧) − 

																												𝛼𝛼ℎ21
F
D(𝛼𝛼) − ∫ ℎ21

F
D(𝜇𝜇)𝑑𝑑𝜇𝜇	)o

ë     (23) 
 
Therefore, if there are two solutions approaching 
the origin but with different initial conditions (say 
same ℎ(𝑧𝑧) but different ℎ′(𝑧𝑧) then that will lead to 

a contradiction: Suppose that ℎ2	is a solution 
through the origin. Now, take another solution ℎS 
to (14) with initial conditions ℎS(𝑧𝑧) = ℎ2(𝑧𝑧)	and 
ℎSV (𝑧𝑧) > ℎ2V (𝑧𝑧), i.e. a larger ℎSV (𝑧𝑧),. The two 
solutions may not intersect at any point 𝛼𝛼 < 𝑧𝑧,	 
since if they did we should have ℎ2V (𝛼𝛼) > ℎSV (𝛼𝛼) 
(the condition ℎSV (𝑧𝑧) > ℎ2V (𝑧𝑧) implies that 
ℎS(𝜇𝜇) < ℎ2(𝜇𝜇) within the interval (𝛼𝛼, 𝑧𝑧) so that 
geometrically ℎS	is under ℎ2	within (𝛼𝛼, 𝑧𝑧)). Now 
the first two terms on the right hand side of (23), 
namely  𝑧𝑧ℎ21

F
D(𝑧𝑧) − 𝛼𝛼ℎ21

F
D(𝛼𝛼), would be the same 

for ℎ2	 and ℎS	 and therefore we have: 
 
(ℎSV (𝛼𝛼))S − (ℎ2V (𝛼𝛼))S = 	 (ℎSV (𝑧𝑧))S − (ℎ2V (𝑧𝑧))S		 

																					+ S~
21FD

∫ (ℎS
21FD(𝜇𝜇) − ℎ2

21FD(𝜇𝜇))𝑑𝑑𝜇𝜇	o
ë   (24) 

 
which implies that ℎSV (𝛼𝛼) > ℎ2V (𝛼𝛼)  since the right 
hand side is positive for 𝑛𝑛 > 1 and for 2

S
< 𝑛𝑛 < 1 

(ℎS(𝜇𝜇) < ℎ2(𝜇𝜇)  within the interval (𝛼𝛼, 𝑧𝑧) and 
𝐴𝐴 < 0). In fact this argument can be made with 
𝛼𝛼 = 0 where the two solutions cannot cross each 
other or meet at the origin. Observe that in our 
arguments if 𝑛𝑛 > 1	then the second term and the 
integral in (23) are finite, the same can be said for 
2
S
< 𝑛𝑛 < 1 (but not for 0 < 𝑛𝑛 < 2

S
) due to the 

asymptotic behavior discussed earlier. Thus we 
have established: 
 
Theorem 1 There is a unique solution to (14) 
subject to (15) for 𝑛𝑛 > 2

S
, 𝐴𝐴 < 0 and 𝐵𝐵 = 0. 

 
Remark For 𝑛𝑛 = 1, notice that equation (23) is 
replaced by 
(ℎV(𝑧𝑧))S − (ℎV(𝛼𝛼))S = 	2𝐴𝐴	(𝑧𝑧 lnJℎ(𝑧𝑧)L 

											−𝛼𝛼 ln(ℎ(𝛼𝛼)) − í ln(ℎ(𝜇𝜇)) 𝑑𝑑𝜇𝜇)
o

ë

 

Using similar arguments to the ones above, the 
same uniqueness result can be established for the 
Newtonian case where 𝑛𝑛 = 1. 
 
    Now, for 𝐴𝐴 > 0	and 𝑛𝑛 < 2

S
, a solution does not 

exist due to the following argument. That is, recall 
from our analysis that for 𝐴𝐴 < 0, 𝑛𝑛 < 2

S
,  solutions 

exhibit infinite first and second order derivatives 
of ℎ(𝑧𝑧). If a solution approaching the origin exists 
for 𝐴𝐴 > 0	 its second derivative should be larger, 
or “more infinite”, than was the case for 𝐴𝐴 < 0 (in 
absolute values) since now the fact that ℎVV(𝑧𝑧) > 0  
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Remark  As for the case 𝑛𝑛 > 0,  notice that for 
𝑛𝑛 > 2

S
  we have 𝑝𝑝 > 1	 since 𝑝𝑝 = }0

0T2
 from (16) 

above, and that works with positive 𝑘𝑘, so it does 
lead to a solution. The asymptotic behavior then 
follows equations (17) and (18) for 2

S
< 𝑛𝑛 < 2. As 

for 𝑛𝑛 > 2, equation (17) suggests very rapid 
decline to zero for 𝑓𝑓V, since the first term in (17) is 
negative. Therefore, 𝐾𝐾 must be positive since by 
assumption 𝑓𝑓V(0) = 𝜖𝜖 > 0, 𝑓𝑓V > 0 on the entire 
solution domain. Thus, this fact suggests that 𝑓𝑓V 
reaches zero at some finite 𝜂𝜂 which makes the 
expression in parentheses equal zero. Lastly, 
observe that for 𝑛𝑛 = 2 we have ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧S,	 
𝑓𝑓VV(𝜂𝜂) = √𝑘𝑘𝑓𝑓V(𝜂𝜂) and the asymptotic behavior 
takes the form𝑓𝑓V → 𝑐𝑐𝑒𝑒1√ã_, again showing a rapid 
decline of 𝑓𝑓V(𝜂𝜂) to zero. These solutions require 
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decreases to 0. Observe in our arguments 𝑧𝑧 moves 
left from 𝜖𝜖 to 0 and therefore ℎV(𝑧𝑧) > 0 on (0, 𝜖𝜖]). 
If 𝐴𝐴 > 0, 𝑛𝑛 < 2

S
 solutions do not exist as will be 

shown shortly. 

3.1.1. Proof of existence and uniqueness for B= 0 
 
We choose to include a proof on existence and 
uniqueness, but avoid rigorous mathematical 
styles. To this end, observe that while it may not 
be difficult to establish existence and uniqueness 
of solutions to (14-15) that extend back to a point 
(0,𝑏𝑏 > 0), we still need to discuss existence and 
uniqueness of solutions that approach the origin 
(0,0). Existence of a solution that approaches (0,0) 
can be established by simple arguments (as a 
limiting case of solutions through (0,𝑏𝑏) where 𝑏𝑏 >
0). As for uniqueness of such a solution observe 
that multiplying both sides of (14) by ℎV(𝑧𝑧) and 
integrating yields:  
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Therefore, if there are two solutions approaching 
the origin but with different initial conditions (say 
same ℎ(𝑧𝑧) but different ℎ′(𝑧𝑧) then that will lead to 

a contradiction: Suppose that ℎ2	is a solution 
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to (14) with initial conditions ℎS(𝑧𝑧) = ℎ2(𝑧𝑧)	and 
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Using similar arguments to the ones above, the 
same uniqueness result can be established for the 
Newtonian case where 𝑛𝑛 = 1. 
 
    Now, for 𝐴𝐴 > 0	and 𝑛𝑛 < 2

S
, a solution does not 

exist due to the following argument. That is, recall 
from our analysis that for 𝐴𝐴 < 0, 𝑛𝑛 < 2

S
,  solutions 

exhibit infinite first and second order derivatives 
of ℎ(𝑧𝑧). If a solution approaching the origin exists 
for 𝐴𝐴 > 0	 its second derivative should be larger, 
or “more infinite”, than was the case for 𝐴𝐴 < 0 (in 
absolute values) since now the fact that ℎVV(𝑧𝑧) > 0  
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uniqueness, but avoid rigorous mathematical 
styles. To this end, observe that while it may not 
be difficult to establish existence and uniqueness 
of solutions to (14-15) that extend back to a point 
(0,𝑏𝑏 > 0), we still need to discuss existence and 
uniqueness of solutions that approach the origin 
(0,0). Existence of a solution that approaches (0,0) 
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Therefore, if there are two solutions approaching 
the origin but with different initial conditions (say 
same ℎ(𝑧𝑧) but different ℎ′(𝑧𝑧) then that will lead to 

a contradiction: Suppose that ℎ2	is a solution 
through the origin. Now, take another solution ℎS 
to (14) with initial conditions ℎS(𝑧𝑧) = ℎ2(𝑧𝑧)	and 
ℎSV (𝑧𝑧) > ℎ2V (𝑧𝑧), i.e. a larger ℎSV (𝑧𝑧),. The two 
solutions may not intersect at any point 𝛼𝛼 < 𝑧𝑧,	 
since if they did we should have ℎ2V (𝛼𝛼) > ℎSV (𝛼𝛼) 
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for ℎ2	 and ℎS	 and therefore we have: 
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																					+ S~
21FD

∫ (ℎS
21FD(𝜇𝜇) − ℎ2

21FD(𝜇𝜇))𝑑𝑑𝜇𝜇	o
ë   (24) 
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integral in (23) are finite, the same can be said for 
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< 𝑛𝑛 < 1 (but not for 0 < 𝑛𝑛 < 2
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) due to the 
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same uniqueness result can be established for the 
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    Now, for 𝐴𝐴 > 0	and 𝑛𝑛 < 2

S
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integral in (23) are finite, the same can be said for 
2
S
< 𝑛𝑛 < 1 (but not for 0 < 𝑛𝑛 < 2

S
) due to the 

asymptotic behavior discussed earlier. Thus we 
have established: 
 
Theorem 1 There is a unique solution to (14) 
subject to (15) for 𝑛𝑛 > 2

S
, 𝐴𝐴 < 0 and 𝐵𝐵 = 0. 

 
Remark For 𝑛𝑛 = 1, notice that equation (23) is 
replaced by 
(ℎV(𝑧𝑧))S − (ℎV(𝛼𝛼))S = 	2𝐴𝐴	(𝑧𝑧 lnJℎ(𝑧𝑧)L 

											−𝛼𝛼 ln(ℎ(𝛼𝛼)) − í ln(ℎ(𝜇𝜇)) 𝑑𝑑𝜇𝜇)
o

ë

 

Using similar arguments to the ones above, the 
same uniqueness result can be established for the 
Newtonian case where 𝑛𝑛 = 1. 
 
    Now, for 𝐴𝐴 > 0	and 𝑛𝑛 < 2

S
, a solution does not 

exist due to the following argument. That is, recall 
from our analysis that for 𝐴𝐴 < 0, 𝑛𝑛 < 2

S
,  solutions 

exhibit infinite first and second order derivatives 
of ℎ(𝑧𝑧). If a solution approaching the origin exists 
for 𝐴𝐴 > 0	 its second derivative should be larger, 
or “more infinite”, than was the case for 𝐴𝐴 < 0 (in 
absolute values) since now the fact that ℎVV(𝑧𝑧) > 0  

(24)

which implies that        since the right 
hand side is positive for n > 1 and for   < n < 1 
(h2 (μ) < h1 (μ)  within the interval (a,z) and A < 0). In fact 
this argument can be made with a=0 where the two 
solutions cannot cross each other or meet at the origin. 
Observe that in our arguments if  n > 1 then the second term 
and the integral in (23) are finite, the same can be said 
for   <n<1 (but not for 0<n<    ) due to the asymptotic 
behavior discussed earlier. Thus we have established:
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S
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0T2
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S
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for 𝑛𝑛 > 2, equation (17) suggests very rapid 
decline to zero for 𝑓𝑓V, since the first term in (17) is 
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2
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F
D(𝛼𝛼) − ∫ ℎ21

F
D(𝜇𝜇)𝑑𝑑𝜇𝜇	)o

ë     (23) 
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21FD
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21FD(𝜇𝜇) − ℎ2
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Using similar arguments to the ones above, the 
same uniqueness result can be established for the 
Newtonian case where 𝑛𝑛 = 1. 
 
    Now, for 𝐴𝐴 > 0	and 𝑛𝑛 < 2

S
, a solution does not 

exist due to the following argument. That is, recall 
from our analysis that for 𝐴𝐴 < 0, 𝑛𝑛 < 2

S
,  solutions 

exhibit infinite first and second order derivatives 
of ℎ(𝑧𝑧). If a solution approaching the origin exists 
for 𝐴𝐴 > 0	 its second derivative should be larger, 
or “more infinite”, than was the case for 𝐴𝐴 < 0 (in 
absolute values) since now the fact that ℎVV(𝑧𝑧) > 0  
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We first consider the case where 𝐵𝐵 = 0. This 
happens when 𝑚𝑚 = 0 in our derivation process 
since 𝐵𝐵 = −A

0
.  To discuss the asymptotic 

behavior of 𝑓𝑓V (and consequently 𝑓𝑓) as η → ∞ let 
ℎ(𝑧𝑧) be represented by ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{  for z close to 
0 (z > 0), and for some parameters k and 𝑝𝑝. 
Observe that k must be positive since ℎ(𝑧𝑧) is a 
positive function so that for  𝐴𝐴 < 0 and 0 < 𝑛𝑛 < 2

S
  

we have:  
 
𝑝𝑝 = }0

0T2
,											𝑘𝑘2T

F
D = ~

{({12)
                           (16) 

 

This implies that  𝑝𝑝 < 1 and consequently 𝑘𝑘 > 0 
which is consistent with the fact that ℎ(𝑧𝑧) must be 
a positive function. In fact ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{ in its own 
right is an exact solution to (14) which satisfies 
(15) if ℎV(𝜖𝜖) = 𝑘𝑘𝑝𝑝𝜖𝜖{12 = 𝛼𝛼𝛼𝛼 = 𝛼𝛼𝑓𝑓(0) > 0.  

Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (derivatives of 𝑓𝑓	as 
given above in (12)) and integrating the resulting 
equation, yields:  
 
𝑓𝑓V ≈ (	wS10

0T2
	𝑘𝑘

F
Dx 𝜂𝜂 + 𝐾𝐾	)

DGF
DEC	                             (17) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant (of 
integration). In other words: 
 
𝑓𝑓V → 	c ⋅ 𝜂𝜂

DGF
DEC	 as 𝜂𝜂 → ∞                                   (18) 

 
for 0 < 𝑛𝑛 < 2

S
 and for some constant 𝑐𝑐 > 0, where 

in fact 𝑐𝑐 = wS10
0T2

	𝑘𝑘
F
Dx

DGF
DEC. Observe that 𝑓𝑓V tends to 

zero as 𝜂𝜂 → ∞, while 
 
𝑓𝑓 → 	 01S

S012
c ⋅ 𝜂𝜂

CDEF
DEC + 𝐿𝐿                                     (19) 

 
where 𝐿𝐿	is a constant. Note that 𝑓𝑓	does not tend to 
constant as 𝜂𝜂 → ∞	since the exponent S012

01S
> 0.  

 
Now for 	𝑛𝑛 > 2

S
,  let  ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧 + 𝜅𝜅𝑧𝑧{  for 𝑧𝑧	close 

to 0 (𝑧𝑧 > 0). This yields a value of 𝑝𝑝 = 3 − 2
0
 

(observe that 𝑝𝑝 > 1), and it can be shown that the 
equation 𝜅𝜅𝑝𝑝(𝑝𝑝 − 1)𝜅𝜅

F
D = 𝐴𝐴 relates 𝑘𝑘 > 0 to 𝜅𝜅. 

Observe that this works for positive 𝐴𝐴 as well as 
negative 𝐴𝐴. This is the case where 𝜅𝜅 is positive 

when 𝐴𝐴 is positive, and it is negative when 𝐴𝐴 is 
negative. However, 𝑘𝑘	is positive in both cases. 
Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (12) and integrating 
the resulting equation yields:  
 
𝑓𝑓V ≈ (	w210

0
(𝑘𝑘)

F
Dx 𝜂𝜂 + 𝐾𝐾	)

D
DEF                           (20) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant. Therefore 
we have: 
 
𝑓𝑓V → 	c ⋅ 	𝜂𝜂

D
DEF   as    𝜂𝜂 → ∞,                             (21) 

 
for  2

S
< 𝑛𝑛 < 1 and for some constant 𝑐𝑐 > 0, 

which in turn implies that: 
 
𝑓𝑓 → 012

S012
⋅ 𝑐𝑐 ⋅ 	𝜂𝜂

CDEF
DEF + 𝑓𝑓                                  (22) 

 
so that 𝑓𝑓 tends to a constant 𝑓𝑓   as  𝜂𝜂 → ∞ since 
the exponent on 𝜂𝜂 is negative. On the other hand, 
observe that if 𝑛𝑛 > 1 the first term in (20) is 
negative, and then in the case of even radicals on 
exponents the equation will terminate and cannot 
be extended with infinite 𝜂𝜂, otherwise 𝑓𝑓′ will be 
negative or become unbounded which is a 
contradiction: In fact equation (20) suggests that 
𝑓𝑓′ and 𝑓𝑓′′ reach zero at a finite value of 𝜂𝜂 when 
the expression in parentheses reaches zero. This 
shows the natural and crucial result that for 𝑛𝑛 >
1, 𝑓𝑓′ goes to zero very rapidly and may reach zero 
at a finite 𝜂𝜂 which is consistent with the results 
obtained in Wei & Al-Ashhab (2014) for a similar 
equation. Finally observe that, in this case of 𝑛𝑛 >
1, 𝑓𝑓 tends to a constant as 𝜂𝜂 → ∞ since 𝑓𝑓′ reaches 
zero at finite 𝜂𝜂 as discussed above. 
 
    For 𝑛𝑛 = 1/2, observe that we may assume an 
approximation of the form ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧(ln 𝑧𝑧){	 near 
𝑧𝑧 = 0, where substituting back into (14) yields 

𝑝𝑝 = 2
}
, and 𝑘𝑘 = w~

{
x
F
à = (3𝐴𝐴)

F
à which for negative 

𝐴𝐴 does yield the positive (since 𝑧𝑧 ≈ 0 with 𝑧𝑧 > 0) 
approximate solution ℎ(𝑧𝑧) ≈ (3𝐴𝐴)

F
à𝑧𝑧(ln 𝑧𝑧)

F
à, and 

where it can be concluded that a solution 
satisfying (14-15) exists, but with possibly 
additional conditions on the parameters of the 
problem. This in turn yields an asymptotic 
behavior of the form 𝑓𝑓V → (𝑘𝑘S𝜂𝜂 + 𝐾𝐾)12. 
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We first consider the case where 𝐵𝐵 = 0. This 
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We first consider the case where 𝐵𝐵 = 0. This 
happens when 𝑚𝑚 = 0 in our derivation process 
since 𝐵𝐵 = −A

0
.  To discuss the asymptotic 

behavior of 𝑓𝑓V (and consequently 𝑓𝑓) as η → ∞ let 
ℎ(𝑧𝑧) be represented by ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{  for z close to 
0 (z > 0), and for some parameters k and 𝑝𝑝. 
Observe that k must be positive since ℎ(𝑧𝑧) is a 
positive function so that for  𝐴𝐴 < 0 and 0 < 𝑛𝑛 < 2

S
  

we have:  
 
𝑝𝑝 = }0

0T2
,											𝑘𝑘2T

F
D = ~

{({12)
                           (16) 

 

This implies that  𝑝𝑝 < 1 and consequently 𝑘𝑘 > 0 
which is consistent with the fact that ℎ(𝑧𝑧) must be 
a positive function. In fact ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{ in its own 
right is an exact solution to (14) which satisfies 
(15) if ℎV(𝜖𝜖) = 𝑘𝑘𝑝𝑝𝜖𝜖{12 = 𝛼𝛼𝛼𝛼 = 𝛼𝛼𝑓𝑓(0) > 0.  

Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (derivatives of 𝑓𝑓	as 
given above in (12)) and integrating the resulting 
equation, yields:  
 
𝑓𝑓V ≈ (	wS10

0T2
	𝑘𝑘

F
Dx 𝜂𝜂 + 𝐾𝐾	)

DGF
DEC	                             (17) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant (of 
integration). In other words: 
 
𝑓𝑓V → 	c ⋅ 𝜂𝜂

DGF
DEC	 as 𝜂𝜂 → ∞                                   (18) 

 
for 0 < 𝑛𝑛 < 2

S
 and for some constant 𝑐𝑐 > 0, where 

in fact 𝑐𝑐 = wS10
0T2

	𝑘𝑘
F
Dx

DGF
DEC. Observe that 𝑓𝑓V tends to 

zero as 𝜂𝜂 → ∞, while 
 
𝑓𝑓 → 	 01S

S012
c ⋅ 𝜂𝜂

CDEF
DEC + 𝐿𝐿                                     (19) 

 
where 𝐿𝐿	is a constant. Note that 𝑓𝑓	does not tend to 
constant as 𝜂𝜂 → ∞	since the exponent S012

01S
> 0.  

 
Now for 	𝑛𝑛 > 2

S
,  let  ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧 + 𝜅𝜅𝑧𝑧{  for 𝑧𝑧	close 

to 0 (𝑧𝑧 > 0). This yields a value of 𝑝𝑝 = 3 − 2
0
 

(observe that 𝑝𝑝 > 1), and it can be shown that the 
equation 𝜅𝜅𝑝𝑝(𝑝𝑝 − 1)𝜅𝜅

F
D = 𝐴𝐴 relates 𝑘𝑘 > 0 to 𝜅𝜅. 

Observe that this works for positive 𝐴𝐴 as well as 
negative 𝐴𝐴. This is the case where 𝜅𝜅 is positive 

when 𝐴𝐴 is positive, and it is negative when 𝐴𝐴 is 
negative. However, 𝑘𝑘	is positive in both cases. 
Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (12) and integrating 
the resulting equation yields:  
 
𝑓𝑓V ≈ (	w210

0
(𝑘𝑘)

F
Dx 𝜂𝜂 + 𝐾𝐾	)

D
DEF                           (20) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant. Therefore 
we have: 
 
𝑓𝑓V → 	c ⋅ 	𝜂𝜂

D
DEF   as    𝜂𝜂 → ∞,                             (21) 

 
for  2

S
< 𝑛𝑛 < 1 and for some constant 𝑐𝑐 > 0, 

which in turn implies that: 
 
𝑓𝑓 → 012

S012
⋅ 𝑐𝑐 ⋅ 	𝜂𝜂

CDEF
DEF + 𝑓𝑓                                  (22) 

 
so that 𝑓𝑓 tends to a constant 𝑓𝑓   as  𝜂𝜂 → ∞ since 
the exponent on 𝜂𝜂 is negative. On the other hand, 
observe that if 𝑛𝑛 > 1 the first term in (20) is 
negative, and then in the case of even radicals on 
exponents the equation will terminate and cannot 
be extended with infinite 𝜂𝜂, otherwise 𝑓𝑓′ will be 
negative or become unbounded which is a 
contradiction: In fact equation (20) suggests that 
𝑓𝑓′ and 𝑓𝑓′′ reach zero at a finite value of 𝜂𝜂 when 
the expression in parentheses reaches zero. This 
shows the natural and crucial result that for 𝑛𝑛 >
1, 𝑓𝑓′ goes to zero very rapidly and may reach zero 
at a finite 𝜂𝜂 which is consistent with the results 
obtained in Wei & Al-Ashhab (2014) for a similar 
equation. Finally observe that, in this case of 𝑛𝑛 >
1, 𝑓𝑓 tends to a constant as 𝜂𝜂 → ∞ since 𝑓𝑓′ reaches 
zero at finite 𝜂𝜂 as discussed above. 
 
    For 𝑛𝑛 = 1/2, observe that we may assume an 
approximation of the form ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧(ln 𝑧𝑧){	 near 
𝑧𝑧 = 0, where substituting back into (14) yields 

𝑝𝑝 = 2
}
, and 𝑘𝑘 = w~

{
x
F
à = (3𝐴𝐴)

F
à which for negative 

𝐴𝐴 does yield the positive (since 𝑧𝑧 ≈ 0 with 𝑧𝑧 > 0) 
approximate solution ℎ(𝑧𝑧) ≈ (3𝐴𝐴)

F
à𝑧𝑧(ln 𝑧𝑧)

F
à, and 

where it can be concluded that a solution 
satisfying (14-15) exists, but with possibly 
additional conditions on the parameters of the 
problem. This in turn yields an asymptotic 
behavior of the form 𝑓𝑓V → (𝑘𝑘S𝜂𝜂 + 𝐾𝐾)12. 
 

Theorem 1 There is a unique solution to (14) subject to 
(15) for n >      , A<0 and B=0.
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S
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1, 𝑓𝑓 tends to a constant as 𝜂𝜂 → ∞ since 𝑓𝑓′ reaches 
zero at finite 𝜂𝜂 as discussed above. 
 
    For 𝑛𝑛 = 1/2, observe that we may assume an 
approximation of the form ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧(ln 𝑧𝑧){	 near 
𝑧𝑧 = 0, where substituting back into (14) yields 
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à, and 

where it can be concluded that a solution 
satisfying (14-15) exists, but with possibly 
additional conditions on the parameters of the 
problem. This in turn yields an asymptotic 
behavior of the form 𝑓𝑓V → (𝑘𝑘S𝜂𝜂 + 𝐾𝐾)12. 
 

Remark For n=1, notice that equation (23) is replaced by
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Remark  As for the case 𝑛𝑛 > 0,  notice that for 
𝑛𝑛 > 2

S
  we have 𝑝𝑝 > 1	 since 𝑝𝑝 = }0

0T2
 from (16) 

above, and that works with positive 𝑘𝑘, so it does 
lead to a solution. The asymptotic behavior then 
follows equations (17) and (18) for 2

S
< 𝑛𝑛 < 2. As 

for 𝑛𝑛 > 2, equation (17) suggests very rapid 
decline to zero for 𝑓𝑓V, since the first term in (17) is 
negative. Therefore, 𝐾𝐾 must be positive since by 
assumption 𝑓𝑓V(0) = 𝜖𝜖 > 0, 𝑓𝑓V > 0 on the entire 
solution domain. Thus, this fact suggests that 𝑓𝑓V 
reaches zero at some finite 𝜂𝜂 which makes the 
expression in parentheses equal zero. Lastly, 
observe that for 𝑛𝑛 = 2 we have ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧S,	 
𝑓𝑓VV(𝜂𝜂) = √𝑘𝑘𝑓𝑓V(𝜂𝜂) and the asymptotic behavior 
takes the form𝑓𝑓V → 𝑐𝑐𝑒𝑒1√ã_, again showing a rapid 
decline of 𝑓𝑓V(𝜂𝜂) to zero. These solutions require 
ℎV(𝜖𝜖) = 𝛼𝛼𝛼𝛼 > 0 (here 𝑚𝑚 = 0 since 𝐵𝐵 = 0 and 
ℎ(𝑧𝑧) = J−𝑓𝑓VV(𝜂𝜂)L0 from (12) above so that as 𝑓𝑓′ 
and 𝑓𝑓VV strictly decrease to 0 then ℎ(𝑧𝑧) strictly 
decreases to 0. Observe in our arguments 𝑧𝑧 moves 
left from 𝜖𝜖 to 0 and therefore ℎV(𝑧𝑧) > 0 on (0, 𝜖𝜖]). 
If 𝐴𝐴 > 0, 𝑛𝑛 < 2

S
 solutions do not exist as will be 

shown shortly. 

3.1.1. Proof of existence and uniqueness for B= 0 
 
We choose to include a proof on existence and 
uniqueness, but avoid rigorous mathematical 
styles. To this end, observe that while it may not 
be difficult to establish existence and uniqueness 
of solutions to (14-15) that extend back to a point 
(0,𝑏𝑏 > 0), we still need to discuss existence and 
uniqueness of solutions that approach the origin 
(0,0). Existence of a solution that approaches (0,0) 
can be established by simple arguments (as a 
limiting case of solutions through (0,𝑏𝑏) where 𝑏𝑏 >
0). As for uniqueness of such a solution observe 
that multiplying both sides of (14) by ℎV(𝑧𝑧) and 
integrating yields:  
 

(ℎV(𝑧𝑧))S − (ℎV(𝛼𝛼))S =
2𝐴𝐴

1 − 1𝑛𝑛
	(	𝑧𝑧ℎ21

2
0(𝑧𝑧) − 

																												𝛼𝛼ℎ21
F
D(𝛼𝛼) − ∫ ℎ21

F
D(𝜇𝜇)𝑑𝑑𝜇𝜇	)o

ë     (23) 
 
Therefore, if there are two solutions approaching 
the origin but with different initial conditions (say 
same ℎ(𝑧𝑧) but different ℎ′(𝑧𝑧) then that will lead to 

a contradiction: Suppose that ℎ2	is a solution 
through the origin. Now, take another solution ℎS 
to (14) with initial conditions ℎS(𝑧𝑧) = ℎ2(𝑧𝑧)	and 
ℎSV (𝑧𝑧) > ℎ2V (𝑧𝑧), i.e. a larger ℎSV (𝑧𝑧),. The two 
solutions may not intersect at any point 𝛼𝛼 < 𝑧𝑧,	 
since if they did we should have ℎ2V (𝛼𝛼) > ℎSV (𝛼𝛼) 
(the condition ℎSV (𝑧𝑧) > ℎ2V (𝑧𝑧) implies that 
ℎS(𝜇𝜇) < ℎ2(𝜇𝜇) within the interval (𝛼𝛼, 𝑧𝑧) so that 
geometrically ℎS	is under ℎ2	within (𝛼𝛼, 𝑧𝑧)). Now 
the first two terms on the right hand side of (23), 
namely  𝑧𝑧ℎ21

F
D(𝑧𝑧) − 𝛼𝛼ℎ21

F
D(𝛼𝛼), would be the same 

for ℎ2	 and ℎS	 and therefore we have: 
 
(ℎSV (𝛼𝛼))S − (ℎ2V (𝛼𝛼))S = 	 (ℎSV (𝑧𝑧))S − (ℎ2V (𝑧𝑧))S		 

																					+ S~
21FD

∫ (ℎS
21FD(𝜇𝜇) − ℎ2

21FD(𝜇𝜇))𝑑𝑑𝜇𝜇	o
ë   (24) 

 
which implies that ℎSV (𝛼𝛼) > ℎ2V (𝛼𝛼)  since the right 
hand side is positive for 𝑛𝑛 > 1 and for 2

S
< 𝑛𝑛 < 1 

(ℎS(𝜇𝜇) < ℎ2(𝜇𝜇)  within the interval (𝛼𝛼, 𝑧𝑧) and 
𝐴𝐴 < 0). In fact this argument can be made with 
𝛼𝛼 = 0 where the two solutions cannot cross each 
other or meet at the origin. Observe that in our 
arguments if 𝑛𝑛 > 1	then the second term and the 
integral in (23) are finite, the same can be said for 
2
S
< 𝑛𝑛 < 1 (but not for 0 < 𝑛𝑛 < 2

S
) due to the 

asymptotic behavior discussed earlier. Thus we 
have established: 
 
Theorem 1 There is a unique solution to (14) 
subject to (15) for 𝑛𝑛 > 2

S
, 𝐴𝐴 < 0 and 𝐵𝐵 = 0. 

 
Remark For 𝑛𝑛 = 1, notice that equation (23) is 
replaced by 
(ℎV(𝑧𝑧))S − (ℎV(𝛼𝛼))S = 	2𝐴𝐴	(𝑧𝑧 lnJℎ(𝑧𝑧)L 

											−𝛼𝛼 ln(ℎ(𝛼𝛼)) − í ln(ℎ(𝜇𝜇)) 𝑑𝑑𝜇𝜇)
o

ë

 

Using similar arguments to the ones above, the 
same uniqueness result can be established for the 
Newtonian case where 𝑛𝑛 = 1. 
 
    Now, for 𝐴𝐴 > 0	and 𝑛𝑛 < 2

S
, a solution does not 

exist due to the following argument. That is, recall 
from our analysis that for 𝐴𝐴 < 0, 𝑛𝑛 < 2

S
,  solutions 

exhibit infinite first and second order derivatives 
of ℎ(𝑧𝑧). If a solution approaching the origin exists 
for 𝐴𝐴 > 0	 its second derivative should be larger, 
or “more infinite”, than was the case for 𝐴𝐴 < 0 (in 
absolute values) since now the fact that ℎVV(𝑧𝑧) > 0  

Using similar arguments to the ones above, the same 
uniqueness result can be established for the Newtonian 
case where n=1.

Now, for A >0 and n <      , a solution does not exist due to 
the following argument. That is, recall from our analysis 
that for A < 0,n <  ,  solutions exhibit infinite first and 
second order derivatives of h(z). If a solution approaching 
the origin exists for A >0  its second derivative should be 
larger, or “more infinite”, than was the case for A<0 (in 
absolute values) since now the fact that                 implies 
that (from (14) above, B=0) at the same z (z close to 0) 
h(z) is smaller for any solution extending to the origin 
with A > 0. To make this argument more precise, consider 
a solution to equation (14) with B=0, that satisfies the 
(initial) condition       with 
z >      ,which obviously is an arbitrary 
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a positive function. In fact ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{ in its own 
right is an exact solution to (14) which satisfies 
(15) if ℎV(𝜖𝜖) = 𝑘𝑘𝑝𝑝𝜖𝜖{12 = 𝛼𝛼𝛼𝛼 = 𝛼𝛼𝑓𝑓(0) > 0.  

Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (derivatives of 𝑓𝑓	as 
given above in (12)) and integrating the resulting 
equation, yields:  
 
𝑓𝑓V ≈ (	wS10

0T2
	𝑘𝑘

F
Dx 𝜂𝜂 + 𝐾𝐾	)

DGF
DEC	                             (17) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant (of 
integration). In other words: 
 
𝑓𝑓V → 	c ⋅ 𝜂𝜂

DGF
DEC	 as 𝜂𝜂 → ∞                                   (18) 

 
for 0 < 𝑛𝑛 < 2

S
 and for some constant 𝑐𝑐 > 0, where 

in fact 𝑐𝑐 = wS10
0T2

	𝑘𝑘
F
Dx

DGF
DEC. Observe that 𝑓𝑓V tends to 

zero as 𝜂𝜂 → ∞, while 
 
𝑓𝑓 → 	 01S

S012
c ⋅ 𝜂𝜂

CDEF
DEC + 𝐿𝐿                                     (19) 

 
where 𝐿𝐿	is a constant. Note that 𝑓𝑓	does not tend to 
constant as 𝜂𝜂 → ∞	since the exponent S012

01S
> 0.  

 
Now for 	𝑛𝑛 > 2

S
,  let  ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧 + 𝜅𝜅𝑧𝑧{  for 𝑧𝑧	close 

to 0 (𝑧𝑧 > 0). This yields a value of 𝑝𝑝 = 3 − 2
0
 

(observe that 𝑝𝑝 > 1), and it can be shown that the 
equation 𝜅𝜅𝑝𝑝(𝑝𝑝 − 1)𝜅𝜅

F
D = 𝐴𝐴 relates 𝑘𝑘 > 0 to 𝜅𝜅. 

Observe that this works for positive 𝐴𝐴 as well as 
negative 𝐴𝐴. This is the case where 𝜅𝜅 is positive 

when 𝐴𝐴 is positive, and it is negative when 𝐴𝐴 is 
negative. However, 𝑘𝑘	is positive in both cases. 
Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (12) and integrating 
the resulting equation yields:  
 
𝑓𝑓V ≈ (	w210

0
(𝑘𝑘)

F
Dx 𝜂𝜂 + 𝐾𝐾	)

D
DEF                           (20) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant. Therefore 
we have: 
 
𝑓𝑓V → 	c ⋅ 	𝜂𝜂

D
DEF   as    𝜂𝜂 → ∞,                             (21) 

 
for  2

S
< 𝑛𝑛 < 1 and for some constant 𝑐𝑐 > 0, 

which in turn implies that: 
 
𝑓𝑓 → 012

S012
⋅ 𝑐𝑐 ⋅ 	𝜂𝜂

CDEF
DEF + 𝑓𝑓                                  (22) 

 
so that 𝑓𝑓 tends to a constant 𝑓𝑓   as  𝜂𝜂 → ∞ since 
the exponent on 𝜂𝜂 is negative. On the other hand, 
observe that if 𝑛𝑛 > 1 the first term in (20) is 
negative, and then in the case of even radicals on 
exponents the equation will terminate and cannot 
be extended with infinite 𝜂𝜂, otherwise 𝑓𝑓′ will be 
negative or become unbounded which is a 
contradiction: In fact equation (20) suggests that 
𝑓𝑓′ and 𝑓𝑓′′ reach zero at a finite value of 𝜂𝜂 when 
the expression in parentheses reaches zero. This 
shows the natural and crucial result that for 𝑛𝑛 >
1, 𝑓𝑓′ goes to zero very rapidly and may reach zero 
at a finite 𝜂𝜂 which is consistent with the results 
obtained in Wei & Al-Ashhab (2014) for a similar 
equation. Finally observe that, in this case of 𝑛𝑛 >
1, 𝑓𝑓 tends to a constant as 𝜂𝜂 → ∞ since 𝑓𝑓′ reaches 
zero at finite 𝜂𝜂 as discussed above. 
 
    For 𝑛𝑛 = 1/2, observe that we may assume an 
approximation of the form ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧(ln 𝑧𝑧){	 near 
𝑧𝑧 = 0, where substituting back into (14) yields 

𝑝𝑝 = 2
}
, and 𝑘𝑘 = w~

{
x
F
à = (3𝐴𝐴)

F
à which for negative 

𝐴𝐴 does yield the positive (since 𝑧𝑧 ≈ 0 with 𝑧𝑧 > 0) 
approximate solution ℎ(𝑧𝑧) ≈ (3𝐴𝐴)

F
à𝑧𝑧(ln 𝑧𝑧)

F
à, and 

where it can be concluded that a solution 
satisfying (14-15) exists, but with possibly 
additional conditions on the parameters of the 
problem. This in turn yields an asymptotic 
behavior of the form 𝑓𝑓V → (𝑘𝑘S𝜂𝜂 + 𝐾𝐾)12. 
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We first consider the case where 𝐵𝐵 = 0. This 
happens when 𝑚𝑚 = 0 in our derivation process 
since 𝐵𝐵 = −A

0
.  To discuss the asymptotic 

behavior of 𝑓𝑓V (and consequently 𝑓𝑓) as η → ∞ let 
ℎ(𝑧𝑧) be represented by ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{  for z close to 
0 (z > 0), and for some parameters k and 𝑝𝑝. 
Observe that k must be positive since ℎ(𝑧𝑧) is a 
positive function so that for  𝐴𝐴 < 0 and 0 < 𝑛𝑛 < 2

S
  

we have:  
 
𝑝𝑝 = }0

0T2
,											𝑘𝑘2T

F
D = ~

{({12)
                           (16) 

 

This implies that  𝑝𝑝 < 1 and consequently 𝑘𝑘 > 0 
which is consistent with the fact that ℎ(𝑧𝑧) must be 
a positive function. In fact ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{ in its own 
right is an exact solution to (14) which satisfies 
(15) if ℎV(𝜖𝜖) = 𝑘𝑘𝑝𝑝𝜖𝜖{12 = 𝛼𝛼𝛼𝛼 = 𝛼𝛼𝑓𝑓(0) > 0.  

Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (derivatives of 𝑓𝑓	as 
given above in (12)) and integrating the resulting 
equation, yields:  
 
𝑓𝑓V ≈ (	wS10

0T2
	𝑘𝑘

F
Dx 𝜂𝜂 + 𝐾𝐾	)

DGF
DEC	                             (17) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant (of 
integration). In other words: 
 
𝑓𝑓V → 	c ⋅ 𝜂𝜂

DGF
DEC	 as 𝜂𝜂 → ∞                                   (18) 

 
for 0 < 𝑛𝑛 < 2

S
 and for some constant 𝑐𝑐 > 0, where 

in fact 𝑐𝑐 = wS10
0T2

	𝑘𝑘
F
Dx

DGF
DEC. Observe that 𝑓𝑓V tends to 

zero as 𝜂𝜂 → ∞, while 
 
𝑓𝑓 → 	 01S

S012
c ⋅ 𝜂𝜂

CDEF
DEC + 𝐿𝐿                                     (19) 

 
where 𝐿𝐿	is a constant. Note that 𝑓𝑓	does not tend to 
constant as 𝜂𝜂 → ∞	since the exponent S012

01S
> 0.  

 
Now for 	𝑛𝑛 > 2

S
,  let  ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧 + 𝜅𝜅𝑧𝑧{  for 𝑧𝑧	close 

to 0 (𝑧𝑧 > 0). This yields a value of 𝑝𝑝 = 3 − 2
0
 

(observe that 𝑝𝑝 > 1), and it can be shown that the 
equation 𝜅𝜅𝑝𝑝(𝑝𝑝 − 1)𝜅𝜅

F
D = 𝐴𝐴 relates 𝑘𝑘 > 0 to 𝜅𝜅. 

Observe that this works for positive 𝐴𝐴 as well as 
negative 𝐴𝐴. This is the case where 𝜅𝜅 is positive 

when 𝐴𝐴 is positive, and it is negative when 𝐴𝐴 is 
negative. However, 𝑘𝑘	is positive in both cases. 
Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (12) and integrating 
the resulting equation yields:  
 
𝑓𝑓V ≈ (	w210

0
(𝑘𝑘)

F
Dx 𝜂𝜂 + 𝐾𝐾	)

D
DEF                           (20) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant. Therefore 
we have: 
 
𝑓𝑓V → 	c ⋅ 	𝜂𝜂

D
DEF   as    𝜂𝜂 → ∞,                             (21) 

 
for  2

S
< 𝑛𝑛 < 1 and for some constant 𝑐𝑐 > 0, 

which in turn implies that: 
 
𝑓𝑓 → 012

S012
⋅ 𝑐𝑐 ⋅ 	𝜂𝜂

CDEF
DEF + 𝑓𝑓                                  (22) 

 
so that 𝑓𝑓 tends to a constant 𝑓𝑓   as  𝜂𝜂 → ∞ since 
the exponent on 𝜂𝜂 is negative. On the other hand, 
observe that if 𝑛𝑛 > 1 the first term in (20) is 
negative, and then in the case of even radicals on 
exponents the equation will terminate and cannot 
be extended with infinite 𝜂𝜂, otherwise 𝑓𝑓′ will be 
negative or become unbounded which is a 
contradiction: In fact equation (20) suggests that 
𝑓𝑓′ and 𝑓𝑓′′ reach zero at a finite value of 𝜂𝜂 when 
the expression in parentheses reaches zero. This 
shows the natural and crucial result that for 𝑛𝑛 >
1, 𝑓𝑓′ goes to zero very rapidly and may reach zero 
at a finite 𝜂𝜂 which is consistent with the results 
obtained in Wei & Al-Ashhab (2014) for a similar 
equation. Finally observe that, in this case of 𝑛𝑛 >
1, 𝑓𝑓 tends to a constant as 𝜂𝜂 → ∞ since 𝑓𝑓′ reaches 
zero at finite 𝜂𝜂 as discussed above. 
 
    For 𝑛𝑛 = 1/2, observe that we may assume an 
approximation of the form ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧(ln 𝑧𝑧){	 near 
𝑧𝑧 = 0, where substituting back into (14) yields 

𝑝𝑝 = 2
}
, and 𝑘𝑘 = w~

{
x
F
à = (3𝐴𝐴)

F
à which for negative 

𝐴𝐴 does yield the positive (since 𝑧𝑧 ≈ 0 with 𝑧𝑧 > 0) 
approximate solution ℎ(𝑧𝑧) ≈ (3𝐴𝐴)

F
à𝑧𝑧(ln 𝑧𝑧)

F
à, and 

where it can be concluded that a solution 
satisfying (14-15) exists, but with possibly 
additional conditions on the parameters of the 
problem. This in turn yields an asymptotic 
behavior of the form 𝑓𝑓V → (𝑘𝑘S𝜂𝜂 + 𝐾𝐾)12. 
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Remark  As for the case 𝑛𝑛 > 0,  notice that for 
𝑛𝑛 > 2

S
  we have 𝑝𝑝 > 1	 since 𝑝𝑝 = }0

0T2
 from (16) 

above, and that works with positive 𝑘𝑘, so it does 
lead to a solution. The asymptotic behavior then 
follows equations (17) and (18) for 2

S
< 𝑛𝑛 < 2. As 

for 𝑛𝑛 > 2, equation (17) suggests very rapid 
decline to zero for 𝑓𝑓V, since the first term in (17) is 
negative. Therefore, 𝐾𝐾 must be positive since by 
assumption 𝑓𝑓V(0) = 𝜖𝜖 > 0, 𝑓𝑓V > 0 on the entire 
solution domain. Thus, this fact suggests that 𝑓𝑓V 
reaches zero at some finite 𝜂𝜂 which makes the 
expression in parentheses equal zero. Lastly, 
observe that for 𝑛𝑛 = 2 we have ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧S,	 
𝑓𝑓VV(𝜂𝜂) = √𝑘𝑘𝑓𝑓V(𝜂𝜂) and the asymptotic behavior 
takes the form𝑓𝑓V → 𝑐𝑐𝑒𝑒1√ã_, again showing a rapid 
decline of 𝑓𝑓V(𝜂𝜂) to zero. These solutions require 
ℎV(𝜖𝜖) = 𝛼𝛼𝛼𝛼 > 0 (here 𝑚𝑚 = 0 since 𝐵𝐵 = 0 and 
ℎ(𝑧𝑧) = J−𝑓𝑓VV(𝜂𝜂)L0 from (12) above so that as 𝑓𝑓′ 
and 𝑓𝑓VV strictly decrease to 0 then ℎ(𝑧𝑧) strictly 
decreases to 0. Observe in our arguments 𝑧𝑧 moves 
left from 𝜖𝜖 to 0 and therefore ℎV(𝑧𝑧) > 0 on (0, 𝜖𝜖]). 
If 𝐴𝐴 > 0, 𝑛𝑛 < 2

S
 solutions do not exist as will be 

shown shortly. 

3.1.1. Proof of existence and uniqueness for B= 0 
 
We choose to include a proof on existence and 
uniqueness, but avoid rigorous mathematical 
styles. To this end, observe that while it may not 
be difficult to establish existence and uniqueness 
of solutions to (14-15) that extend back to a point 
(0,𝑏𝑏 > 0), we still need to discuss existence and 
uniqueness of solutions that approach the origin 
(0,0). Existence of a solution that approaches (0,0) 
can be established by simple arguments (as a 
limiting case of solutions through (0,𝑏𝑏) where 𝑏𝑏 >
0). As for uniqueness of such a solution observe 
that multiplying both sides of (14) by ℎV(𝑧𝑧) and 
integrating yields:  
 

(ℎV(𝑧𝑧))S − (ℎV(𝛼𝛼))S =
2𝐴𝐴

1 − 1𝑛𝑛
	(	𝑧𝑧ℎ21

2
0(𝑧𝑧) − 

																												𝛼𝛼ℎ21
F
D(𝛼𝛼) − ∫ ℎ21

F
D(𝜇𝜇)𝑑𝑑𝜇𝜇	)o

ë     (23) 
 
Therefore, if there are two solutions approaching 
the origin but with different initial conditions (say 
same ℎ(𝑧𝑧) but different ℎ′(𝑧𝑧) then that will lead to 

a contradiction: Suppose that ℎ2	is a solution 
through the origin. Now, take another solution ℎS 
to (14) with initial conditions ℎS(𝑧𝑧) = ℎ2(𝑧𝑧)	and 
ℎSV (𝑧𝑧) > ℎ2V (𝑧𝑧), i.e. a larger ℎSV (𝑧𝑧),. The two 
solutions may not intersect at any point 𝛼𝛼 < 𝑧𝑧,	 
since if they did we should have ℎ2V (𝛼𝛼) > ℎSV (𝛼𝛼) 
(the condition ℎSV (𝑧𝑧) > ℎ2V (𝑧𝑧) implies that 
ℎS(𝜇𝜇) < ℎ2(𝜇𝜇) within the interval (𝛼𝛼, 𝑧𝑧) so that 
geometrically ℎS	is under ℎ2	within (𝛼𝛼, 𝑧𝑧)). Now 
the first two terms on the right hand side of (23), 
namely  𝑧𝑧ℎ21

F
D(𝑧𝑧) − 𝛼𝛼ℎ21

F
D(𝛼𝛼), would be the same 

for ℎ2	 and ℎS	 and therefore we have: 
 
(ℎSV (𝛼𝛼))S − (ℎ2V (𝛼𝛼))S = 	 (ℎSV (𝑧𝑧))S − (ℎ2V (𝑧𝑧))S		 

																					+ S~
21FD

∫ (ℎS
21FD(𝜇𝜇) − ℎ2

21FD(𝜇𝜇))𝑑𝑑𝜇𝜇	o
ë   (24) 

 
which implies that ℎSV (𝛼𝛼) > ℎ2V (𝛼𝛼)  since the right 
hand side is positive for 𝑛𝑛 > 1 and for 2

S
< 𝑛𝑛 < 1 

(ℎS(𝜇𝜇) < ℎ2(𝜇𝜇)  within the interval (𝛼𝛼, 𝑧𝑧) and 
𝐴𝐴 < 0). In fact this argument can be made with 
𝛼𝛼 = 0 where the two solutions cannot cross each 
other or meet at the origin. Observe that in our 
arguments if 𝑛𝑛 > 1	then the second term and the 
integral in (23) are finite, the same can be said for 
2
S
< 𝑛𝑛 < 1 (but not for 0 < 𝑛𝑛 < 2

S
) due to the 

asymptotic behavior discussed earlier. Thus we 
have established: 
 
Theorem 1 There is a unique solution to (14) 
subject to (15) for 𝑛𝑛 > 2

S
, 𝐴𝐴 < 0 and 𝐵𝐵 = 0. 

 
Remark For 𝑛𝑛 = 1, notice that equation (23) is 
replaced by 
(ℎV(𝑧𝑧))S − (ℎV(𝛼𝛼))S = 	2𝐴𝐴	(𝑧𝑧 lnJℎ(𝑧𝑧)L 

											−𝛼𝛼 ln(ℎ(𝛼𝛼)) − í ln(ℎ(𝜇𝜇)) 𝑑𝑑𝜇𝜇)
o

ë

 

Using similar arguments to the ones above, the 
same uniqueness result can be established for the 
Newtonian case where 𝑛𝑛 = 1. 
 
    Now, for 𝐴𝐴 > 0	and 𝑛𝑛 < 2

S
, a solution does not 

exist due to the following argument. That is, recall 
from our analysis that for 𝐴𝐴 < 0, 𝑛𝑛 < 2

S
,  solutions 

exhibit infinite first and second order derivatives 
of ℎ(𝑧𝑧). If a solution approaching the origin exists 
for 𝐴𝐴 > 0	 its second derivative should be larger, 
or “more infinite”, than was the case for 𝐴𝐴 < 0 (in 
absolute values) since now the fact that ℎVV(𝑧𝑧) > 0  
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implies that (from (14) above, 𝐵𝐵 = 0) at the same 
𝑧𝑧 (𝑧𝑧 close to 0) ℎ(𝑧𝑧) is smaller for any solution 
extending to the origin with 𝐴𝐴 > 0. To make this 
argument more precise, consider a solution to 
equation (14) with 𝐵𝐵 = 0, that satisfies the 
(initial) condition ℎ(𝑧𝑧) = ℎt, ℎV(𝑧𝑧) = ℎtV  with 𝑧𝑧 >
0, ℎt > 0, ℎtV > 0, which obviously is an arbitrary 
solution. This solution cannot be extended back to 
reach the origin for the following reason: Since 
ℎVV(𝜇𝜇) > 0  we must have that ℎ(𝜇𝜇) < 𝑘𝑘𝜇𝜇 for all 
𝜇𝜇 ∈ (0, 𝑧𝑧) and for some 𝑘𝑘 > 0. Now the first term 
in (23) is finite, the second term should approach 
infinity as 𝑎𝑎 → 0T (geometrically these two terms 
in fact yield the area of the rectangle (𝑧𝑧 −
𝑎𝑎)ℎ21

F
D(𝑧𝑧)	minus the area of the rectangle 

𝑎𝑎 îℎ21
F
D(𝑎𝑎) − ℎ21

F
D(𝑧𝑧)ï which results in a finite 

answer or −∞  (it is finite for 𝑛𝑛 = 2
S
, but it is −∞ 

for 𝑛𝑛 > 2
S
 since ℎ(𝑧𝑧) < 𝑘𝑘𝑧𝑧) 

and the last term (the integral) should approach 
infinity as 𝑎𝑎 → 0T. With 𝐴𝐴 > 0	the right hand side 
then approaches positive infinity when 𝑎𝑎 → 0T 
but ℎV(𝑧𝑧) = ℎt′  is finite which is a contradiction 
and it implies that ℎV(𝑎𝑎) = 0 for some 𝑎𝑎 > 0 and 
hence solutions 𝑧𝑧 ↦ ℎ(𝑧𝑧) will actually turn away 
from the origin and be directed into larger values 
of ℎ(𝑧𝑧) > 0 as 𝑧𝑧 → 0T. This establishes that 
 
Theorem 2 Equation (14) has no solution in the 
first quadrant (𝑧𝑧 > 0, ℎ(𝑧𝑧) > 0) that converges to 
(0,0) for 𝑛𝑛 < 2

S
, 𝐴𝐴 > 0 and 𝐵𝐵 = 0. 

 
Corollary 3 Equation (14) has no solution in the 
first quadrant (𝑧𝑧 > 0, ℎ(𝑧𝑧) > 0) that converges to 
(0,0) for 𝑛𝑛 < 2

S
, 𝐴𝐴 > 0 and 𝐵𝐵 > 0. 

 
3.2. The case 𝐵𝐵 ≠ 0 
 
For 𝐵𝐵 ≠ 0, let ℎ(𝑧𝑧) be represented by ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧{ 
for 𝑧𝑧 close to 0 (𝑧𝑧 > 0), and for some parameters 
𝑘𝑘 and 𝑝𝑝. We have:  
 
𝑝𝑝 = }0

0T2
,				𝑘𝑘2T

F
D = ~T{ó

{({12)
                                 (25) 

 
This does yield a positive value of 𝑘𝑘 (and positive 
ℎ(𝑧𝑧)) for 0 < 𝑛𝑛 < 2

S
  if 𝐴𝐴 + 𝑝𝑝𝐵𝐵 < 0. Notice that 

ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧{ in this case is an exact (positive) 
solution that satisfies (14), and in fact it also 
satisfies (15) if 
 

ℎV(ϵ) = 𝑘𝑘𝑝𝑝𝜖𝜖{12 = ô
𝐴𝐴 + 𝑝𝑝𝐵𝐵
𝑝𝑝(𝑝𝑝 − 1)	ö

0
0T2

𝑝𝑝𝜖𝜖{12							 

																															= α	𝑓𝑓(0) 	− 𝑚𝑚	ϵS/𝑓𝑓VV(0).     (26) 
 
This exhibits the existence of solutions for 𝑛𝑛 < 2

S
 , 

therefore (by continuity with respect to initial 
conditions): 
 
Theorem 4 A solution to (14) subject to (15) 
exists for 0 < 𝑛𝑛 < 2

S
 and 𝐴𝐴 + 𝑝𝑝𝐵𝐵 < 0  where 𝑝𝑝 =

}0
0T2

. 
 
Observe that for the given range of 𝑛𝑛 we have that 
0 < 𝑝𝑝 < 1, so that the corresponding solutions 
have infinite derivatives at the origin. On the other 
hand, the asymptotic behavior of solutions follows 
equations (17), (18) and (19) but with the new 
value of 𝑘𝑘. On the other hand, for 𝑛𝑛 > 2

S
, let 

ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧 + 𝜅𝜅𝑧𝑧{ for 𝑧𝑧 close to 0 (𝑧𝑧 > 0). This 
yields a value of 𝑝𝑝 = 3 − 2

0
 (𝑝𝑝 > 1) and the 

following equation relates 𝑘𝑘 > 0  to  𝜅𝜅:  
 
𝜅𝜅𝑝𝑝(𝑝𝑝 − 1)𝑘𝑘

F
D = 𝐴𝐴 + 𝐵𝐵.                                     (27) 

 
This holds whether 𝐴𝐴 + 𝐵𝐵 is positive or negative, 
and the asymptotic behavior in this case follows 
equations (20), (21) and (22) with the new value 
of 𝑘𝑘. 
 
3.2.1. A non-uniqueness result 
 

Observe that if 𝐴𝐴 + 𝐵𝐵 = 0 then (27) implies that 
𝜅𝜅 = 0, and then in fact ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧 is a solution to 
(14) for all values of 𝑛𝑛 (not only for 𝑛𝑛 > 2

S
), where 

a value of 𝑘𝑘 = α	𝑓𝑓(0) − AúC

sqq(t)
> 0 yields a 

solution to (14) that satisfies (15). In fact, since 
𝑝𝑝 = }0

0T2
< 1 in (25) above for 0 < 𝑛𝑛 < 2

S
, we 

have another exact solution, namely ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧{ 
with 𝑘𝑘, 𝑝𝑝 given in (25). This leads to the following 
proposition. 
 
Proposition 5 Solutions to (14) subject to (15) are 
not unique for 0 < 𝑛𝑛 < 2

S
 , 𝐴𝐴 < 0 and 𝐴𝐴 + 𝐵𝐵 = 0. 

 
Observe that the conditions 𝐴𝐴 < 0 and 𝐴𝐴 + 𝐵𝐵 = 0 
imply the 𝐴𝐴 + 𝑝𝑝𝐵𝐵 < 0 since 𝑝𝑝 < 1. Even though 
the result given above requires a few conditions, it 
does exhibit a peculiar non-uniqueness result for 
this kind of problem. In fact this result maybe 
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implies that (from (14) above, 𝐵𝐵 = 0) at the same 
𝑧𝑧 (𝑧𝑧 close to 0) ℎ(𝑧𝑧) is smaller for any solution 
extending to the origin with 𝐴𝐴 > 0. To make this 
argument more precise, consider a solution to 
equation (14) with 𝐵𝐵 = 0, that satisfies the 
(initial) condition ℎ(𝑧𝑧) = ℎt, ℎV(𝑧𝑧) = ℎtV  with 𝑧𝑧 >
0, ℎt > 0, ℎtV > 0, which obviously is an arbitrary 
solution. This solution cannot be extended back to 
reach the origin for the following reason: Since 
ℎVV(𝜇𝜇) > 0  we must have that ℎ(𝜇𝜇) < 𝑘𝑘𝜇𝜇 for all 
𝜇𝜇 ∈ (0, 𝑧𝑧) and for some 𝑘𝑘 > 0. Now the first term 
in (23) is finite, the second term should approach 
infinity as 𝑎𝑎 → 0T (geometrically these two terms 
in fact yield the area of the rectangle (𝑧𝑧 −
𝑎𝑎)ℎ21

F
D(𝑧𝑧)	minus the area of the rectangle 

𝑎𝑎 îℎ21
F
D(𝑎𝑎) − ℎ21

F
D(𝑧𝑧)ï which results in a finite 

answer or −∞  (it is finite for 𝑛𝑛 = 2
S
, but it is −∞ 

for 𝑛𝑛 > 2
S
 since ℎ(𝑧𝑧) < 𝑘𝑘𝑧𝑧) 

and the last term (the integral) should approach 
infinity as 𝑎𝑎 → 0T. With 𝐴𝐴 > 0	the right hand side 
then approaches positive infinity when 𝑎𝑎 → 0T 
but ℎV(𝑧𝑧) = ℎt′  is finite which is a contradiction 
and it implies that ℎV(𝑎𝑎) = 0 for some 𝑎𝑎 > 0 and 
hence solutions 𝑧𝑧 ↦ ℎ(𝑧𝑧) will actually turn away 
from the origin and be directed into larger values 
of ℎ(𝑧𝑧) > 0 as 𝑧𝑧 → 0T. This establishes that 
 
Theorem 2 Equation (14) has no solution in the 
first quadrant (𝑧𝑧 > 0, ℎ(𝑧𝑧) > 0) that converges to 
(0,0) for 𝑛𝑛 < 2

S
, 𝐴𝐴 > 0 and 𝐵𝐵 = 0. 

 
Corollary 3 Equation (14) has no solution in the 
first quadrant (𝑧𝑧 > 0, ℎ(𝑧𝑧) > 0) that converges to 
(0,0) for 𝑛𝑛 < 2

S
, 𝐴𝐴 > 0 and 𝐵𝐵 > 0. 

 
3.2. The case 𝐵𝐵 ≠ 0 
 
For 𝐵𝐵 ≠ 0, let ℎ(𝑧𝑧) be represented by ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧{ 
for 𝑧𝑧 close to 0 (𝑧𝑧 > 0), and for some parameters 
𝑘𝑘 and 𝑝𝑝. We have:  
 
𝑝𝑝 = }0

0T2
,				𝑘𝑘2T

F
D = ~T{ó

{({12)
                                 (25) 

 
This does yield a positive value of 𝑘𝑘 (and positive 
ℎ(𝑧𝑧)) for 0 < 𝑛𝑛 < 2

S
  if 𝐴𝐴 + 𝑝𝑝𝐵𝐵 < 0. Notice that 

ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧{ in this case is an exact (positive) 
solution that satisfies (14), and in fact it also 
satisfies (15) if 
 

ℎV(ϵ) = 𝑘𝑘𝑝𝑝𝜖𝜖{12 = ô
𝐴𝐴 + 𝑝𝑝𝐵𝐵
𝑝𝑝(𝑝𝑝 − 1)	ö

0
0T2

𝑝𝑝𝜖𝜖{12							 

																															= α	𝑓𝑓(0) 	− 𝑚𝑚	ϵS/𝑓𝑓VV(0).     (26) 
 
This exhibits the existence of solutions for 𝑛𝑛 < 2

S
 , 

therefore (by continuity with respect to initial 
conditions): 
 
Theorem 4 A solution to (14) subject to (15) 
exists for 0 < 𝑛𝑛 < 2

S
 and 𝐴𝐴 + 𝑝𝑝𝐵𝐵 < 0  where 𝑝𝑝 =

}0
0T2

. 
 
Observe that for the given range of 𝑛𝑛 we have that 
0 < 𝑝𝑝 < 1, so that the corresponding solutions 
have infinite derivatives at the origin. On the other 
hand, the asymptotic behavior of solutions follows 
equations (17), (18) and (19) but with the new 
value of 𝑘𝑘. On the other hand, for 𝑛𝑛 > 2

S
, let 

ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧 + 𝜅𝜅𝑧𝑧{ for 𝑧𝑧 close to 0 (𝑧𝑧 > 0). This 
yields a value of 𝑝𝑝 = 3 − 2

0
 (𝑝𝑝 > 1) and the 

following equation relates 𝑘𝑘 > 0  to  𝜅𝜅:  
 
𝜅𝜅𝑝𝑝(𝑝𝑝 − 1)𝑘𝑘

F
D = 𝐴𝐴 + 𝐵𝐵.                                     (27) 

 
This holds whether 𝐴𝐴 + 𝐵𝐵 is positive or negative, 
and the asymptotic behavior in this case follows 
equations (20), (21) and (22) with the new value 
of 𝑘𝑘. 
 
3.2.1. A non-uniqueness result 
 

Observe that if 𝐴𝐴 + 𝐵𝐵 = 0 then (27) implies that 
𝜅𝜅 = 0, and then in fact ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧 is a solution to 
(14) for all values of 𝑛𝑛 (not only for 𝑛𝑛 > 2

S
), where 

a value of 𝑘𝑘 = α	𝑓𝑓(0) − AúC

sqq(t)
> 0 yields a 

solution to (14) that satisfies (15). In fact, since 
𝑝𝑝 = }0

0T2
< 1 in (25) above for 0 < 𝑛𝑛 < 2

S
, we 

have another exact solution, namely ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧{ 
with 𝑘𝑘, 𝑝𝑝 given in (25). This leads to the following 
proposition. 
 
Proposition 5 Solutions to (14) subject to (15) are 
not unique for 0 < 𝑛𝑛 < 2

S
 , 𝐴𝐴 < 0 and 𝐴𝐴 + 𝐵𝐵 = 0. 

 
Observe that the conditions 𝐴𝐴 < 0 and 𝐴𝐴 + 𝐵𝐵 = 0 
imply the 𝐴𝐴 + 𝑝𝑝𝐵𝐵 < 0 since 𝑝𝑝 < 1. Even though 
the result given above requires a few conditions, it 
does exhibit a peculiar non-uniqueness result for 
this kind of problem. In fact this result maybe 
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solution. This solution cannot be extended back to reach 
the origin for the following reason: Since       we 
must have that h(μ)<kμ for all μ∈(0,z) and for some 
k>0. Now the first term in (23) is finite, the second term 
should approach infinity as a→0+ (geometrically these 
two terms in fact yield the area of the 
rectangle (z-                  minus  the area  of  the rectangle
                                 which   results   in   a  finite  answer 
or -∞  (it  is  finite  for n=    , but  it  is  -∞ for n >   since 
h(z)<kz) and the last term (the integral) should approach 
infinity as a→0+. With A>0 the right hand side then 
approaches positive infinity when a→0+ but  
is finite  which is a contradiction and it implies that  
(a)=0 for some a>0 and hence solutions z↦h(z) will 
actually turn away from the origin and be directed into 
larger values of h(z)>0 as z→0+. This establishes that

Theorem 2 Equation (14) has no solution in the first 
quadrant (z >0,h(z)>0) that converges to (0,0) for 
n<    ,A>0 and B=0.
Corollary 3 Equation (14) has no solution in the 
first quadrant (z>0,h(z)>0) that converges to (0,0) for 
n<     ,A>0 and B>0.

3.2. The case B≠0
For B≠0, let h(z) be represented by h(z)≈kzp for z close to 
0 (z >0), and for some parameters k and p. We have: 
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implies that (from (14) above, 𝐵𝐵 = 0) at the same 
𝑧𝑧 (𝑧𝑧 close to 0) ℎ(𝑧𝑧) is smaller for any solution 
extending to the origin with 𝐴𝐴 > 0. To make this 
argument more precise, consider a solution to 
equation (14) with 𝐵𝐵 = 0, that satisfies the 
(initial) condition ℎ(𝑧𝑧) = ℎt, ℎV(𝑧𝑧) = ℎtV  with 𝑧𝑧 >
0, ℎt > 0, ℎtV > 0, which obviously is an arbitrary 
solution. This solution cannot be extended back to 
reach the origin for the following reason: Since 
ℎVV(𝜇𝜇) > 0  we must have that ℎ(𝜇𝜇) < 𝑘𝑘𝜇𝜇 for all 
𝜇𝜇 ∈ (0, 𝑧𝑧) and for some 𝑘𝑘 > 0. Now the first term 
in (23) is finite, the second term should approach 
infinity as 𝑎𝑎 → 0T (geometrically these two terms 
in fact yield the area of the rectangle (𝑧𝑧 −
𝑎𝑎)ℎ21

F
D(𝑧𝑧)	minus the area of the rectangle 

𝑎𝑎 îℎ21
F
D(𝑎𝑎) − ℎ21

F
D(𝑧𝑧)ï which results in a finite 

answer or −∞  (it is finite for 𝑛𝑛 = 2
S
, but it is −∞ 

for 𝑛𝑛 > 2
S
 since ℎ(𝑧𝑧) < 𝑘𝑘𝑧𝑧) 

and the last term (the integral) should approach 
infinity as 𝑎𝑎 → 0T. With 𝐴𝐴 > 0	the right hand side 
then approaches positive infinity when 𝑎𝑎 → 0T 
but ℎV(𝑧𝑧) = ℎt′  is finite which is a contradiction 
and it implies that ℎV(𝑎𝑎) = 0 for some 𝑎𝑎 > 0 and 
hence solutions 𝑧𝑧 ↦ ℎ(𝑧𝑧) will actually turn away 
from the origin and be directed into larger values 
of ℎ(𝑧𝑧) > 0 as 𝑧𝑧 → 0T. This establishes that 
 
Theorem 2 Equation (14) has no solution in the 
first quadrant (𝑧𝑧 > 0, ℎ(𝑧𝑧) > 0) that converges to 
(0,0) for 𝑛𝑛 < 2

S
, 𝐴𝐴 > 0 and 𝐵𝐵 = 0. 

 
Corollary 3 Equation (14) has no solution in the 
first quadrant (𝑧𝑧 > 0, ℎ(𝑧𝑧) > 0) that converges to 
(0,0) for 𝑛𝑛 < 2

S
, 𝐴𝐴 > 0 and 𝐵𝐵 > 0. 

 
3.2. The case 𝐵𝐵 ≠ 0 
 
For 𝐵𝐵 ≠ 0, let ℎ(𝑧𝑧) be represented by ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧{ 
for 𝑧𝑧 close to 0 (𝑧𝑧 > 0), and for some parameters 
𝑘𝑘 and 𝑝𝑝. We have:  
 
𝑝𝑝 = }0

0T2
,				𝑘𝑘2T

F
D = ~T{ó

{({12)
                                 (25) 

 
This does yield a positive value of 𝑘𝑘 (and positive 
ℎ(𝑧𝑧)) for 0 < 𝑛𝑛 < 2

S
  if 𝐴𝐴 + 𝑝𝑝𝐵𝐵 < 0. Notice that 

ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧{ in this case is an exact (positive) 
solution that satisfies (14), and in fact it also 
satisfies (15) if 
 

ℎV(ϵ) = 𝑘𝑘𝑝𝑝𝜖𝜖{12 = ô
𝐴𝐴 + 𝑝𝑝𝐵𝐵
𝑝𝑝(𝑝𝑝 − 1)	ö

0
0T2

𝑝𝑝𝜖𝜖{12							 

																															= α	𝑓𝑓(0) 	− 𝑚𝑚	ϵS/𝑓𝑓VV(0).     (26) 
 
This exhibits the existence of solutions for 𝑛𝑛 < 2

S
 , 

therefore (by continuity with respect to initial 
conditions): 
 
Theorem 4 A solution to (14) subject to (15) 
exists for 0 < 𝑛𝑛 < 2

S
 and 𝐴𝐴 + 𝑝𝑝𝐵𝐵 < 0  where 𝑝𝑝 =

}0
0T2

. 
 
Observe that for the given range of 𝑛𝑛 we have that 
0 < 𝑝𝑝 < 1, so that the corresponding solutions 
have infinite derivatives at the origin. On the other 
hand, the asymptotic behavior of solutions follows 
equations (17), (18) and (19) but with the new 
value of 𝑘𝑘. On the other hand, for 𝑛𝑛 > 2

S
, let 

ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧 + 𝜅𝜅𝑧𝑧{ for 𝑧𝑧 close to 0 (𝑧𝑧 > 0). This 
yields a value of 𝑝𝑝 = 3 − 2

0
 (𝑝𝑝 > 1) and the 

following equation relates 𝑘𝑘 > 0  to  𝜅𝜅:  
 
𝜅𝜅𝑝𝑝(𝑝𝑝 − 1)𝑘𝑘

F
D = 𝐴𝐴 + 𝐵𝐵.                                     (27) 

 
This holds whether 𝐴𝐴 + 𝐵𝐵 is positive or negative, 
and the asymptotic behavior in this case follows 
equations (20), (21) and (22) with the new value 
of 𝑘𝑘. 
 
3.2.1. A non-uniqueness result 
 

Observe that if 𝐴𝐴 + 𝐵𝐵 = 0 then (27) implies that 
𝜅𝜅 = 0, and then in fact ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧 is a solution to 
(14) for all values of 𝑛𝑛 (not only for 𝑛𝑛 > 2

S
), where 

a value of 𝑘𝑘 = α	𝑓𝑓(0) − AúC

sqq(t)
> 0 yields a 

solution to (14) that satisfies (15). In fact, since 
𝑝𝑝 = }0

0T2
< 1 in (25) above for 0 < 𝑛𝑛 < 2

S
, we 

have another exact solution, namely ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧{ 
with 𝑘𝑘, 𝑝𝑝 given in (25). This leads to the following 
proposition. 
 
Proposition 5 Solutions to (14) subject to (15) are 
not unique for 0 < 𝑛𝑛 < 2

S
 , 𝐴𝐴 < 0 and 𝐴𝐴 + 𝐵𝐵 = 0. 

 
Observe that the conditions 𝐴𝐴 < 0 and 𝐴𝐴 + 𝐵𝐵 = 0 
imply the 𝐴𝐴 + 𝑝𝑝𝐵𝐵 < 0 since 𝑝𝑝 < 1. Even though 
the result given above requires a few conditions, it 
does exhibit a peculiar non-uniqueness result for 
this kind of problem. In fact this result maybe 
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implies that (from (14) above, 𝐵𝐵 = 0) at the same 
𝑧𝑧 (𝑧𝑧 close to 0) ℎ(𝑧𝑧) is smaller for any solution 
extending to the origin with 𝐴𝐴 > 0. To make this 
argument more precise, consider a solution to 
equation (14) with 𝐵𝐵 = 0, that satisfies the 
(initial) condition ℎ(𝑧𝑧) = ℎt, ℎV(𝑧𝑧) = ℎtV  with 𝑧𝑧 >
0, ℎt > 0, ℎtV > 0, which obviously is an arbitrary 
solution. This solution cannot be extended back to 
reach the origin for the following reason: Since 
ℎVV(𝜇𝜇) > 0  we must have that ℎ(𝜇𝜇) < 𝑘𝑘𝜇𝜇 for all 
𝜇𝜇 ∈ (0, 𝑧𝑧) and for some 𝑘𝑘 > 0. Now the first term 
in (23) is finite, the second term should approach 
infinity as 𝑎𝑎 → 0T (geometrically these two terms 
in fact yield the area of the rectangle (𝑧𝑧 −
𝑎𝑎)ℎ21

F
D(𝑧𝑧)	minus the area of the rectangle 

𝑎𝑎 îℎ21
F
D(𝑎𝑎) − ℎ21

F
D(𝑧𝑧)ï which results in a finite 

answer or −∞  (it is finite for 𝑛𝑛 = 2
S
, but it is −∞ 

for 𝑛𝑛 > 2
S
 since ℎ(𝑧𝑧) < 𝑘𝑘𝑧𝑧) 

and the last term (the integral) should approach 
infinity as 𝑎𝑎 → 0T. With 𝐴𝐴 > 0	the right hand side 
then approaches positive infinity when 𝑎𝑎 → 0T 
but ℎV(𝑧𝑧) = ℎt′  is finite which is a contradiction 
and it implies that ℎV(𝑎𝑎) = 0 for some 𝑎𝑎 > 0 and 
hence solutions 𝑧𝑧 ↦ ℎ(𝑧𝑧) will actually turn away 
from the origin and be directed into larger values 
of ℎ(𝑧𝑧) > 0 as 𝑧𝑧 → 0T. This establishes that 
 
Theorem 2 Equation (14) has no solution in the 
first quadrant (𝑧𝑧 > 0, ℎ(𝑧𝑧) > 0) that converges to 
(0,0) for 𝑛𝑛 < 2

S
, 𝐴𝐴 > 0 and 𝐵𝐵 = 0. 

 
Corollary 3 Equation (14) has no solution in the 
first quadrant (𝑧𝑧 > 0, ℎ(𝑧𝑧) > 0) that converges to 
(0,0) for 𝑛𝑛 < 2

S
, 𝐴𝐴 > 0 and 𝐵𝐵 > 0. 

 
3.2. The case 𝐵𝐵 ≠ 0 
 
For 𝐵𝐵 ≠ 0, let ℎ(𝑧𝑧) be represented by ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧{ 
for 𝑧𝑧 close to 0 (𝑧𝑧 > 0), and for some parameters 
𝑘𝑘 and 𝑝𝑝. We have:  
 
𝑝𝑝 = }0

0T2
,				𝑘𝑘2T

F
D = ~T{ó

{({12)
                                 (25) 

 
This does yield a positive value of 𝑘𝑘 (and positive 
ℎ(𝑧𝑧)) for 0 < 𝑛𝑛 < 2

S
  if 𝐴𝐴 + 𝑝𝑝𝐵𝐵 < 0. Notice that 

ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧{ in this case is an exact (positive) 
solution that satisfies (14), and in fact it also 
satisfies (15) if 
 

ℎV(ϵ) = 𝑘𝑘𝑝𝑝𝜖𝜖{12 = ô
𝐴𝐴 + 𝑝𝑝𝐵𝐵
𝑝𝑝(𝑝𝑝 − 1)	ö

0
0T2

𝑝𝑝𝜖𝜖{12							 

																															= α	𝑓𝑓(0) 	− 𝑚𝑚	ϵS/𝑓𝑓VV(0).     (26) 
 
This exhibits the existence of solutions for 𝑛𝑛 < 2

S
 , 

therefore (by continuity with respect to initial 
conditions): 
 
Theorem 4 A solution to (14) subject to (15) 
exists for 0 < 𝑛𝑛 < 2

S
 and 𝐴𝐴 + 𝑝𝑝𝐵𝐵 < 0  where 𝑝𝑝 =

}0
0T2

. 
 
Observe that for the given range of 𝑛𝑛 we have that 
0 < 𝑝𝑝 < 1, so that the corresponding solutions 
have infinite derivatives at the origin. On the other 
hand, the asymptotic behavior of solutions follows 
equations (17), (18) and (19) but with the new 
value of 𝑘𝑘. On the other hand, for 𝑛𝑛 > 2

S
, let 

ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧 + 𝜅𝜅𝑧𝑧{ for 𝑧𝑧 close to 0 (𝑧𝑧 > 0). This 
yields a value of 𝑝𝑝 = 3 − 2

0
 (𝑝𝑝 > 1) and the 

following equation relates 𝑘𝑘 > 0  to  𝜅𝜅:  
 
𝜅𝜅𝑝𝑝(𝑝𝑝 − 1)𝑘𝑘

F
D = 𝐴𝐴 + 𝐵𝐵.                                     (27) 

 
This holds whether 𝐴𝐴 + 𝐵𝐵 is positive or negative, 
and the asymptotic behavior in this case follows 
equations (20), (21) and (22) with the new value 
of 𝑘𝑘. 
 
3.2.1. A non-uniqueness result 
 

Observe that if 𝐴𝐴 + 𝐵𝐵 = 0 then (27) implies that 
𝜅𝜅 = 0, and then in fact ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧 is a solution to 
(14) for all values of 𝑛𝑛 (not only for 𝑛𝑛 > 2

S
), where 

a value of 𝑘𝑘 = α	𝑓𝑓(0) − AúC

sqq(t)
> 0 yields a 

solution to (14) that satisfies (15). In fact, since 
𝑝𝑝 = }0

0T2
< 1 in (25) above for 0 < 𝑛𝑛 < 2

S
, we 

have another exact solution, namely ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧{ 
with 𝑘𝑘, 𝑝𝑝 given in (25). This leads to the following 
proposition. 
 
Proposition 5 Solutions to (14) subject to (15) are 
not unique for 0 < 𝑛𝑛 < 2

S
 , 𝐴𝐴 < 0 and 𝐴𝐴 + 𝐵𝐵 = 0. 

 
Observe that the conditions 𝐴𝐴 < 0 and 𝐴𝐴 + 𝐵𝐵 = 0 
imply the 𝐴𝐴 + 𝑝𝑝𝐵𝐵 < 0 since 𝑝𝑝 < 1. Even though 
the result given above requires a few conditions, it 
does exhibit a peculiar non-uniqueness result for 
this kind of problem. In fact this result maybe 
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S
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We first consider the case where 𝐵𝐵 = 0. This 
happens when 𝑚𝑚 = 0 in our derivation process 
since 𝐵𝐵 = −A

0
.  To discuss the asymptotic 

behavior of 𝑓𝑓V (and consequently 𝑓𝑓) as η → ∞ let 
ℎ(𝑧𝑧) be represented by ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{  for z close to 
0 (z > 0), and for some parameters k and 𝑝𝑝. 
Observe that k must be positive since ℎ(𝑧𝑧) is a 
positive function so that for  𝐴𝐴 < 0 and 0 < 𝑛𝑛 < 2

S
  

we have:  
 
𝑝𝑝 = }0

0T2
,											𝑘𝑘2T

F
D = ~

{({12)
                           (16) 

 

This implies that  𝑝𝑝 < 1 and consequently 𝑘𝑘 > 0 
which is consistent with the fact that ℎ(𝑧𝑧) must be 
a positive function. In fact ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{ in its own 
right is an exact solution to (14) which satisfies 
(15) if ℎV(𝜖𝜖) = 𝑘𝑘𝑝𝑝𝜖𝜖{12 = 𝛼𝛼𝛼𝛼 = 𝛼𝛼𝑓𝑓(0) > 0.  

Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (derivatives of 𝑓𝑓	as 
given above in (12)) and integrating the resulting 
equation, yields:  
 
𝑓𝑓V ≈ (	wS10

0T2
	𝑘𝑘

F
Dx 𝜂𝜂 + 𝐾𝐾	)

DGF
DEC	                             (17) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant (of 
integration). In other words: 
 
𝑓𝑓V → 	c ⋅ 𝜂𝜂

DGF
DEC	 as 𝜂𝜂 → ∞                                   (18) 

 
for 0 < 𝑛𝑛 < 2

S
 and for some constant 𝑐𝑐 > 0, where 

in fact 𝑐𝑐 = wS10
0T2

	𝑘𝑘
F
Dx

DGF
DEC. Observe that 𝑓𝑓V tends to 

zero as 𝜂𝜂 → ∞, while 
 
𝑓𝑓 → 	 01S

S012
c ⋅ 𝜂𝜂

CDEF
DEC + 𝐿𝐿                                     (19) 

 
where 𝐿𝐿	is a constant. Note that 𝑓𝑓	does not tend to 
constant as 𝜂𝜂 → ∞	since the exponent S012

01S
> 0.  

 
Now for 	𝑛𝑛 > 2

S
,  let  ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧 + 𝜅𝜅𝑧𝑧{  for 𝑧𝑧	close 

to 0 (𝑧𝑧 > 0). This yields a value of 𝑝𝑝 = 3 − 2
0
 

(observe that 𝑝𝑝 > 1), and it can be shown that the 
equation 𝜅𝜅𝑝𝑝(𝑝𝑝 − 1)𝜅𝜅

F
D = 𝐴𝐴 relates 𝑘𝑘 > 0 to 𝜅𝜅. 

Observe that this works for positive 𝐴𝐴 as well as 
negative 𝐴𝐴. This is the case where 𝜅𝜅 is positive 

when 𝐴𝐴 is positive, and it is negative when 𝐴𝐴 is 
negative. However, 𝑘𝑘	is positive in both cases. 
Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (12) and integrating 
the resulting equation yields:  
 
𝑓𝑓V ≈ (	w210

0
(𝑘𝑘)

F
Dx 𝜂𝜂 + 𝐾𝐾	)

D
DEF                           (20) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant. Therefore 
we have: 
 
𝑓𝑓V → 	c ⋅ 	𝜂𝜂

D
DEF   as    𝜂𝜂 → ∞,                             (21) 

 
for  2

S
< 𝑛𝑛 < 1 and for some constant 𝑐𝑐 > 0, 

which in turn implies that: 
 
𝑓𝑓 → 012

S012
⋅ 𝑐𝑐 ⋅ 	𝜂𝜂

CDEF
DEF + 𝑓𝑓                                  (22) 

 
so that 𝑓𝑓 tends to a constant 𝑓𝑓   as  𝜂𝜂 → ∞ since 
the exponent on 𝜂𝜂 is negative. On the other hand, 
observe that if 𝑛𝑛 > 1 the first term in (20) is 
negative, and then in the case of even radicals on 
exponents the equation will terminate and cannot 
be extended with infinite 𝜂𝜂, otherwise 𝑓𝑓′ will be 
negative or become unbounded which is a 
contradiction: In fact equation (20) suggests that 
𝑓𝑓′ and 𝑓𝑓′′ reach zero at a finite value of 𝜂𝜂 when 
the expression in parentheses reaches zero. This 
shows the natural and crucial result that for 𝑛𝑛 >
1, 𝑓𝑓′ goes to zero very rapidly and may reach zero 
at a finite 𝜂𝜂 which is consistent with the results 
obtained in Wei & Al-Ashhab (2014) for a similar 
equation. Finally observe that, in this case of 𝑛𝑛 >
1, 𝑓𝑓 tends to a constant as 𝜂𝜂 → ∞ since 𝑓𝑓′ reaches 
zero at finite 𝜂𝜂 as discussed above. 
 
    For 𝑛𝑛 = 1/2, observe that we may assume an 
approximation of the form ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧(ln 𝑧𝑧){	 near 
𝑧𝑧 = 0, where substituting back into (14) yields 

𝑝𝑝 = 2
}
, and 𝑘𝑘 = w~

{
x
F
à = (3𝐴𝐴)

F
à which for negative 

𝐴𝐴 does yield the positive (since 𝑧𝑧 ≈ 0 with 𝑧𝑧 > 0) 
approximate solution ℎ(𝑧𝑧) ≈ (3𝐴𝐴)

F
à𝑧𝑧(ln 𝑧𝑧)

F
à, and 

where it can be concluded that a solution 
satisfying (14-15) exists, but with possibly 
additional conditions on the parameters of the 
problem. This in turn yields an asymptotic 
behavior of the form 𝑓𝑓V → (𝑘𝑘S𝜂𝜂 + 𝐾𝐾)12. 
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we have: 
 
𝑓𝑓V → 	c ⋅ 	𝜂𝜂

D
DEF   as    𝜂𝜂 → ∞,                             (21) 

 
for  2

S
< 𝑛𝑛 < 1 and for some constant 𝑐𝑐 > 0, 

which in turn implies that: 
 
𝑓𝑓 → 012

S012
⋅ 𝑐𝑐 ⋅ 	𝜂𝜂

CDEF
DEF + 𝑓𝑓                                  (22) 

 
so that 𝑓𝑓 tends to a constant 𝑓𝑓   as  𝜂𝜂 → ∞ since 
the exponent on 𝜂𝜂 is negative. On the other hand, 
observe that if 𝑛𝑛 > 1 the first term in (20) is 
negative, and then in the case of even radicals on 
exponents the equation will terminate and cannot 
be extended with infinite 𝜂𝜂, otherwise 𝑓𝑓′ will be 
negative or become unbounded which is a 
contradiction: In fact equation (20) suggests that 
𝑓𝑓′ and 𝑓𝑓′′ reach zero at a finite value of 𝜂𝜂 when 
the expression in parentheses reaches zero. This 
shows the natural and crucial result that for 𝑛𝑛 >
1, 𝑓𝑓′ goes to zero very rapidly and may reach zero 
at a finite 𝜂𝜂 which is consistent with the results 
obtained in Wei & Al-Ashhab (2014) for a similar 
equation. Finally observe that, in this case of 𝑛𝑛 >
1, 𝑓𝑓 tends to a constant as 𝜂𝜂 → ∞ since 𝑓𝑓′ reaches 
zero at finite 𝜂𝜂 as discussed above. 
 
    For 𝑛𝑛 = 1/2, observe that we may assume an 
approximation of the form ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧(ln 𝑧𝑧){	 near 
𝑧𝑧 = 0, where substituting back into (14) yields 

𝑝𝑝 = 2
}
, and 𝑘𝑘 = w~

{
x
F
à = (3𝐴𝐴)

F
à which for negative 

𝐴𝐴 does yield the positive (since 𝑧𝑧 ≈ 0 with 𝑧𝑧 > 0) 
approximate solution ℎ(𝑧𝑧) ≈ (3𝐴𝐴)

F
à𝑧𝑧(ln 𝑧𝑧)

F
à, and 

where it can be concluded that a solution 
satisfying (14-15) exists, but with possibly 
additional conditions on the parameters of the 
problem. This in turn yields an asymptotic 
behavior of the form 𝑓𝑓V → (𝑘𝑘S𝜂𝜂 + 𝐾𝐾)12. 
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implies that (from (14) above, 𝐵𝐵 = 0) at the same 
𝑧𝑧 (𝑧𝑧 close to 0) ℎ(𝑧𝑧) is smaller for any solution 
extending to the origin with 𝐴𝐴 > 0. To make this 
argument more precise, consider a solution to 
equation (14) with 𝐵𝐵 = 0, that satisfies the 
(initial) condition ℎ(𝑧𝑧) = ℎt, ℎV(𝑧𝑧) = ℎtV  with 𝑧𝑧 >
0, ℎt > 0, ℎtV > 0, which obviously is an arbitrary 
solution. This solution cannot be extended back to 
reach the origin for the following reason: Since 
ℎVV(𝜇𝜇) > 0  we must have that ℎ(𝜇𝜇) < 𝑘𝑘𝜇𝜇 for all 
𝜇𝜇 ∈ (0, 𝑧𝑧) and for some 𝑘𝑘 > 0. Now the first term 
in (23) is finite, the second term should approach 
infinity as 𝑎𝑎 → 0T (geometrically these two terms 
in fact yield the area of the rectangle (𝑧𝑧 −
𝑎𝑎)ℎ21

F
D(𝑧𝑧)	minus the area of the rectangle 

𝑎𝑎 îℎ21
F
D(𝑎𝑎) − ℎ21

F
D(𝑧𝑧)ï which results in a finite 

answer or −∞  (it is finite for 𝑛𝑛 = 2
S
, but it is −∞ 

for 𝑛𝑛 > 2
S
 since ℎ(𝑧𝑧) < 𝑘𝑘𝑧𝑧) 

and the last term (the integral) should approach 
infinity as 𝑎𝑎 → 0T. With 𝐴𝐴 > 0	the right hand side 
then approaches positive infinity when 𝑎𝑎 → 0T 
but ℎV(𝑧𝑧) = ℎt′  is finite which is a contradiction 
and it implies that ℎV(𝑎𝑎) = 0 for some 𝑎𝑎 > 0 and 
hence solutions 𝑧𝑧 ↦ ℎ(𝑧𝑧) will actually turn away 
from the origin and be directed into larger values 
of ℎ(𝑧𝑧) > 0 as 𝑧𝑧 → 0T. This establishes that 
 
Theorem 2 Equation (14) has no solution in the 
first quadrant (𝑧𝑧 > 0, ℎ(𝑧𝑧) > 0) that converges to 
(0,0) for 𝑛𝑛 < 2

S
, 𝐴𝐴 > 0 and 𝐵𝐵 = 0. 

 
Corollary 3 Equation (14) has no solution in the 
first quadrant (𝑧𝑧 > 0, ℎ(𝑧𝑧) > 0) that converges to 
(0,0) for 𝑛𝑛 < 2

S
, 𝐴𝐴 > 0 and 𝐵𝐵 > 0. 

 
3.2. The case 𝐵𝐵 ≠ 0 
 
For 𝐵𝐵 ≠ 0, let ℎ(𝑧𝑧) be represented by ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧{ 
for 𝑧𝑧 close to 0 (𝑧𝑧 > 0), and for some parameters 
𝑘𝑘 and 𝑝𝑝. We have:  
 
𝑝𝑝 = }0

0T2
,				𝑘𝑘2T

F
D = ~T{ó

{({12)
                                 (25) 

 
This does yield a positive value of 𝑘𝑘 (and positive 
ℎ(𝑧𝑧)) for 0 < 𝑛𝑛 < 2

S
  if 𝐴𝐴 + 𝑝𝑝𝐵𝐵 < 0. Notice that 

ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧{ in this case is an exact (positive) 
solution that satisfies (14), and in fact it also 
satisfies (15) if 
 

ℎV(ϵ) = 𝑘𝑘𝑝𝑝𝜖𝜖{12 = ô
𝐴𝐴 + 𝑝𝑝𝐵𝐵
𝑝𝑝(𝑝𝑝 − 1)	ö

0
0T2

𝑝𝑝𝜖𝜖{12							 

																															= α	𝑓𝑓(0) 	− 𝑚𝑚	ϵS/𝑓𝑓VV(0).     (26) 
 
This exhibits the existence of solutions for 𝑛𝑛 < 2

S
 , 

therefore (by continuity with respect to initial 
conditions): 
 
Theorem 4 A solution to (14) subject to (15) 
exists for 0 < 𝑛𝑛 < 2

S
 and 𝐴𝐴 + 𝑝𝑝𝐵𝐵 < 0  where 𝑝𝑝 =

}0
0T2

. 
 
Observe that for the given range of 𝑛𝑛 we have that 
0 < 𝑝𝑝 < 1, so that the corresponding solutions 
have infinite derivatives at the origin. On the other 
hand, the asymptotic behavior of solutions follows 
equations (17), (18) and (19) but with the new 
value of 𝑘𝑘. On the other hand, for 𝑛𝑛 > 2

S
, let 

ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧 + 𝜅𝜅𝑧𝑧{ for 𝑧𝑧 close to 0 (𝑧𝑧 > 0). This 
yields a value of 𝑝𝑝 = 3 − 2

0
 (𝑝𝑝 > 1) and the 

following equation relates 𝑘𝑘 > 0  to  𝜅𝜅:  
 
𝜅𝜅𝑝𝑝(𝑝𝑝 − 1)𝑘𝑘

F
D = 𝐴𝐴 + 𝐵𝐵.                                     (27) 

 
This holds whether 𝐴𝐴 + 𝐵𝐵 is positive or negative, 
and the asymptotic behavior in this case follows 
equations (20), (21) and (22) with the new value 
of 𝑘𝑘. 
 
3.2.1. A non-uniqueness result 
 

Observe that if 𝐴𝐴 + 𝐵𝐵 = 0 then (27) implies that 
𝜅𝜅 = 0, and then in fact ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧 is a solution to 
(14) for all values of 𝑛𝑛 (not only for 𝑛𝑛 > 2

S
), where 

a value of 𝑘𝑘 = α	𝑓𝑓(0) − AúC

sqq(t)
> 0 yields a 

solution to (14) that satisfies (15). In fact, since 
𝑝𝑝 = }0

0T2
< 1 in (25) above for 0 < 𝑛𝑛 < 2

S
, we 

have another exact solution, namely ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧{ 
with 𝑘𝑘, 𝑝𝑝 given in (25). This leads to the following 
proposition. 
 
Proposition 5 Solutions to (14) subject to (15) are 
not unique for 0 < 𝑛𝑛 < 2

S
 , 𝐴𝐴 < 0 and 𝐴𝐴 + 𝐵𝐵 = 0. 

 
Observe that the conditions 𝐴𝐴 < 0 and 𝐴𝐴 + 𝐵𝐵 = 0 
imply the 𝐴𝐴 + 𝑝𝑝𝐵𝐵 < 0 since 𝑝𝑝 < 1. Even though 
the result given above requires a few conditions, it 
does exhibit a peculiar non-uniqueness result for 
this kind of problem. In fact this result maybe 
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extending to the origin with 𝐴𝐴 > 0. To make this 
argument more precise, consider a solution to 
equation (14) with 𝐵𝐵 = 0, that satisfies the 
(initial) condition ℎ(𝑧𝑧) = ℎt, ℎV(𝑧𝑧) = ℎtV  with 𝑧𝑧 >
0, ℎt > 0, ℎtV > 0, which obviously is an arbitrary 
solution. This solution cannot be extended back to 
reach the origin for the following reason: Since 
ℎVV(𝜇𝜇) > 0  we must have that ℎ(𝜇𝜇) < 𝑘𝑘𝜇𝜇 for all 
𝜇𝜇 ∈ (0, 𝑧𝑧) and for some 𝑘𝑘 > 0. Now the first term 
in (23) is finite, the second term should approach 
infinity as 𝑎𝑎 → 0T (geometrically these two terms 
in fact yield the area of the rectangle (𝑧𝑧 −
𝑎𝑎)ℎ21

F
D(𝑧𝑧)	minus the area of the rectangle 

𝑎𝑎 îℎ21
F
D(𝑎𝑎) − ℎ21

F
D(𝑧𝑧)ï which results in a finite 

answer or −∞  (it is finite for 𝑛𝑛 = 2
S
, but it is −∞ 

for 𝑛𝑛 > 2
S
 since ℎ(𝑧𝑧) < 𝑘𝑘𝑧𝑧) 

and the last term (the integral) should approach 
infinity as 𝑎𝑎 → 0T. With 𝐴𝐴 > 0	the right hand side 
then approaches positive infinity when 𝑎𝑎 → 0T 
but ℎV(𝑧𝑧) = ℎt′  is finite which is a contradiction 
and it implies that ℎV(𝑎𝑎) = 0 for some 𝑎𝑎 > 0 and 
hence solutions 𝑧𝑧 ↦ ℎ(𝑧𝑧) will actually turn away 
from the origin and be directed into larger values 
of ℎ(𝑧𝑧) > 0 as 𝑧𝑧 → 0T. This establishes that 
 
Theorem 2 Equation (14) has no solution in the 
first quadrant (𝑧𝑧 > 0, ℎ(𝑧𝑧) > 0) that converges to 
(0,0) for 𝑛𝑛 < 2

S
, 𝐴𝐴 > 0 and 𝐵𝐵 = 0. 

 
Corollary 3 Equation (14) has no solution in the 
first quadrant (𝑧𝑧 > 0, ℎ(𝑧𝑧) > 0) that converges to 
(0,0) for 𝑛𝑛 < 2

S
, 𝐴𝐴 > 0 and 𝐵𝐵 > 0. 

 
3.2. The case 𝐵𝐵 ≠ 0 
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therefore (by continuity with respect to initial 
conditions): 
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Observe that for the given range of 𝑛𝑛 we have that 
0 < 𝑝𝑝 < 1, so that the corresponding solutions 
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hand, the asymptotic behavior of solutions follows 
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, let 
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and the asymptotic behavior in this case follows 
equations (20), (21) and (22) with the new value 
of 𝑘𝑘. 
 
3.2.1. A non-uniqueness result 
 

Observe that if 𝐴𝐴 + 𝐵𝐵 = 0 then (27) implies that 
𝜅𝜅 = 0, and then in fact ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧 is a solution to 
(14) for all values of 𝑛𝑛 (not only for 𝑛𝑛 > 2

S
), where 
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> 0 yields a 
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S
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We first consider the case where 𝐵𝐵 = 0. This 
happens when 𝑚𝑚 = 0 in our derivation process 
since 𝐵𝐵 = −A

0
.  To discuss the asymptotic 

behavior of 𝑓𝑓V (and consequently 𝑓𝑓) as η → ∞ let 
ℎ(𝑧𝑧) be represented by ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{  for z close to 
0 (z > 0), and for some parameters k and 𝑝𝑝. 
Observe that k must be positive since ℎ(𝑧𝑧) is a 
positive function so that for  𝐴𝐴 < 0 and 0 < 𝑛𝑛 < 2

S
  

we have:  
 
𝑝𝑝 = }0

0T2
,											𝑘𝑘2T

F
D = ~

{({12)
                           (16) 

 

This implies that  𝑝𝑝 < 1 and consequently 𝑘𝑘 > 0 
which is consistent with the fact that ℎ(𝑧𝑧) must be 
a positive function. In fact ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{ in its own 
right is an exact solution to (14) which satisfies 
(15) if ℎV(𝜖𝜖) = 𝑘𝑘𝑝𝑝𝜖𝜖{12 = 𝛼𝛼𝛼𝛼 = 𝛼𝛼𝑓𝑓(0) > 0.  

Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (derivatives of 𝑓𝑓	as 
given above in (12)) and integrating the resulting 
equation, yields:  
 
𝑓𝑓V ≈ (	wS10

0T2
	𝑘𝑘

F
Dx 𝜂𝜂 + 𝐾𝐾	)

DGF
DEC	                             (17) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant (of 
integration). In other words: 
 
𝑓𝑓V → 	c ⋅ 𝜂𝜂

DGF
DEC	 as 𝜂𝜂 → ∞                                   (18) 

 
for 0 < 𝑛𝑛 < 2

S
 and for some constant 𝑐𝑐 > 0, where 

in fact 𝑐𝑐 = wS10
0T2

	𝑘𝑘
F
Dx

DGF
DEC. Observe that 𝑓𝑓V tends to 

zero as 𝜂𝜂 → ∞, while 
 
𝑓𝑓 → 	 01S

S012
c ⋅ 𝜂𝜂

CDEF
DEC + 𝐿𝐿                                     (19) 

 
where 𝐿𝐿	is a constant. Note that 𝑓𝑓	does not tend to 
constant as 𝜂𝜂 → ∞	since the exponent S012

01S
> 0.  

 
Now for 	𝑛𝑛 > 2

S
,  let  ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧 + 𝜅𝜅𝑧𝑧{  for 𝑧𝑧	close 

to 0 (𝑧𝑧 > 0). This yields a value of 𝑝𝑝 = 3 − 2
0
 

(observe that 𝑝𝑝 > 1), and it can be shown that the 
equation 𝜅𝜅𝑝𝑝(𝑝𝑝 − 1)𝜅𝜅

F
D = 𝐴𝐴 relates 𝑘𝑘 > 0 to 𝜅𝜅. 

Observe that this works for positive 𝐴𝐴 as well as 
negative 𝐴𝐴. This is the case where 𝜅𝜅 is positive 

when 𝐴𝐴 is positive, and it is negative when 𝐴𝐴 is 
negative. However, 𝑘𝑘	is positive in both cases. 
Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (12) and integrating 
the resulting equation yields:  
 
𝑓𝑓V ≈ (	w210

0
(𝑘𝑘)

F
Dx 𝜂𝜂 + 𝐾𝐾	)

D
DEF                           (20) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant. Therefore 
we have: 
 
𝑓𝑓V → 	c ⋅ 	𝜂𝜂

D
DEF   as    𝜂𝜂 → ∞,                             (21) 

 
for  2

S
< 𝑛𝑛 < 1 and for some constant 𝑐𝑐 > 0, 

which in turn implies that: 
 
𝑓𝑓 → 012

S012
⋅ 𝑐𝑐 ⋅ 	𝜂𝜂

CDEF
DEF + 𝑓𝑓                                  (22) 

 
so that 𝑓𝑓 tends to a constant 𝑓𝑓   as  𝜂𝜂 → ∞ since 
the exponent on 𝜂𝜂 is negative. On the other hand, 
observe that if 𝑛𝑛 > 1 the first term in (20) is 
negative, and then in the case of even radicals on 
exponents the equation will terminate and cannot 
be extended with infinite 𝜂𝜂, otherwise 𝑓𝑓′ will be 
negative or become unbounded which is a 
contradiction: In fact equation (20) suggests that 
𝑓𝑓′ and 𝑓𝑓′′ reach zero at a finite value of 𝜂𝜂 when 
the expression in parentheses reaches zero. This 
shows the natural and crucial result that for 𝑛𝑛 >
1, 𝑓𝑓′ goes to zero very rapidly and may reach zero 
at a finite 𝜂𝜂 which is consistent with the results 
obtained in Wei & Al-Ashhab (2014) for a similar 
equation. Finally observe that, in this case of 𝑛𝑛 >
1, 𝑓𝑓 tends to a constant as 𝜂𝜂 → ∞ since 𝑓𝑓′ reaches 
zero at finite 𝜂𝜂 as discussed above. 
 
    For 𝑛𝑛 = 1/2, observe that we may assume an 
approximation of the form ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧(ln 𝑧𝑧){	 near 
𝑧𝑧 = 0, where substituting back into (14) yields 

𝑝𝑝 = 2
}
, and 𝑘𝑘 = w~

{
x
F
à = (3𝐴𝐴)

F
à which for negative 

𝐴𝐴 does yield the positive (since 𝑧𝑧 ≈ 0 with 𝑧𝑧 > 0) 
approximate solution ℎ(𝑧𝑧) ≈ (3𝐴𝐴)

F
à𝑧𝑧(ln 𝑧𝑧)

F
à, and 

where it can be concluded that a solution 
satisfying (14-15) exists, but with possibly 
additional conditions on the parameters of the 
problem. This in turn yields an asymptotic 
behavior of the form 𝑓𝑓V → (𝑘𝑘S𝜂𝜂 + 𝐾𝐾)12. 
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We first consider the case where 𝐵𝐵 = 0. This 
happens when 𝑚𝑚 = 0 in our derivation process 
since 𝐵𝐵 = −A

0
.  To discuss the asymptotic 

behavior of 𝑓𝑓V (and consequently 𝑓𝑓) as η → ∞ let 
ℎ(𝑧𝑧) be represented by ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{  for z close to 
0 (z > 0), and for some parameters k and 𝑝𝑝. 
Observe that k must be positive since ℎ(𝑧𝑧) is a 
positive function so that for  𝐴𝐴 < 0 and 0 < 𝑛𝑛 < 2

S
  

we have:  
 
𝑝𝑝 = }0

0T2
,											𝑘𝑘2T

F
D = ~

{({12)
                           (16) 

 

This implies that  𝑝𝑝 < 1 and consequently 𝑘𝑘 > 0 
which is consistent with the fact that ℎ(𝑧𝑧) must be 
a positive function. In fact ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{ in its own 
right is an exact solution to (14) which satisfies 
(15) if ℎV(𝜖𝜖) = 𝑘𝑘𝑝𝑝𝜖𝜖{12 = 𝛼𝛼𝛼𝛼 = 𝛼𝛼𝑓𝑓(0) > 0.  

Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (derivatives of 𝑓𝑓	as 
given above in (12)) and integrating the resulting 
equation, yields:  
 
𝑓𝑓V ≈ (	wS10

0T2
	𝑘𝑘

F
Dx 𝜂𝜂 + 𝐾𝐾	)

DGF
DEC	                             (17) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant (of 
integration). In other words: 
 
𝑓𝑓V → 	c ⋅ 𝜂𝜂

DGF
DEC	 as 𝜂𝜂 → ∞                                   (18) 

 
for 0 < 𝑛𝑛 < 2

S
 and for some constant 𝑐𝑐 > 0, where 

in fact 𝑐𝑐 = wS10
0T2

	𝑘𝑘
F
Dx

DGF
DEC. Observe that 𝑓𝑓V tends to 

zero as 𝜂𝜂 → ∞, while 
 
𝑓𝑓 → 	 01S

S012
c ⋅ 𝜂𝜂

CDEF
DEC + 𝐿𝐿                                     (19) 

 
where 𝐿𝐿	is a constant. Note that 𝑓𝑓	does not tend to 
constant as 𝜂𝜂 → ∞	since the exponent S012

01S
> 0.  

 
Now for 	𝑛𝑛 > 2

S
,  let  ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧 + 𝜅𝜅𝑧𝑧{  for 𝑧𝑧	close 

to 0 (𝑧𝑧 > 0). This yields a value of 𝑝𝑝 = 3 − 2
0
 

(observe that 𝑝𝑝 > 1), and it can be shown that the 
equation 𝜅𝜅𝑝𝑝(𝑝𝑝 − 1)𝜅𝜅

F
D = 𝐴𝐴 relates 𝑘𝑘 > 0 to 𝜅𝜅. 

Observe that this works for positive 𝐴𝐴 as well as 
negative 𝐴𝐴. This is the case where 𝜅𝜅 is positive 

when 𝐴𝐴 is positive, and it is negative when 𝐴𝐴 is 
negative. However, 𝑘𝑘	is positive in both cases. 
Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (12) and integrating 
the resulting equation yields:  
 
𝑓𝑓V ≈ (	w210

0
(𝑘𝑘)

F
Dx 𝜂𝜂 + 𝐾𝐾	)

D
DEF                           (20) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant. Therefore 
we have: 
 
𝑓𝑓V → 	c ⋅ 	𝜂𝜂

D
DEF   as    𝜂𝜂 → ∞,                             (21) 

 
for  2

S
< 𝑛𝑛 < 1 and for some constant 𝑐𝑐 > 0, 

which in turn implies that: 
 
𝑓𝑓 → 012

S012
⋅ 𝑐𝑐 ⋅ 	𝜂𝜂

CDEF
DEF + 𝑓𝑓                                  (22) 

 
so that 𝑓𝑓 tends to a constant 𝑓𝑓   as  𝜂𝜂 → ∞ since 
the exponent on 𝜂𝜂 is negative. On the other hand, 
observe that if 𝑛𝑛 > 1 the first term in (20) is 
negative, and then in the case of even radicals on 
exponents the equation will terminate and cannot 
be extended with infinite 𝜂𝜂, otherwise 𝑓𝑓′ will be 
negative or become unbounded which is a 
contradiction: In fact equation (20) suggests that 
𝑓𝑓′ and 𝑓𝑓′′ reach zero at a finite value of 𝜂𝜂 when 
the expression in parentheses reaches zero. This 
shows the natural and crucial result that for 𝑛𝑛 >
1, 𝑓𝑓′ goes to zero very rapidly and may reach zero 
at a finite 𝜂𝜂 which is consistent with the results 
obtained in Wei & Al-Ashhab (2014) for a similar 
equation. Finally observe that, in this case of 𝑛𝑛 >
1, 𝑓𝑓 tends to a constant as 𝜂𝜂 → ∞ since 𝑓𝑓′ reaches 
zero at finite 𝜂𝜂 as discussed above. 
 
    For 𝑛𝑛 = 1/2, observe that we may assume an 
approximation of the form ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧(ln 𝑧𝑧){	 near 
𝑧𝑧 = 0, where substituting back into (14) yields 

𝑝𝑝 = 2
}
, and 𝑘𝑘 = w~

{
x
F
à = (3𝐴𝐴)

F
à which for negative 

𝐴𝐴 does yield the positive (since 𝑧𝑧 ≈ 0 with 𝑧𝑧 > 0) 
approximate solution ℎ(𝑧𝑧) ≈ (3𝐴𝐴)

F
à𝑧𝑧(ln 𝑧𝑧)

F
à, and 

where it can be concluded that a solution 
satisfying (14-15) exists, but with possibly 
additional conditions on the parameters of the 
problem. This in turn yields an asymptotic 
behavior of the form 𝑓𝑓V → (𝑘𝑘S𝜂𝜂 + 𝐾𝐾)12. 
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implies that (from (14) above, 𝐵𝐵 = 0) at the same 
𝑧𝑧 (𝑧𝑧 close to 0) ℎ(𝑧𝑧) is smaller for any solution 
extending to the origin with 𝐴𝐴 > 0. To make this 
argument more precise, consider a solution to 
equation (14) with 𝐵𝐵 = 0, that satisfies the 
(initial) condition ℎ(𝑧𝑧) = ℎt, ℎV(𝑧𝑧) = ℎtV  with 𝑧𝑧 >
0, ℎt > 0, ℎtV > 0, which obviously is an arbitrary 
solution. This solution cannot be extended back to 
reach the origin for the following reason: Since 
ℎVV(𝜇𝜇) > 0  we must have that ℎ(𝜇𝜇) < 𝑘𝑘𝜇𝜇 for all 
𝜇𝜇 ∈ (0, 𝑧𝑧) and for some 𝑘𝑘 > 0. Now the first term 
in (23) is finite, the second term should approach 
infinity as 𝑎𝑎 → 0T (geometrically these two terms 
in fact yield the area of the rectangle (𝑧𝑧 −
𝑎𝑎)ℎ21

F
D(𝑧𝑧)	minus the area of the rectangle 

𝑎𝑎 îℎ21
F
D(𝑎𝑎) − ℎ21

F
D(𝑧𝑧)ï which results in a finite 

answer or −∞  (it is finite for 𝑛𝑛 = 2
S
, but it is −∞ 

for 𝑛𝑛 > 2
S
 since ℎ(𝑧𝑧) < 𝑘𝑘𝑧𝑧) 

and the last term (the integral) should approach 
infinity as 𝑎𝑎 → 0T. With 𝐴𝐴 > 0	the right hand side 
then approaches positive infinity when 𝑎𝑎 → 0T 
but ℎV(𝑧𝑧) = ℎt′  is finite which is a contradiction 
and it implies that ℎV(𝑎𝑎) = 0 for some 𝑎𝑎 > 0 and 
hence solutions 𝑧𝑧 ↦ ℎ(𝑧𝑧) will actually turn away 
from the origin and be directed into larger values 
of ℎ(𝑧𝑧) > 0 as 𝑧𝑧 → 0T. This establishes that 
 
Theorem 2 Equation (14) has no solution in the 
first quadrant (𝑧𝑧 > 0, ℎ(𝑧𝑧) > 0) that converges to 
(0,0) for 𝑛𝑛 < 2

S
, 𝐴𝐴 > 0 and 𝐵𝐵 = 0. 

 
Corollary 3 Equation (14) has no solution in the 
first quadrant (𝑧𝑧 > 0, ℎ(𝑧𝑧) > 0) that converges to 
(0,0) for 𝑛𝑛 < 2

S
, 𝐴𝐴 > 0 and 𝐵𝐵 > 0. 

 
3.2. The case 𝐵𝐵 ≠ 0 
 
For 𝐵𝐵 ≠ 0, let ℎ(𝑧𝑧) be represented by ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧{ 
for 𝑧𝑧 close to 0 (𝑧𝑧 > 0), and for some parameters 
𝑘𝑘 and 𝑝𝑝. We have:  
 
𝑝𝑝 = }0

0T2
,				𝑘𝑘2T

F
D = ~T{ó

{({12)
                                 (25) 

 
This does yield a positive value of 𝑘𝑘 (and positive 
ℎ(𝑧𝑧)) for 0 < 𝑛𝑛 < 2

S
  if 𝐴𝐴 + 𝑝𝑝𝐵𝐵 < 0. Notice that 

ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧{ in this case is an exact (positive) 
solution that satisfies (14), and in fact it also 
satisfies (15) if 
 

ℎV(ϵ) = 𝑘𝑘𝑝𝑝𝜖𝜖{12 = ô
𝐴𝐴 + 𝑝𝑝𝐵𝐵
𝑝𝑝(𝑝𝑝 − 1)	ö

0
0T2

𝑝𝑝𝜖𝜖{12							 

																															= α	𝑓𝑓(0) 	− 𝑚𝑚	ϵS/𝑓𝑓VV(0).     (26) 
 
This exhibits the existence of solutions for 𝑛𝑛 < 2

S
 , 

therefore (by continuity with respect to initial 
conditions): 
 
Theorem 4 A solution to (14) subject to (15) 
exists for 0 < 𝑛𝑛 < 2

S
 and 𝐴𝐴 + 𝑝𝑝𝐵𝐵 < 0  where 𝑝𝑝 =

}0
0T2

. 
 
Observe that for the given range of 𝑛𝑛 we have that 
0 < 𝑝𝑝 < 1, so that the corresponding solutions 
have infinite derivatives at the origin. On the other 
hand, the asymptotic behavior of solutions follows 
equations (17), (18) and (19) but with the new 
value of 𝑘𝑘. On the other hand, for 𝑛𝑛 > 2

S
, let 

ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧 + 𝜅𝜅𝑧𝑧{ for 𝑧𝑧 close to 0 (𝑧𝑧 > 0). This 
yields a value of 𝑝𝑝 = 3 − 2

0
 (𝑝𝑝 > 1) and the 

following equation relates 𝑘𝑘 > 0  to  𝜅𝜅:  
 
𝜅𝜅𝑝𝑝(𝑝𝑝 − 1)𝑘𝑘

F
D = 𝐴𝐴 + 𝐵𝐵.                                     (27) 

 
This holds whether 𝐴𝐴 + 𝐵𝐵 is positive or negative, 
and the asymptotic behavior in this case follows 
equations (20), (21) and (22) with the new value 
of 𝑘𝑘. 
 
3.2.1. A non-uniqueness result 
 

Observe that if 𝐴𝐴 + 𝐵𝐵 = 0 then (27) implies that 
𝜅𝜅 = 0, and then in fact ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧 is a solution to 
(14) for all values of 𝑛𝑛 (not only for 𝑛𝑛 > 2

S
), where 

a value of 𝑘𝑘 = α	𝑓𝑓(0) − AúC

sqq(t)
> 0 yields a 

solution to (14) that satisfies (15). In fact, since 
𝑝𝑝 = }0

0T2
< 1 in (25) above for 0 < 𝑛𝑛 < 2

S
, we 

have another exact solution, namely ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧{ 
with 𝑘𝑘, 𝑝𝑝 given in (25). This leads to the following 
proposition. 
 
Proposition 5 Solutions to (14) subject to (15) are 
not unique for 0 < 𝑛𝑛 < 2

S
 , 𝐴𝐴 < 0 and 𝐴𝐴 + 𝐵𝐵 = 0. 

 
Observe that the conditions 𝐴𝐴 < 0 and 𝐴𝐴 + 𝐵𝐵 = 0 
imply the 𝐴𝐴 + 𝑝𝑝𝐵𝐵 < 0 since 𝑝𝑝 < 1. Even though 
the result given above requires a few conditions, it 
does exhibit a peculiar non-uniqueness result for 
this kind of problem. In fact this result maybe 

(25)
 This does yield a positive value of k (and positive
 h(z)) for 0<n<   if A+pB<0. Notice that h(z)=kzp

 in this case is an exact (positive) solution that
satisfies (14), and in fact it also satisfies (15) if
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We first consider the case where 𝐵𝐵 = 0. This 
happens when 𝑚𝑚 = 0 in our derivation process 
since 𝐵𝐵 = −A

0
.  To discuss the asymptotic 

behavior of 𝑓𝑓V (and consequently 𝑓𝑓) as η → ∞ let 
ℎ(𝑧𝑧) be represented by ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{  for z close to 
0 (z > 0), and for some parameters k and 𝑝𝑝. 
Observe that k must be positive since ℎ(𝑧𝑧) is a 
positive function so that for  𝐴𝐴 < 0 and 0 < 𝑛𝑛 < 2

S
  

we have:  
 
𝑝𝑝 = }0

0T2
,											𝑘𝑘2T

F
D = ~

{({12)
                           (16) 

 

This implies that  𝑝𝑝 < 1 and consequently 𝑘𝑘 > 0 
which is consistent with the fact that ℎ(𝑧𝑧) must be 
a positive function. In fact ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{ in its own 
right is an exact solution to (14) which satisfies 
(15) if ℎV(𝜖𝜖) = 𝑘𝑘𝑝𝑝𝜖𝜖{12 = 𝛼𝛼𝛼𝛼 = 𝛼𝛼𝑓𝑓(0) > 0.  

Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (derivatives of 𝑓𝑓	as 
given above in (12)) and integrating the resulting 
equation, yields:  
 
𝑓𝑓V ≈ (	wS10

0T2
	𝑘𝑘

F
Dx 𝜂𝜂 + 𝐾𝐾	)

DGF
DEC	                             (17) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant (of 
integration). In other words: 
 
𝑓𝑓V → 	c ⋅ 𝜂𝜂

DGF
DEC	 as 𝜂𝜂 → ∞                                   (18) 

 
for 0 < 𝑛𝑛 < 2

S
 and for some constant 𝑐𝑐 > 0, where 

in fact 𝑐𝑐 = wS10
0T2

	𝑘𝑘
F
Dx

DGF
DEC. Observe that 𝑓𝑓V tends to 

zero as 𝜂𝜂 → ∞, while 
 
𝑓𝑓 → 	 01S

S012
c ⋅ 𝜂𝜂

CDEF
DEC + 𝐿𝐿                                     (19) 

 
where 𝐿𝐿	is a constant. Note that 𝑓𝑓	does not tend to 
constant as 𝜂𝜂 → ∞	since the exponent S012

01S
> 0.  

 
Now for 	𝑛𝑛 > 2

S
,  let  ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧 + 𝜅𝜅𝑧𝑧{  for 𝑧𝑧	close 

to 0 (𝑧𝑧 > 0). This yields a value of 𝑝𝑝 = 3 − 2
0
 

(observe that 𝑝𝑝 > 1), and it can be shown that the 
equation 𝜅𝜅𝑝𝑝(𝑝𝑝 − 1)𝜅𝜅

F
D = 𝐴𝐴 relates 𝑘𝑘 > 0 to 𝜅𝜅. 

Observe that this works for positive 𝐴𝐴 as well as 
negative 𝐴𝐴. This is the case where 𝜅𝜅 is positive 

when 𝐴𝐴 is positive, and it is negative when 𝐴𝐴 is 
negative. However, 𝑘𝑘	is positive in both cases. 
Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (12) and integrating 
the resulting equation yields:  
 
𝑓𝑓V ≈ (	w210

0
(𝑘𝑘)

F
Dx 𝜂𝜂 + 𝐾𝐾	)

D
DEF                           (20) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant. Therefore 
we have: 
 
𝑓𝑓V → 	c ⋅ 	𝜂𝜂

D
DEF   as    𝜂𝜂 → ∞,                             (21) 

 
for  2

S
< 𝑛𝑛 < 1 and for some constant 𝑐𝑐 > 0, 

which in turn implies that: 
 
𝑓𝑓 → 012

S012
⋅ 𝑐𝑐 ⋅ 	𝜂𝜂

CDEF
DEF + 𝑓𝑓                                  (22) 

 
so that 𝑓𝑓 tends to a constant 𝑓𝑓   as  𝜂𝜂 → ∞ since 
the exponent on 𝜂𝜂 is negative. On the other hand, 
observe that if 𝑛𝑛 > 1 the first term in (20) is 
negative, and then in the case of even radicals on 
exponents the equation will terminate and cannot 
be extended with infinite 𝜂𝜂, otherwise 𝑓𝑓′ will be 
negative or become unbounded which is a 
contradiction: In fact equation (20) suggests that 
𝑓𝑓′ and 𝑓𝑓′′ reach zero at a finite value of 𝜂𝜂 when 
the expression in parentheses reaches zero. This 
shows the natural and crucial result that for 𝑛𝑛 >
1, 𝑓𝑓′ goes to zero very rapidly and may reach zero 
at a finite 𝜂𝜂 which is consistent with the results 
obtained in Wei & Al-Ashhab (2014) for a similar 
equation. Finally observe that, in this case of 𝑛𝑛 >
1, 𝑓𝑓 tends to a constant as 𝜂𝜂 → ∞ since 𝑓𝑓′ reaches 
zero at finite 𝜂𝜂 as discussed above. 
 
    For 𝑛𝑛 = 1/2, observe that we may assume an 
approximation of the form ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧(ln 𝑧𝑧){	 near 
𝑧𝑧 = 0, where substituting back into (14) yields 

𝑝𝑝 = 2
}
, and 𝑘𝑘 = w~

{
x
F
à = (3𝐴𝐴)

F
à which for negative 

𝐴𝐴 does yield the positive (since 𝑧𝑧 ≈ 0 with 𝑧𝑧 > 0) 
approximate solution ℎ(𝑧𝑧) ≈ (3𝐴𝐴)

F
à𝑧𝑧(ln 𝑧𝑧)

F
à, and 

where it can be concluded that a solution 
satisfying (14-15) exists, but with possibly 
additional conditions on the parameters of the 
problem. This in turn yields an asymptotic 
behavior of the form 𝑓𝑓V → (𝑘𝑘S𝜂𝜂 + 𝐾𝐾)12. 
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implies that (from (14) above, 𝐵𝐵 = 0) at the same 
𝑧𝑧 (𝑧𝑧 close to 0) ℎ(𝑧𝑧) is smaller for any solution 
extending to the origin with 𝐴𝐴 > 0. To make this 
argument more precise, consider a solution to 
equation (14) with 𝐵𝐵 = 0, that satisfies the 
(initial) condition ℎ(𝑧𝑧) = ℎt, ℎV(𝑧𝑧) = ℎtV  with 𝑧𝑧 >
0, ℎt > 0, ℎtV > 0, which obviously is an arbitrary 
solution. This solution cannot be extended back to 
reach the origin for the following reason: Since 
ℎVV(𝜇𝜇) > 0  we must have that ℎ(𝜇𝜇) < 𝑘𝑘𝜇𝜇 for all 
𝜇𝜇 ∈ (0, 𝑧𝑧) and for some 𝑘𝑘 > 0. Now the first term 
in (23) is finite, the second term should approach 
infinity as 𝑎𝑎 → 0T (geometrically these two terms 
in fact yield the area of the rectangle (𝑧𝑧 −
𝑎𝑎)ℎ21

F
D(𝑧𝑧)	minus the area of the rectangle 

𝑎𝑎 îℎ21
F
D(𝑎𝑎) − ℎ21

F
D(𝑧𝑧)ï which results in a finite 

answer or −∞  (it is finite for 𝑛𝑛 = 2
S
, but it is −∞ 

for 𝑛𝑛 > 2
S
 since ℎ(𝑧𝑧) < 𝑘𝑘𝑧𝑧) 

and the last term (the integral) should approach 
infinity as 𝑎𝑎 → 0T. With 𝐴𝐴 > 0	the right hand side 
then approaches positive infinity when 𝑎𝑎 → 0T 
but ℎV(𝑧𝑧) = ℎt′  is finite which is a contradiction 
and it implies that ℎV(𝑎𝑎) = 0 for some 𝑎𝑎 > 0 and 
hence solutions 𝑧𝑧 ↦ ℎ(𝑧𝑧) will actually turn away 
from the origin and be directed into larger values 
of ℎ(𝑧𝑧) > 0 as 𝑧𝑧 → 0T. This establishes that 
 
Theorem 2 Equation (14) has no solution in the 
first quadrant (𝑧𝑧 > 0, ℎ(𝑧𝑧) > 0) that converges to 
(0,0) for 𝑛𝑛 < 2

S
, 𝐴𝐴 > 0 and 𝐵𝐵 = 0. 

 
Corollary 3 Equation (14) has no solution in the 
first quadrant (𝑧𝑧 > 0, ℎ(𝑧𝑧) > 0) that converges to 
(0,0) for 𝑛𝑛 < 2

S
, 𝐴𝐴 > 0 and 𝐵𝐵 > 0. 

 
3.2. The case 𝐵𝐵 ≠ 0 
 
For 𝐵𝐵 ≠ 0, let ℎ(𝑧𝑧) be represented by ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧{ 
for 𝑧𝑧 close to 0 (𝑧𝑧 > 0), and for some parameters 
𝑘𝑘 and 𝑝𝑝. We have:  
 
𝑝𝑝 = }0

0T2
,				𝑘𝑘2T

F
D = ~T{ó

{({12)
                                 (25) 

 
This does yield a positive value of 𝑘𝑘 (and positive 
ℎ(𝑧𝑧)) for 0 < 𝑛𝑛 < 2

S
  if 𝐴𝐴 + 𝑝𝑝𝐵𝐵 < 0. Notice that 

ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧{ in this case is an exact (positive) 
solution that satisfies (14), and in fact it also 
satisfies (15) if 
 

ℎV(ϵ) = 𝑘𝑘𝑝𝑝𝜖𝜖{12 = ô
𝐴𝐴 + 𝑝𝑝𝐵𝐵
𝑝𝑝(𝑝𝑝 − 1)	ö

0
0T2

𝑝𝑝𝜖𝜖{12							 

																															= α	𝑓𝑓(0) 	− 𝑚𝑚	ϵS/𝑓𝑓VV(0).     (26) 
 
This exhibits the existence of solutions for 𝑛𝑛 < 2

S
 , 

therefore (by continuity with respect to initial 
conditions): 
 
Theorem 4 A solution to (14) subject to (15) 
exists for 0 < 𝑛𝑛 < 2

S
 and 𝐴𝐴 + 𝑝𝑝𝐵𝐵 < 0  where 𝑝𝑝 =

}0
0T2

. 
 
Observe that for the given range of 𝑛𝑛 we have that 
0 < 𝑝𝑝 < 1, so that the corresponding solutions 
have infinite derivatives at the origin. On the other 
hand, the asymptotic behavior of solutions follows 
equations (17), (18) and (19) but with the new 
value of 𝑘𝑘. On the other hand, for 𝑛𝑛 > 2

S
, let 

ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧 + 𝜅𝜅𝑧𝑧{ for 𝑧𝑧 close to 0 (𝑧𝑧 > 0). This 
yields a value of 𝑝𝑝 = 3 − 2

0
 (𝑝𝑝 > 1) and the 

following equation relates 𝑘𝑘 > 0  to  𝜅𝜅:  
 
𝜅𝜅𝑝𝑝(𝑝𝑝 − 1)𝑘𝑘

F
D = 𝐴𝐴 + 𝐵𝐵.                                     (27) 

 
This holds whether 𝐴𝐴 + 𝐵𝐵 is positive or negative, 
and the asymptotic behavior in this case follows 
equations (20), (21) and (22) with the new value 
of 𝑘𝑘. 
 
3.2.1. A non-uniqueness result 
 

Observe that if 𝐴𝐴 + 𝐵𝐵 = 0 then (27) implies that 
𝜅𝜅 = 0, and then in fact ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧 is a solution to 
(14) for all values of 𝑛𝑛 (not only for 𝑛𝑛 > 2

S
), where 

a value of 𝑘𝑘 = α	𝑓𝑓(0) − AúC

sqq(t)
> 0 yields a 

solution to (14) that satisfies (15). In fact, since 
𝑝𝑝 = }0

0T2
< 1 in (25) above for 0 < 𝑛𝑛 < 2

S
, we 

have another exact solution, namely ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧{ 
with 𝑘𝑘, 𝑝𝑝 given in (25). This leads to the following 
proposition. 
 
Proposition 5 Solutions to (14) subject to (15) are 
not unique for 0 < 𝑛𝑛 < 2

S
 , 𝐴𝐴 < 0 and 𝐴𝐴 + 𝐵𝐵 = 0. 

 
Observe that the conditions 𝐴𝐴 < 0 and 𝐴𝐴 + 𝐵𝐵 = 0 
imply the 𝐴𝐴 + 𝑝𝑝𝐵𝐵 < 0 since 𝑝𝑝 < 1. Even though 
the result given above requires a few conditions, it 
does exhibit a peculiar non-uniqueness result for 
this kind of problem. In fact this result maybe 

(26)
This  exhibits  the  existence   of   solutions    for   n <    ,
therefore (by continuity with respect to initial conditions):
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We first consider the case where 𝐵𝐵 = 0. This 
happens when 𝑚𝑚 = 0 in our derivation process 
since 𝐵𝐵 = −A

0
.  To discuss the asymptotic 

behavior of 𝑓𝑓V (and consequently 𝑓𝑓) as η → ∞ let 
ℎ(𝑧𝑧) be represented by ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{  for z close to 
0 (z > 0), and for some parameters k and 𝑝𝑝. 
Observe that k must be positive since ℎ(𝑧𝑧) is a 
positive function so that for  𝐴𝐴 < 0 and 0 < 𝑛𝑛 < 2

S
  

we have:  
 
𝑝𝑝 = }0

0T2
,											𝑘𝑘2T

F
D = ~

{({12)
                           (16) 

 

This implies that  𝑝𝑝 < 1 and consequently 𝑘𝑘 > 0 
which is consistent with the fact that ℎ(𝑧𝑧) must be 
a positive function. In fact ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{ in its own 
right is an exact solution to (14) which satisfies 
(15) if ℎV(𝜖𝜖) = 𝑘𝑘𝑝𝑝𝜖𝜖{12 = 𝛼𝛼𝛼𝛼 = 𝛼𝛼𝑓𝑓(0) > 0.  

Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (derivatives of 𝑓𝑓	as 
given above in (12)) and integrating the resulting 
equation, yields:  
 
𝑓𝑓V ≈ (	wS10

0T2
	𝑘𝑘

F
Dx 𝜂𝜂 + 𝐾𝐾	)

DGF
DEC	                             (17) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant (of 
integration). In other words: 
 
𝑓𝑓V → 	c ⋅ 𝜂𝜂

DGF
DEC	 as 𝜂𝜂 → ∞                                   (18) 

 
for 0 < 𝑛𝑛 < 2

S
 and for some constant 𝑐𝑐 > 0, where 

in fact 𝑐𝑐 = wS10
0T2

	𝑘𝑘
F
Dx

DGF
DEC. Observe that 𝑓𝑓V tends to 

zero as 𝜂𝜂 → ∞, while 
 
𝑓𝑓 → 	 01S

S012
c ⋅ 𝜂𝜂

CDEF
DEC + 𝐿𝐿                                     (19) 

 
where 𝐿𝐿	is a constant. Note that 𝑓𝑓	does not tend to 
constant as 𝜂𝜂 → ∞	since the exponent S012

01S
> 0.  

 
Now for 	𝑛𝑛 > 2

S
,  let  ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧 + 𝜅𝜅𝑧𝑧{  for 𝑧𝑧	close 

to 0 (𝑧𝑧 > 0). This yields a value of 𝑝𝑝 = 3 − 2
0
 

(observe that 𝑝𝑝 > 1), and it can be shown that the 
equation 𝜅𝜅𝑝𝑝(𝑝𝑝 − 1)𝜅𝜅

F
D = 𝐴𝐴 relates 𝑘𝑘 > 0 to 𝜅𝜅. 

Observe that this works for positive 𝐴𝐴 as well as 
negative 𝐴𝐴. This is the case where 𝜅𝜅 is positive 

when 𝐴𝐴 is positive, and it is negative when 𝐴𝐴 is 
negative. However, 𝑘𝑘	is positive in both cases. 
Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (12) and integrating 
the resulting equation yields:  
 
𝑓𝑓V ≈ (	w210

0
(𝑘𝑘)

F
Dx 𝜂𝜂 + 𝐾𝐾	)

D
DEF                           (20) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant. Therefore 
we have: 
 
𝑓𝑓V → 	c ⋅ 	𝜂𝜂

D
DEF   as    𝜂𝜂 → ∞,                             (21) 

 
for  2

S
< 𝑛𝑛 < 1 and for some constant 𝑐𝑐 > 0, 

which in turn implies that: 
 
𝑓𝑓 → 012

S012
⋅ 𝑐𝑐 ⋅ 	𝜂𝜂

CDEF
DEF + 𝑓𝑓                                  (22) 

 
so that 𝑓𝑓 tends to a constant 𝑓𝑓   as  𝜂𝜂 → ∞ since 
the exponent on 𝜂𝜂 is negative. On the other hand, 
observe that if 𝑛𝑛 > 1 the first term in (20) is 
negative, and then in the case of even radicals on 
exponents the equation will terminate and cannot 
be extended with infinite 𝜂𝜂, otherwise 𝑓𝑓′ will be 
negative or become unbounded which is a 
contradiction: In fact equation (20) suggests that 
𝑓𝑓′ and 𝑓𝑓′′ reach zero at a finite value of 𝜂𝜂 when 
the expression in parentheses reaches zero. This 
shows the natural and crucial result that for 𝑛𝑛 >
1, 𝑓𝑓′ goes to zero very rapidly and may reach zero 
at a finite 𝜂𝜂 which is consistent with the results 
obtained in Wei & Al-Ashhab (2014) for a similar 
equation. Finally observe that, in this case of 𝑛𝑛 >
1, 𝑓𝑓 tends to a constant as 𝜂𝜂 → ∞ since 𝑓𝑓′ reaches 
zero at finite 𝜂𝜂 as discussed above. 
 
    For 𝑛𝑛 = 1/2, observe that we may assume an 
approximation of the form ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧(ln 𝑧𝑧){	 near 
𝑧𝑧 = 0, where substituting back into (14) yields 

𝑝𝑝 = 2
}
, and 𝑘𝑘 = w~

{
x
F
à = (3𝐴𝐴)

F
à which for negative 

𝐴𝐴 does yield the positive (since 𝑧𝑧 ≈ 0 with 𝑧𝑧 > 0) 
approximate solution ℎ(𝑧𝑧) ≈ (3𝐴𝐴)

F
à𝑧𝑧(ln 𝑧𝑧)

F
à, and 

where it can be concluded that a solution 
satisfying (14-15) exists, but with possibly 
additional conditions on the parameters of the 
problem. This in turn yields an asymptotic 
behavior of the form 𝑓𝑓V → (𝑘𝑘S𝜂𝜂 + 𝐾𝐾)12. 
 

Theorem 4 A solution to (14) subject to (15) exists 
for 0<n<       and A+pB<0  where p =
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We first consider the case where 𝐵𝐵 = 0. This 
happens when 𝑚𝑚 = 0 in our derivation process 
since 𝐵𝐵 = −A

0
.  To discuss the asymptotic 

behavior of 𝑓𝑓V (and consequently 𝑓𝑓) as η → ∞ let 
ℎ(𝑧𝑧) be represented by ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{  for z close to 
0 (z > 0), and for some parameters k and 𝑝𝑝. 
Observe that k must be positive since ℎ(𝑧𝑧) is a 
positive function so that for  𝐴𝐴 < 0 and 0 < 𝑛𝑛 < 2

S
  

we have:  
 
𝑝𝑝 = }0

0T2
,											𝑘𝑘2T

F
D = ~

{({12)
                           (16) 

 

This implies that  𝑝𝑝 < 1 and consequently 𝑘𝑘 > 0 
which is consistent with the fact that ℎ(𝑧𝑧) must be 
a positive function. In fact ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{ in its own 
right is an exact solution to (14) which satisfies 
(15) if ℎV(𝜖𝜖) = 𝑘𝑘𝑝𝑝𝜖𝜖{12 = 𝛼𝛼𝛼𝛼 = 𝛼𝛼𝑓𝑓(0) > 0.  

Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (derivatives of 𝑓𝑓	as 
given above in (12)) and integrating the resulting 
equation, yields:  
 
𝑓𝑓V ≈ (	wS10

0T2
	𝑘𝑘

F
Dx 𝜂𝜂 + 𝐾𝐾	)

DGF
DEC	                             (17) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant (of 
integration). In other words: 
 
𝑓𝑓V → 	c ⋅ 𝜂𝜂

DGF
DEC	 as 𝜂𝜂 → ∞                                   (18) 

 
for 0 < 𝑛𝑛 < 2

S
 and for some constant 𝑐𝑐 > 0, where 

in fact 𝑐𝑐 = wS10
0T2

	𝑘𝑘
F
Dx

DGF
DEC. Observe that 𝑓𝑓V tends to 

zero as 𝜂𝜂 → ∞, while 
 
𝑓𝑓 → 	 01S

S012
c ⋅ 𝜂𝜂

CDEF
DEC + 𝐿𝐿                                     (19) 

 
where 𝐿𝐿	is a constant. Note that 𝑓𝑓	does not tend to 
constant as 𝜂𝜂 → ∞	since the exponent S012

01S
> 0.  

 
Now for 	𝑛𝑛 > 2

S
,  let  ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧 + 𝜅𝜅𝑧𝑧{  for 𝑧𝑧	close 

to 0 (𝑧𝑧 > 0). This yields a value of 𝑝𝑝 = 3 − 2
0
 

(observe that 𝑝𝑝 > 1), and it can be shown that the 
equation 𝜅𝜅𝑝𝑝(𝑝𝑝 − 1)𝜅𝜅

F
D = 𝐴𝐴 relates 𝑘𝑘 > 0 to 𝜅𝜅. 

Observe that this works for positive 𝐴𝐴 as well as 
negative 𝐴𝐴. This is the case where 𝜅𝜅 is positive 

when 𝐴𝐴 is positive, and it is negative when 𝐴𝐴 is 
negative. However, 𝑘𝑘	is positive in both cases. 
Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (12) and integrating 
the resulting equation yields:  
 
𝑓𝑓V ≈ (	w210

0
(𝑘𝑘)

F
Dx 𝜂𝜂 + 𝐾𝐾	)

D
DEF                           (20) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant. Therefore 
we have: 
 
𝑓𝑓V → 	c ⋅ 	𝜂𝜂

D
DEF   as    𝜂𝜂 → ∞,                             (21) 

 
for  2

S
< 𝑛𝑛 < 1 and for some constant 𝑐𝑐 > 0, 

which in turn implies that: 
 
𝑓𝑓 → 012

S012
⋅ 𝑐𝑐 ⋅ 	𝜂𝜂

CDEF
DEF + 𝑓𝑓                                  (22) 

 
so that 𝑓𝑓 tends to a constant 𝑓𝑓   as  𝜂𝜂 → ∞ since 
the exponent on 𝜂𝜂 is negative. On the other hand, 
observe that if 𝑛𝑛 > 1 the first term in (20) is 
negative, and then in the case of even radicals on 
exponents the equation will terminate and cannot 
be extended with infinite 𝜂𝜂, otherwise 𝑓𝑓′ will be 
negative or become unbounded which is a 
contradiction: In fact equation (20) suggests that 
𝑓𝑓′ and 𝑓𝑓′′ reach zero at a finite value of 𝜂𝜂 when 
the expression in parentheses reaches zero. This 
shows the natural and crucial result that for 𝑛𝑛 >
1, 𝑓𝑓′ goes to zero very rapidly and may reach zero 
at a finite 𝜂𝜂 which is consistent with the results 
obtained in Wei & Al-Ashhab (2014) for a similar 
equation. Finally observe that, in this case of 𝑛𝑛 >
1, 𝑓𝑓 tends to a constant as 𝜂𝜂 → ∞ since 𝑓𝑓′ reaches 
zero at finite 𝜂𝜂 as discussed above. 
 
    For 𝑛𝑛 = 1/2, observe that we may assume an 
approximation of the form ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧(ln 𝑧𝑧){	 near 
𝑧𝑧 = 0, where substituting back into (14) yields 

𝑝𝑝 = 2
}
, and 𝑘𝑘 = w~

{
x
F
à = (3𝐴𝐴)

F
à which for negative 

𝐴𝐴 does yield the positive (since 𝑧𝑧 ≈ 0 with 𝑧𝑧 > 0) 
approximate solution ℎ(𝑧𝑧) ≈ (3𝐴𝐴)

F
à𝑧𝑧(ln 𝑧𝑧)

F
à, and 

where it can be concluded that a solution 
satisfying (14-15) exists, but with possibly 
additional conditions on the parameters of the 
problem. This in turn yields an asymptotic 
behavior of the form 𝑓𝑓V → (𝑘𝑘S𝜂𝜂 + 𝐾𝐾)12. 
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implies that (from (14) above, 𝐵𝐵 = 0) at the same 
𝑧𝑧 (𝑧𝑧 close to 0) ℎ(𝑧𝑧) is smaller for any solution 
extending to the origin with 𝐴𝐴 > 0. To make this 
argument more precise, consider a solution to 
equation (14) with 𝐵𝐵 = 0, that satisfies the 
(initial) condition ℎ(𝑧𝑧) = ℎt, ℎV(𝑧𝑧) = ℎtV  with 𝑧𝑧 >
0, ℎt > 0, ℎtV > 0, which obviously is an arbitrary 
solution. This solution cannot be extended back to 
reach the origin for the following reason: Since 
ℎVV(𝜇𝜇) > 0  we must have that ℎ(𝜇𝜇) < 𝑘𝑘𝜇𝜇 for all 
𝜇𝜇 ∈ (0, 𝑧𝑧) and for some 𝑘𝑘 > 0. Now the first term 
in (23) is finite, the second term should approach 
infinity as 𝑎𝑎 → 0T (geometrically these two terms 
in fact yield the area of the rectangle (𝑧𝑧 −
𝑎𝑎)ℎ21

F
D(𝑧𝑧)	minus the area of the rectangle 

𝑎𝑎 îℎ21
F
D(𝑎𝑎) − ℎ21

F
D(𝑧𝑧)ï which results in a finite 

answer or −∞  (it is finite for 𝑛𝑛 = 2
S
, but it is −∞ 

for 𝑛𝑛 > 2
S
 since ℎ(𝑧𝑧) < 𝑘𝑘𝑧𝑧) 

and the last term (the integral) should approach 
infinity as 𝑎𝑎 → 0T. With 𝐴𝐴 > 0	the right hand side 
then approaches positive infinity when 𝑎𝑎 → 0T 
but ℎV(𝑧𝑧) = ℎt′  is finite which is a contradiction 
and it implies that ℎV(𝑎𝑎) = 0 for some 𝑎𝑎 > 0 and 
hence solutions 𝑧𝑧 ↦ ℎ(𝑧𝑧) will actually turn away 
from the origin and be directed into larger values 
of ℎ(𝑧𝑧) > 0 as 𝑧𝑧 → 0T. This establishes that 
 
Theorem 2 Equation (14) has no solution in the 
first quadrant (𝑧𝑧 > 0, ℎ(𝑧𝑧) > 0) that converges to 
(0,0) for 𝑛𝑛 < 2

S
, 𝐴𝐴 > 0 and 𝐵𝐵 = 0. 
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, 𝐴𝐴 > 0 and 𝐵𝐵 > 0. 

 
3.2. The case 𝐵𝐵 ≠ 0 
 
For 𝐵𝐵 ≠ 0, let ℎ(𝑧𝑧) be represented by ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧{ 
for 𝑧𝑧 close to 0 (𝑧𝑧 > 0), and for some parameters 
𝑘𝑘 and 𝑝𝑝. We have:  
 
𝑝𝑝 = }0

0T2
,				𝑘𝑘2T

F
D = ~T{ó
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                                 (25) 

 
This does yield a positive value of 𝑘𝑘 (and positive 
ℎ(𝑧𝑧)) for 0 < 𝑛𝑛 < 2

S
  if 𝐴𝐴 + 𝑝𝑝𝐵𝐵 < 0. Notice that 

ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧{ in this case is an exact (positive) 
solution that satisfies (14), and in fact it also 
satisfies (15) if 
 

ℎV(ϵ) = 𝑘𝑘𝑝𝑝𝜖𝜖{12 = ô
𝐴𝐴 + 𝑝𝑝𝐵𝐵
𝑝𝑝(𝑝𝑝 − 1)	ö

0
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This exhibits the existence of solutions for 𝑛𝑛 < 2

S
 , 

therefore (by continuity with respect to initial 
conditions): 
 
Theorem 4 A solution to (14) subject to (15) 
exists for 0 < 𝑛𝑛 < 2

S
 and 𝐴𝐴 + 𝑝𝑝𝐵𝐵 < 0  where 𝑝𝑝 =

}0
0T2
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Observe that for the given range of 𝑛𝑛 we have that 
0 < 𝑝𝑝 < 1, so that the corresponding solutions 
have infinite derivatives at the origin. On the other 
hand, the asymptotic behavior of solutions follows 
equations (17), (18) and (19) but with the new 
value of 𝑘𝑘. On the other hand, for 𝑛𝑛 > 2

S
, let 

ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧 + 𝜅𝜅𝑧𝑧{ for 𝑧𝑧 close to 0 (𝑧𝑧 > 0). This 
yields a value of 𝑝𝑝 = 3 − 2

0
 (𝑝𝑝 > 1) and the 

following equation relates 𝑘𝑘 > 0  to  𝜅𝜅:  
 
𝜅𝜅𝑝𝑝(𝑝𝑝 − 1)𝑘𝑘

F
D = 𝐴𝐴 + 𝐵𝐵.                                     (27) 

 
This holds whether 𝐴𝐴 + 𝐵𝐵 is positive or negative, 
and the asymptotic behavior in this case follows 
equations (20), (21) and (22) with the new value 
of 𝑘𝑘. 
 
3.2.1. A non-uniqueness result 
 

Observe that if 𝐴𝐴 + 𝐵𝐵 = 0 then (27) implies that 
𝜅𝜅 = 0, and then in fact ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧 is a solution to 
(14) for all values of 𝑛𝑛 (not only for 𝑛𝑛 > 2

S
), where 

a value of 𝑘𝑘 = α	𝑓𝑓(0) − AúC

sqq(t)
> 0 yields a 

solution to (14) that satisfies (15). In fact, since 
𝑝𝑝 = }0

0T2
< 1 in (25) above for 0 < 𝑛𝑛 < 2

S
, we 

have another exact solution, namely ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧{ 
with 𝑘𝑘, 𝑝𝑝 given in (25). This leads to the following 
proposition. 
 
Proposition 5 Solutions to (14) subject to (15) are 
not unique for 0 < 𝑛𝑛 < 2

S
 , 𝐴𝐴 < 0 and 𝐴𝐴 + 𝐵𝐵 = 0. 

 
Observe that the conditions 𝐴𝐴 < 0 and 𝐴𝐴 + 𝐵𝐵 = 0 
imply the 𝐴𝐴 + 𝑝𝑝𝐵𝐵 < 0 since 𝑝𝑝 < 1. Even though 
the result given above requires a few conditions, it 
does exhibit a peculiar non-uniqueness result for 
this kind of problem. In fact this result maybe 

Observe that for the given range of n we have that 0<p<1, 
so that the corresponding solutions have infinite 
derivatives at the origin. On the other hand, the 
asymptotic behavior of solutions follows equations 
(17), (18) and (19) but with the new value of 
k. On the other hand, for n>1/2, let h(z)≈kz+κzp 
for z close to 0 (z >0). This yields a value 
of             and the following equation relates 
k > 0  to  κ: 
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implies that (from (14) above, 𝐵𝐵 = 0) at the same 
𝑧𝑧 (𝑧𝑧 close to 0) ℎ(𝑧𝑧) is smaller for any solution 
extending to the origin with 𝐴𝐴 > 0. To make this 
argument more precise, consider a solution to 
equation (14) with 𝐵𝐵 = 0, that satisfies the 
(initial) condition ℎ(𝑧𝑧) = ℎt, ℎV(𝑧𝑧) = ℎtV  with 𝑧𝑧 >
0, ℎt > 0, ℎtV > 0, which obviously is an arbitrary 
solution. This solution cannot be extended back to 
reach the origin for the following reason: Since 
ℎVV(𝜇𝜇) > 0  we must have that ℎ(𝜇𝜇) < 𝑘𝑘𝜇𝜇 for all 
𝜇𝜇 ∈ (0, 𝑧𝑧) and for some 𝑘𝑘 > 0. Now the first term 
in (23) is finite, the second term should approach 
infinity as 𝑎𝑎 → 0T (geometrically these two terms 
in fact yield the area of the rectangle (𝑧𝑧 −
𝑎𝑎)ℎ21

F
D(𝑧𝑧)	minus the area of the rectangle 

𝑎𝑎 îℎ21
F
D(𝑎𝑎) − ℎ21

F
D(𝑧𝑧)ï which results in a finite 

answer or −∞  (it is finite for 𝑛𝑛 = 2
S
, but it is −∞ 

for 𝑛𝑛 > 2
S
 since ℎ(𝑧𝑧) < 𝑘𝑘𝑧𝑧) 

and the last term (the integral) should approach 
infinity as 𝑎𝑎 → 0T. With 𝐴𝐴 > 0	the right hand side 
then approaches positive infinity when 𝑎𝑎 → 0T 
but ℎV(𝑧𝑧) = ℎt′  is finite which is a contradiction 
and it implies that ℎV(𝑎𝑎) = 0 for some 𝑎𝑎 > 0 and 
hence solutions 𝑧𝑧 ↦ ℎ(𝑧𝑧) will actually turn away 
from the origin and be directed into larger values 
of ℎ(𝑧𝑧) > 0 as 𝑧𝑧 → 0T. This establishes that 
 
Theorem 2 Equation (14) has no solution in the 
first quadrant (𝑧𝑧 > 0, ℎ(𝑧𝑧) > 0) that converges to 
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This holds whether 𝐴𝐴 + 𝐵𝐵 is positive or negative, 
and the asymptotic behavior in this case follows 
equations (20), (21) and (22) with the new value 
of 𝑘𝑘. 
 
3.2.1. A non-uniqueness result 
 

Observe that if 𝐴𝐴 + 𝐵𝐵 = 0 then (27) implies that 
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(14) for all values of 𝑛𝑛 (not only for 𝑛𝑛 > 2
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), where 
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solution to (14) that satisfies (15). In fact, since 
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< 1 in (25) above for 0 < 𝑛𝑛 < 2
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, we 

have another exact solution, namely ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧{ 
with 𝑘𝑘, 𝑝𝑝 given in (25). This leads to the following 
proposition. 
 
Proposition 5 Solutions to (14) subject to (15) are 
not unique for 0 < 𝑛𝑛 < 2
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 , 𝐴𝐴 < 0 and 𝐴𝐴 + 𝐵𝐵 = 0. 

 
Observe that the conditions 𝐴𝐴 < 0 and 𝐴𝐴 + 𝐵𝐵 = 0 
imply the 𝐴𝐴 + 𝑝𝑝𝐵𝐵 < 0 since 𝑝𝑝 < 1. Even though 
the result given above requires a few conditions, it 
does exhibit a peculiar non-uniqueness result for 
this kind of problem. In fact this result maybe 
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𝑧𝑧 (𝑧𝑧 close to 0) ℎ(𝑧𝑧) is smaller for any solution 
extending to the origin with 𝐴𝐴 > 0. To make this 
argument more precise, consider a solution to 
equation (14) with 𝐵𝐵 = 0, that satisfies the 
(initial) condition ℎ(𝑧𝑧) = ℎt, ℎV(𝑧𝑧) = ℎtV  with 𝑧𝑧 >
0, ℎt > 0, ℎtV > 0, which obviously is an arbitrary 
solution. This solution cannot be extended back to 
reach the origin for the following reason: Since 
ℎVV(𝜇𝜇) > 0  we must have that ℎ(𝜇𝜇) < 𝑘𝑘𝜇𝜇 for all 
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infinity as 𝑎𝑎 → 0T. With 𝐴𝐴 > 0	the right hand side 
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but ℎV(𝑧𝑧) = ℎt′  is finite which is a contradiction 
and it implies that ℎV(𝑎𝑎) = 0 for some 𝑎𝑎 > 0 and 
hence solutions 𝑧𝑧 ↦ ℎ(𝑧𝑧) will actually turn away 
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3.2. The case 𝐵𝐵 ≠ 0 
 
For 𝐵𝐵 ≠ 0, let ℎ(𝑧𝑧) be represented by ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧{ 
for 𝑧𝑧 close to 0 (𝑧𝑧 > 0), and for some parameters 
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Observe that for the given range of 𝑛𝑛 we have that 
0 < 𝑝𝑝 < 1, so that the corresponding solutions 
have infinite derivatives at the origin. On the other 
hand, the asymptotic behavior of solutions follows 
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, let 

ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧 + 𝜅𝜅𝑧𝑧{ for 𝑧𝑧 close to 0 (𝑧𝑧 > 0). This 
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This holds whether 𝐴𝐴 + 𝐵𝐵 is positive or negative, 
and the asymptotic behavior in this case follows 
equations (20), (21) and (22) with the new value 
of 𝑘𝑘. 
 
3.2.1. A non-uniqueness result 
 

Observe that if 𝐴𝐴 + 𝐵𝐵 = 0 then (27) implies that 
𝜅𝜅 = 0, and then in fact ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧 is a solution to 
(14) for all values of 𝑛𝑛 (not only for 𝑛𝑛 > 2

S
), where 

a value of 𝑘𝑘 = α	𝑓𝑓(0) − AúC

sqq(t)
> 0 yields a 

solution to (14) that satisfies (15). In fact, since 
𝑝𝑝 = }0

0T2
< 1 in (25) above for 0 < 𝑛𝑛 < 2

S
, we 

have another exact solution, namely ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧{ 
with 𝑘𝑘, 𝑝𝑝 given in (25). This leads to the following 
proposition. 
 
Proposition 5 Solutions to (14) subject to (15) are 
not unique for 0 < 𝑛𝑛 < 2

S
 , 𝐴𝐴 < 0 and 𝐴𝐴 + 𝐵𝐵 = 0. 

 
Observe that the conditions 𝐴𝐴 < 0 and 𝐴𝐴 + 𝐵𝐵 = 0 
imply the 𝐴𝐴 + 𝑝𝑝𝐵𝐵 < 0 since 𝑝𝑝 < 1. Even though 
the result given above requires a few conditions, it 
does exhibit a peculiar non-uniqueness result for 
this kind of problem. In fact this result maybe 

(27)
This holds whether A+B is positive or negative, 
and the asymptotic behavior in this case follows 
equations (20), (21) and (22) with the new value of k.

 3.2.1. A non-uniqueness result
Observe that if A+B=0 then (27) implies that κ=0, and 
then in fact h(z)=kz is a solution to (14) for all values of 
n (not only for n >   ), where a value of 
yields a solution to (14) that satisfies (15). In fact, since 
                 in (25) above for 0<n<     , we have another 
exact solution, namely h(z)=kzp with k,p given 
in (25). This leads to the following proposition.

Proposition 5 Solutions to  (14)  subject  to (15) are not 
unique for 0 < n <   , A<0 and A+B=0.

Observe that the conditions A<0 and A+B=0 imply the 
A+pB<0 since p<1. Even though the result given above 
requires a few conditions, it does exhibit a peculiar 
non-uniqueness result for this kind of problem. In fact 
this result maybe more general. The (Crocco variable) 
solution                                        results in the following 
solution to the original problem for          and f (η):
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We first consider the case where 𝐵𝐵 = 0. This 
happens when 𝑚𝑚 = 0 in our derivation process 
since 𝐵𝐵 = −A

0
.  To discuss the asymptotic 

behavior of 𝑓𝑓V (and consequently 𝑓𝑓) as η → ∞ let 
ℎ(𝑧𝑧) be represented by ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{  for z close to 
0 (z > 0), and for some parameters k and 𝑝𝑝. 
Observe that k must be positive since ℎ(𝑧𝑧) is a 
positive function so that for  𝐴𝐴 < 0 and 0 < 𝑛𝑛 < 2

S
  

we have:  
 
𝑝𝑝 = }0

0T2
,											𝑘𝑘2T

F
D = ~

{({12)
                           (16) 

 

This implies that  𝑝𝑝 < 1 and consequently 𝑘𝑘 > 0 
which is consistent with the fact that ℎ(𝑧𝑧) must be 
a positive function. In fact ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{ in its own 
right is an exact solution to (14) which satisfies 
(15) if ℎV(𝜖𝜖) = 𝑘𝑘𝑝𝑝𝜖𝜖{12 = 𝛼𝛼𝛼𝛼 = 𝛼𝛼𝑓𝑓(0) > 0.  

Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (derivatives of 𝑓𝑓	as 
given above in (12)) and integrating the resulting 
equation, yields:  
 
𝑓𝑓V ≈ (	wS10

0T2
	𝑘𝑘

F
Dx 𝜂𝜂 + 𝐾𝐾	)

DGF
DEC	                             (17) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant (of 
integration). In other words: 
 
𝑓𝑓V → 	c ⋅ 𝜂𝜂

DGF
DEC	 as 𝜂𝜂 → ∞                                   (18) 

 
for 0 < 𝑛𝑛 < 2

S
 and for some constant 𝑐𝑐 > 0, where 

in fact 𝑐𝑐 = wS10
0T2

	𝑘𝑘
F
Dx

DGF
DEC. Observe that 𝑓𝑓V tends to 

zero as 𝜂𝜂 → ∞, while 
 
𝑓𝑓 → 	 01S

S012
c ⋅ 𝜂𝜂

CDEF
DEC + 𝐿𝐿                                     (19) 

 
where 𝐿𝐿	is a constant. Note that 𝑓𝑓	does not tend to 
constant as 𝜂𝜂 → ∞	since the exponent S012

01S
> 0.  

 
Now for 	𝑛𝑛 > 2

S
,  let  ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧 + 𝜅𝜅𝑧𝑧{  for 𝑧𝑧	close 

to 0 (𝑧𝑧 > 0). This yields a value of 𝑝𝑝 = 3 − 2
0
 

(observe that 𝑝𝑝 > 1), and it can be shown that the 
equation 𝜅𝜅𝑝𝑝(𝑝𝑝 − 1)𝜅𝜅

F
D = 𝐴𝐴 relates 𝑘𝑘 > 0 to 𝜅𝜅. 

Observe that this works for positive 𝐴𝐴 as well as 
negative 𝐴𝐴. This is the case where 𝜅𝜅 is positive 

when 𝐴𝐴 is positive, and it is negative when 𝐴𝐴 is 
negative. However, 𝑘𝑘	is positive in both cases. 
Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (12) and integrating 
the resulting equation yields:  
 
𝑓𝑓V ≈ (	w210

0
(𝑘𝑘)

F
Dx 𝜂𝜂 + 𝐾𝐾	)

D
DEF                           (20) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant. Therefore 
we have: 
 
𝑓𝑓V → 	c ⋅ 	𝜂𝜂

D
DEF   as    𝜂𝜂 → ∞,                             (21) 

 
for  2

S
< 𝑛𝑛 < 1 and for some constant 𝑐𝑐 > 0, 

which in turn implies that: 
 
𝑓𝑓 → 012

S012
⋅ 𝑐𝑐 ⋅ 	𝜂𝜂

CDEF
DEF + 𝑓𝑓                                  (22) 

 
so that 𝑓𝑓 tends to a constant 𝑓𝑓   as  𝜂𝜂 → ∞ since 
the exponent on 𝜂𝜂 is negative. On the other hand, 
observe that if 𝑛𝑛 > 1 the first term in (20) is 
negative, and then in the case of even radicals on 
exponents the equation will terminate and cannot 
be extended with infinite 𝜂𝜂, otherwise 𝑓𝑓′ will be 
negative or become unbounded which is a 
contradiction: In fact equation (20) suggests that 
𝑓𝑓′ and 𝑓𝑓′′ reach zero at a finite value of 𝜂𝜂 when 
the expression in parentheses reaches zero. This 
shows the natural and crucial result that for 𝑛𝑛 >
1, 𝑓𝑓′ goes to zero very rapidly and may reach zero 
at a finite 𝜂𝜂 which is consistent with the results 
obtained in Wei & Al-Ashhab (2014) for a similar 
equation. Finally observe that, in this case of 𝑛𝑛 >
1, 𝑓𝑓 tends to a constant as 𝜂𝜂 → ∞ since 𝑓𝑓′ reaches 
zero at finite 𝜂𝜂 as discussed above. 
 
    For 𝑛𝑛 = 1/2, observe that we may assume an 
approximation of the form ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧(ln 𝑧𝑧){	 near 
𝑧𝑧 = 0, where substituting back into (14) yields 

𝑝𝑝 = 2
}
, and 𝑘𝑘 = w~

{
x
F
à = (3𝐴𝐴)

F
à which for negative 

𝐴𝐴 does yield the positive (since 𝑧𝑧 ≈ 0 with 𝑧𝑧 > 0) 
approximate solution ℎ(𝑧𝑧) ≈ (3𝐴𝐴)

F
à𝑧𝑧(ln 𝑧𝑧)

F
à, and 

where it can be concluded that a solution 
satisfying (14-15) exists, but with possibly 
additional conditions on the parameters of the 
problem. This in turn yields an asymptotic 
behavior of the form 𝑓𝑓V → (𝑘𝑘S𝜂𝜂 + 𝐾𝐾)12. 
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implies that (from (14) above, 𝐵𝐵 = 0) at the same 
𝑧𝑧 (𝑧𝑧 close to 0) ℎ(𝑧𝑧) is smaller for any solution 
extending to the origin with 𝐴𝐴 > 0. To make this 
argument more precise, consider a solution to 
equation (14) with 𝐵𝐵 = 0, that satisfies the 
(initial) condition ℎ(𝑧𝑧) = ℎt, ℎV(𝑧𝑧) = ℎtV  with 𝑧𝑧 >
0, ℎt > 0, ℎtV > 0, which obviously is an arbitrary 
solution. This solution cannot be extended back to 
reach the origin for the following reason: Since 
ℎVV(𝜇𝜇) > 0  we must have that ℎ(𝜇𝜇) < 𝑘𝑘𝜇𝜇 for all 
𝜇𝜇 ∈ (0, 𝑧𝑧) and for some 𝑘𝑘 > 0. Now the first term 
in (23) is finite, the second term should approach 
infinity as 𝑎𝑎 → 0T (geometrically these two terms 
in fact yield the area of the rectangle (𝑧𝑧 −
𝑎𝑎)ℎ21

F
D(𝑧𝑧)	minus the area of the rectangle 

𝑎𝑎 îℎ21
F
D(𝑎𝑎) − ℎ21

F
D(𝑧𝑧)ï which results in a finite 

answer or −∞  (it is finite for 𝑛𝑛 = 2
S
, but it is −∞ 

for 𝑛𝑛 > 2
S
 since ℎ(𝑧𝑧) < 𝑘𝑘𝑧𝑧) 

and the last term (the integral) should approach 
infinity as 𝑎𝑎 → 0T. With 𝐴𝐴 > 0	the right hand side 
then approaches positive infinity when 𝑎𝑎 → 0T 
but ℎV(𝑧𝑧) = ℎt′  is finite which is a contradiction 
and it implies that ℎV(𝑎𝑎) = 0 for some 𝑎𝑎 > 0 and 
hence solutions 𝑧𝑧 ↦ ℎ(𝑧𝑧) will actually turn away 
from the origin and be directed into larger values 
of ℎ(𝑧𝑧) > 0 as 𝑧𝑧 → 0T. This establishes that 
 
Theorem 2 Equation (14) has no solution in the 
first quadrant (𝑧𝑧 > 0, ℎ(𝑧𝑧) > 0) that converges to 
(0,0) for 𝑛𝑛 < 2

S
, 𝐴𝐴 > 0 and 𝐵𝐵 = 0. 

 
Corollary 3 Equation (14) has no solution in the 
first quadrant (𝑧𝑧 > 0, ℎ(𝑧𝑧) > 0) that converges to 
(0,0) for 𝑛𝑛 < 2

S
, 𝐴𝐴 > 0 and 𝐵𝐵 > 0. 

 
3.2. The case 𝐵𝐵 ≠ 0 
 
For 𝐵𝐵 ≠ 0, let ℎ(𝑧𝑧) be represented by ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧{ 
for 𝑧𝑧 close to 0 (𝑧𝑧 > 0), and for some parameters 
𝑘𝑘 and 𝑝𝑝. We have:  
 
𝑝𝑝 = }0

0T2
,				𝑘𝑘2T

F
D = ~T{ó

{({12)
                                 (25) 

 
This does yield a positive value of 𝑘𝑘 (and positive 
ℎ(𝑧𝑧)) for 0 < 𝑛𝑛 < 2

S
  if 𝐴𝐴 + 𝑝𝑝𝐵𝐵 < 0. Notice that 

ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧{ in this case is an exact (positive) 
solution that satisfies (14), and in fact it also 
satisfies (15) if 
 

ℎV(ϵ) = 𝑘𝑘𝑝𝑝𝜖𝜖{12 = ô
𝐴𝐴 + 𝑝𝑝𝐵𝐵
𝑝𝑝(𝑝𝑝 − 1)	ö

0
0T2

𝑝𝑝𝜖𝜖{12							 

																															= α	𝑓𝑓(0) 	− 𝑚𝑚	ϵS/𝑓𝑓VV(0).     (26) 
 
This exhibits the existence of solutions for 𝑛𝑛 < 2

S
 , 

therefore (by continuity with respect to initial 
conditions): 
 
Theorem 4 A solution to (14) subject to (15) 
exists for 0 < 𝑛𝑛 < 2

S
 and 𝐴𝐴 + 𝑝𝑝𝐵𝐵 < 0  where 𝑝𝑝 =

}0
0T2

. 
 
Observe that for the given range of 𝑛𝑛 we have that 
0 < 𝑝𝑝 < 1, so that the corresponding solutions 
have infinite derivatives at the origin. On the other 
hand, the asymptotic behavior of solutions follows 
equations (17), (18) and (19) but with the new 
value of 𝑘𝑘. On the other hand, for 𝑛𝑛 > 2

S
, let 

ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧 + 𝜅𝜅𝑧𝑧{ for 𝑧𝑧 close to 0 (𝑧𝑧 > 0). This 
yields a value of 𝑝𝑝 = 3 − 2

0
 (𝑝𝑝 > 1) and the 

following equation relates 𝑘𝑘 > 0  to  𝜅𝜅:  
 
𝜅𝜅𝑝𝑝(𝑝𝑝 − 1)𝑘𝑘

F
D = 𝐴𝐴 + 𝐵𝐵.                                     (27) 

 
This holds whether 𝐴𝐴 + 𝐵𝐵 is positive or negative, 
and the asymptotic behavior in this case follows 
equations (20), (21) and (22) with the new value 
of 𝑘𝑘. 
 
3.2.1. A non-uniqueness result 
 

Observe that if 𝐴𝐴 + 𝐵𝐵 = 0 then (27) implies that 
𝜅𝜅 = 0, and then in fact ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧 is a solution to 
(14) for all values of 𝑛𝑛 (not only for 𝑛𝑛 > 2

S
), where 

a value of 𝑘𝑘 = α	𝑓𝑓(0) − AúC

sqq(t)
> 0 yields a 

solution to (14) that satisfies (15). In fact, since 
𝑝𝑝 = }0

0T2
< 1 in (25) above for 0 < 𝑛𝑛 < 2

S
, we 

have another exact solution, namely ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧{ 
with 𝑘𝑘, 𝑝𝑝 given in (25). This leads to the following 
proposition. 
 
Proposition 5 Solutions to (14) subject to (15) are 
not unique for 0 < 𝑛𝑛 < 2

S
 , 𝐴𝐴 < 0 and 𝐴𝐴 + 𝐵𝐵 = 0. 

 
Observe that the conditions 𝐴𝐴 < 0 and 𝐴𝐴 + 𝐵𝐵 = 0 
imply the 𝐴𝐴 + 𝑝𝑝𝐵𝐵 < 0 since 𝑝𝑝 < 1. Even though 
the result given above requires a few conditions, it 
does exhibit a peculiar non-uniqueness result for 
this kind of problem. In fact this result maybe 
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in (23) is finite, the second term should approach 
infinity as 𝑎𝑎 → 0T (geometrically these two terms 
in fact yield the area of the rectangle (𝑧𝑧 −
𝑎𝑎)ℎ21

F
D(𝑧𝑧)	minus the area of the rectangle 

𝑎𝑎 îℎ21
F
D(𝑎𝑎) − ℎ21

F
D(𝑧𝑧)ï which results in a finite 

answer or −∞  (it is finite for 𝑛𝑛 = 2
S
, but it is −∞ 
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{({12)
                                 (25) 

 
This does yield a positive value of 𝑘𝑘 (and positive 
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S
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Observe that for the given range of 𝑛𝑛 we have that 
0 < 𝑝𝑝 < 1, so that the corresponding solutions 
have infinite derivatives at the origin. On the other 
hand, the asymptotic behavior of solutions follows 
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), where 
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We first consider the case where 𝐵𝐵 = 0. This 
happens when 𝑚𝑚 = 0 in our derivation process 
since 𝐵𝐵 = −A

0
.  To discuss the asymptotic 

behavior of 𝑓𝑓V (and consequently 𝑓𝑓) as η → ∞ let 
ℎ(𝑧𝑧) be represented by ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{  for z close to 
0 (z > 0), and for some parameters k and 𝑝𝑝. 
Observe that k must be positive since ℎ(𝑧𝑧) is a 
positive function so that for  𝐴𝐴 < 0 and 0 < 𝑛𝑛 < 2

S
  

we have:  
 
𝑝𝑝 = }0

0T2
,											𝑘𝑘2T

F
D = ~

{({12)
                           (16) 

 

This implies that  𝑝𝑝 < 1 and consequently 𝑘𝑘 > 0 
which is consistent with the fact that ℎ(𝑧𝑧) must be 
a positive function. In fact ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{ in its own 
right is an exact solution to (14) which satisfies 
(15) if ℎV(𝜖𝜖) = 𝑘𝑘𝑝𝑝𝜖𝜖{12 = 𝛼𝛼𝛼𝛼 = 𝛼𝛼𝑓𝑓(0) > 0.  

Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (derivatives of 𝑓𝑓	as 
given above in (12)) and integrating the resulting 
equation, yields:  
 
𝑓𝑓V ≈ (	wS10

0T2
	𝑘𝑘

F
Dx 𝜂𝜂 + 𝐾𝐾	)

DGF
DEC	                             (17) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant (of 
integration). In other words: 
 
𝑓𝑓V → 	c ⋅ 𝜂𝜂

DGF
DEC	 as 𝜂𝜂 → ∞                                   (18) 

 
for 0 < 𝑛𝑛 < 2

S
 and for some constant 𝑐𝑐 > 0, where 

in fact 𝑐𝑐 = wS10
0T2

	𝑘𝑘
F
Dx

DGF
DEC. Observe that 𝑓𝑓V tends to 

zero as 𝜂𝜂 → ∞, while 
 
𝑓𝑓 → 	 01S

S012
c ⋅ 𝜂𝜂

CDEF
DEC + 𝐿𝐿                                     (19) 

 
where 𝐿𝐿	is a constant. Note that 𝑓𝑓	does not tend to 
constant as 𝜂𝜂 → ∞	since the exponent S012

01S
> 0.  

 
Now for 	𝑛𝑛 > 2

S
,  let  ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧 + 𝜅𝜅𝑧𝑧{  for 𝑧𝑧	close 

to 0 (𝑧𝑧 > 0). This yields a value of 𝑝𝑝 = 3 − 2
0
 

(observe that 𝑝𝑝 > 1), and it can be shown that the 
equation 𝜅𝜅𝑝𝑝(𝑝𝑝 − 1)𝜅𝜅

F
D = 𝐴𝐴 relates 𝑘𝑘 > 0 to 𝜅𝜅. 

Observe that this works for positive 𝐴𝐴 as well as 
negative 𝐴𝐴. This is the case where 𝜅𝜅 is positive 

when 𝐴𝐴 is positive, and it is negative when 𝐴𝐴 is 
negative. However, 𝑘𝑘	is positive in both cases. 
Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (12) and integrating 
the resulting equation yields:  
 
𝑓𝑓V ≈ (	w210

0
(𝑘𝑘)

F
Dx 𝜂𝜂 + 𝐾𝐾	)

D
DEF                           (20) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant. Therefore 
we have: 
 
𝑓𝑓V → 	c ⋅ 	𝜂𝜂

D
DEF   as    𝜂𝜂 → ∞,                             (21) 

 
for  2

S
< 𝑛𝑛 < 1 and for some constant 𝑐𝑐 > 0, 

which in turn implies that: 
 
𝑓𝑓 → 012

S012
⋅ 𝑐𝑐 ⋅ 	𝜂𝜂

CDEF
DEF + 𝑓𝑓                                  (22) 

 
so that 𝑓𝑓 tends to a constant 𝑓𝑓   as  𝜂𝜂 → ∞ since 
the exponent on 𝜂𝜂 is negative. On the other hand, 
observe that if 𝑛𝑛 > 1 the first term in (20) is 
negative, and then in the case of even radicals on 
exponents the equation will terminate and cannot 
be extended with infinite 𝜂𝜂, otherwise 𝑓𝑓′ will be 
negative or become unbounded which is a 
contradiction: In fact equation (20) suggests that 
𝑓𝑓′ and 𝑓𝑓′′ reach zero at a finite value of 𝜂𝜂 when 
the expression in parentheses reaches zero. This 
shows the natural and crucial result that for 𝑛𝑛 >
1, 𝑓𝑓′ goes to zero very rapidly and may reach zero 
at a finite 𝜂𝜂 which is consistent with the results 
obtained in Wei & Al-Ashhab (2014) for a similar 
equation. Finally observe that, in this case of 𝑛𝑛 >
1, 𝑓𝑓 tends to a constant as 𝜂𝜂 → ∞ since 𝑓𝑓′ reaches 
zero at finite 𝜂𝜂 as discussed above. 
 
    For 𝑛𝑛 = 1/2, observe that we may assume an 
approximation of the form ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧(ln 𝑧𝑧){	 near 
𝑧𝑧 = 0, where substituting back into (14) yields 

𝑝𝑝 = 2
}
, and 𝑘𝑘 = w~

{
x
F
à = (3𝐴𝐴)

F
à which for negative 

𝐴𝐴 does yield the positive (since 𝑧𝑧 ≈ 0 with 𝑧𝑧 > 0) 
approximate solution ℎ(𝑧𝑧) ≈ (3𝐴𝐴)

F
à𝑧𝑧(ln 𝑧𝑧)

F
à, and 

where it can be concluded that a solution 
satisfying (14-15) exists, but with possibly 
additional conditions on the parameters of the 
problem. This in turn yields an asymptotic 
behavior of the form 𝑓𝑓V → (𝑘𝑘S𝜂𝜂 + 𝐾𝐾)12. 
 

Samer Al-Ashhab 
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0
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S
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0T2
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F
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S
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F
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more general. The (Crocco variable) solution 
ℎ(𝑧𝑧) = wα	𝑓𝑓(0) − AúC

sqq(t)
x 𝑧𝑧  results in the 

following solution to the original problem for 
𝑓𝑓′(𝜂𝜂) and 𝑓𝑓(𝜂𝜂): 

𝑓𝑓V(𝜂𝜂) = ùô
1
𝑛𝑛 − 1ö îα	𝑓𝑓

(0) −
𝑚𝑚ϵS

𝑓𝑓VV(0)ï

2
0
𝜂𝜂 + 𝜖𝜖21

2
0	û

0
012

 

𝑓𝑓(𝜂𝜂) = 𝑓𝑓(0) +	  

𝑛𝑛

ùw1𝑛𝑛 − 1xîα	𝑓𝑓(0) −
𝑚𝑚ϵ2

𝑓𝑓′′(0)
ï

1
𝑛𝑛
𝜂𝜂 + 𝜖𝜖1−

1
𝑛𝑛	û

2𝑛𝑛−1
𝑛𝑛−1

− 𝜖𝜖
2𝑛𝑛−1
𝑛𝑛

(2𝑛𝑛 − 1) îα	𝑓𝑓(0) − 𝑚𝑚ϵ2

𝑓𝑓′′(0)
ï

1
𝑛𝑛

 

 
It can be directly checked that this is a solution to 

(10-11) provided α	𝑓𝑓(0) − AúC

sqq(t)
=

w1sqq(t)x
D

r
, a 

condition that can also be obtained from the 
Crocco variables with ℎ(𝑧𝑧) as given above where: 
ℎ(𝜖𝜖) = wα	𝑓𝑓(0) − AúC

sqq(t)
x 𝜖𝜖 = J−𝑓𝑓VV(0)L0. 

On the other hand, the other (Crocco variable) 
solution ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧{ results in the solution: 
 

𝑓𝑓V(𝜂𝜂) = ô
2 − 𝑛𝑛
𝑛𝑛 + 1

√𝑘𝑘D 	𝜂𝜂 + 𝜖𝜖
01S
0T2	ö

0T2
01S

 
 

𝑓𝑓(𝜂𝜂) =
𝑛𝑛 + 1

(1 − 2𝑛𝑛)√𝑘𝑘D [	ô
2 − 𝑛𝑛
𝑛𝑛 + 1

√𝑘𝑘D 	𝜂𝜂 + 𝜖𝜖
01S
0T2	ö

S012
01S

− 𝜖𝜖
S012
0T2 	] + 	𝑓𝑓(0), 

and where −Jℎ(𝜖𝜖)L
F
D = 𝑓𝑓VV(0) = −	√𝑘𝑘D 	𝜖𝜖w

à
DGFx. 

 
Observe that both solutions satisfy the boundary 
conditions: 𝑓𝑓V(0) = 𝜖𝜖 and 𝑓𝑓V(∞) = 0, and then 
choosing the same 𝑓𝑓(0) = 𝑎𝑎, results in two 
different values for 𝑓𝑓′′(0) namely: 𝑓𝑓VV(0) =
{
F
D(~T{ó)
A({12)

 for the first and 𝑓𝑓VV(0) = (~T{ó)
A({12)

 for the 
second. This establishes non-uniqueness of 
solutions for problem (10-11). 
 
3.2.2. Exact solutions and asymptotic behavior for 
𝐵𝐵 ≠ 0, 𝑛𝑛 = 2

S
 

 

For 𝐵𝐵 ≠ 0, 𝑛𝑛 = 2
S
, assume an asymptotic solution 

of the form ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧(ln 𝑧𝑧){. Substituting back 

into (14) yields 𝑝𝑝 = 2
}
, 𝑘𝑘 = w~Tó

{
x
2/}

= (3(𝐴𝐴 +

𝐵𝐵))2/} which for negative 𝐴𝐴 + 𝐵𝐵 does yield a 
positive solution (𝑘𝑘 < 0, 𝑧𝑧 > 0,	ln 𝑧𝑧 < 0) for 
ℎ(𝑧𝑧). This in turn yields the asymptotic behavior 
𝑓𝑓V → 	 (𝑘𝑘S𝜂𝜂	 + 	𝐾𝐾	)12. In fact, ℎ(𝑧𝑧) = 	𝑘𝑘𝑧𝑧√ln 𝑧𝑧à  is 
an exact solution to (14) if 𝐴𝐴 = −†ó

S
, 𝛼𝛼 =

−3𝑚𝑚, 𝑘𝑘 = √18𝑚𝑚à . It satisfies (15) if 
ã
}
(3(ln 𝜖𝜖)2/} + (ln 𝜖𝜖)1

C
à) = α	𝑓𝑓(0) − AúC

sqq(t)
  and 

where the additional condition 𝑘𝑘𝜖𝜖(ln 𝜖𝜖)2/} =
¢−𝑓𝑓′′(0)  ensures that the resulting (implicit) 
solution: ∫ £o

		oC(§• o)
C
à

sq(_)
r = −81𝑚𝑚S𝜂𝜂 satisfies (10-

11) for 𝜖𝜖 < 1. 
 
3.2.3. Proof of existence and uniqueness for 𝐵𝐵 ≠
0 
 
For 𝐵𝐵 ≠ 0 integrating (14) yields: 
 

ℎV(𝑧𝑧) − ℎV(𝑎𝑎) = −𝑛𝑛𝐵𝐵 î𝑧𝑧Sℎ1
2
0(𝑧𝑧) − 𝑎𝑎Sℎ1

2
0(𝑎𝑎)ï 

																													+	(𝐴𝐴 + 2𝑛𝑛𝐵𝐵) ∫ 𝜇𝜇ℎ1
F
D(𝜇𝜇)𝑑𝑑𝜇𝜇o

ë    (28)  
 
Observe that −𝑛𝑛𝐵𝐵 = −𝑚𝑚 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 = −𝛼𝛼. 
Equation (28) can be used as was done with 
equation (23), and with similar arguments to 
establish uniqueness of solutions that converge to 
(0,0) for 𝑛𝑛 > 1/2 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 < 0: 
 
Suppose that ℎ2 is a solution through the origin. 
Take another solution ℎS to (14) with initial 
conditions ℎS(𝑧𝑧) = ℎ2(𝑧𝑧) but a larger ℎ′S(𝑧𝑧), i.e., 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧). The two solutions may not 
intersect at any point 𝑎𝑎 < 𝑧𝑧, since if they did we 
should have ℎ′2(𝑎𝑎) > ℎ′S(𝑎𝑎) (the condition 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧) implies that ℎS < ℎ2 within the 
interval (𝑎𝑎, 𝑧𝑧) so that geometrically ℎS is under 
ℎ2). Now, the first term on the right hand side of 
(28) would be the same for ℎ2 and ℎS, and 
therefore we have: 
 
ℎSV (𝑎𝑎) − ℎ2V (𝑎𝑎) = ℎSV (𝑧𝑧) − ℎ2V (𝑧𝑧) 

    −(𝐴𝐴 + 2𝑛𝑛𝐵𝐵)∫

	

𝜇𝜇 ¶ℎS
1FD(𝜇𝜇) − ℎ2

1FD(𝜇𝜇)ß 𝑑𝑑𝜇𝜇
o
ë    (29) 

 
which implies that ℎ′S(𝑎𝑎) > ℎ′2(𝑎𝑎) since the 
right-hand side is positive for 𝑛𝑛 > 1/2  (ℎS(𝜇𝜇) <
ℎ2(𝜇𝜇) within the interval (𝑎𝑎, 𝑧𝑧)  and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 <
0). This is a contradiction, so therefore we have 
the following crucial uniqueness result stated in 
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3.2.2. Exact solutions and asymptotic behavior for 
𝐵𝐵 ≠ 0, 𝑛𝑛 = 2

S
 

 

For 𝐵𝐵 ≠ 0, 𝑛𝑛 = 2
S
, assume an asymptotic solution 

of the form ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧(ln 𝑧𝑧){. Substituting back 

into (14) yields 𝑝𝑝 = 2
}
, 𝑘𝑘 = w~Tó

{
x
2/}

= (3(𝐴𝐴 +

𝐵𝐵))2/} which for negative 𝐴𝐴 + 𝐵𝐵 does yield a 
positive solution (𝑘𝑘 < 0, 𝑧𝑧 > 0,	ln 𝑧𝑧 < 0) for 
ℎ(𝑧𝑧). This in turn yields the asymptotic behavior 
𝑓𝑓V → 	 (𝑘𝑘S𝜂𝜂	 + 	𝐾𝐾	)12. In fact, ℎ(𝑧𝑧) = 	𝑘𝑘𝑧𝑧√ln 𝑧𝑧à  is 
an exact solution to (14) if 𝐴𝐴 = −†ó

S
, 𝛼𝛼 =

−3𝑚𝑚, 𝑘𝑘 = √18𝑚𝑚à . It satisfies (15) if 
ã
}
(3(ln 𝜖𝜖)2/} + (ln 𝜖𝜖)1

C
à) = α	𝑓𝑓(0) − AúC

sqq(t)
  and 

where the additional condition 𝑘𝑘𝜖𝜖(ln 𝜖𝜖)2/} =
¢−𝑓𝑓′′(0)  ensures that the resulting (implicit) 
solution: ∫ £o

		oC(§• o)
C
à

sq(_)
r = −81𝑚𝑚S𝜂𝜂 satisfies (10-

11) for 𝜖𝜖 < 1. 
 
3.2.3. Proof of existence and uniqueness for 𝐵𝐵 ≠
0 
 
For 𝐵𝐵 ≠ 0 integrating (14) yields: 
 

ℎV(𝑧𝑧) − ℎV(𝑎𝑎) = −𝑛𝑛𝐵𝐵 î𝑧𝑧Sℎ1
2
0(𝑧𝑧) − 𝑎𝑎Sℎ1

2
0(𝑎𝑎)ï 

																													+	(𝐴𝐴 + 2𝑛𝑛𝐵𝐵) ∫ 𝜇𝜇ℎ1
F
D(𝜇𝜇)𝑑𝑑𝜇𝜇o

ë    (28)  
 
Observe that −𝑛𝑛𝐵𝐵 = −𝑚𝑚 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 = −𝛼𝛼. 
Equation (28) can be used as was done with 
equation (23), and with similar arguments to 
establish uniqueness of solutions that converge to 
(0,0) for 𝑛𝑛 > 1/2 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 < 0: 
 
Suppose that ℎ2 is a solution through the origin. 
Take another solution ℎS to (14) with initial 
conditions ℎS(𝑧𝑧) = ℎ2(𝑧𝑧) but a larger ℎ′S(𝑧𝑧), i.e., 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧). The two solutions may not 
intersect at any point 𝑎𝑎 < 𝑧𝑧, since if they did we 
should have ℎ′2(𝑎𝑎) > ℎ′S(𝑎𝑎) (the condition 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧) implies that ℎS < ℎ2 within the 
interval (𝑎𝑎, 𝑧𝑧) so that geometrically ℎS is under 
ℎ2). Now, the first term on the right hand side of 
(28) would be the same for ℎ2 and ℎS, and 
therefore we have: 
 
ℎSV (𝑎𝑎) − ℎ2V (𝑎𝑎) = ℎSV (𝑧𝑧) − ℎ2V (𝑧𝑧) 

    −(𝐴𝐴 + 2𝑛𝑛𝐵𝐵)∫

	

𝜇𝜇 ¶ℎS
1FD(𝜇𝜇) − ℎ2

1FD(𝜇𝜇)ß 𝑑𝑑𝜇𝜇
o
ë    (29) 

 
which implies that ℎ′S(𝑎𝑎) > ℎ′2(𝑎𝑎) since the 
right-hand side is positive for 𝑛𝑛 > 1/2  (ℎS(𝜇𝜇) <
ℎ2(𝜇𝜇) within the interval (𝑎𝑎, 𝑧𝑧)  and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 <
0). This is a contradiction, so therefore we have 
the following crucial uniqueness result stated in 
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more general. The (Crocco variable) solution 
ℎ(𝑧𝑧) = wα	𝑓𝑓(0) − AúC

sqq(t)
x 𝑧𝑧  results in the 

following solution to the original problem for 
𝑓𝑓′(𝜂𝜂) and 𝑓𝑓(𝜂𝜂): 

𝑓𝑓V(𝜂𝜂) = ùô
1
𝑛𝑛 − 1ö îα	𝑓𝑓

(0) −
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ï
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It can be directly checked that this is a solution to 

(10-11) provided α	𝑓𝑓(0) − AúC

sqq(t)
=

w1sqq(t)x
D

r
, a 

condition that can also be obtained from the 
Crocco variables with ℎ(𝑧𝑧) as given above where: 
ℎ(𝜖𝜖) = wα	𝑓𝑓(0) − AúC

sqq(t)
x 𝜖𝜖 = J−𝑓𝑓VV(0)L0. 

On the other hand, the other (Crocco variable) 
solution ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧{ results in the solution: 
 

𝑓𝑓V(𝜂𝜂) = ô
2 − 𝑛𝑛
𝑛𝑛 + 1

√𝑘𝑘D 	𝜂𝜂 + 𝜖𝜖
01S
0T2	ö

0T2
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𝑛𝑛 + 1

(1 − 2𝑛𝑛)√𝑘𝑘D [	ô
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01S
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S012
0T2 	] + 	𝑓𝑓(0), 

and where −Jℎ(𝜖𝜖)L
F
D = 𝑓𝑓VV(0) = −	√𝑘𝑘D 	𝜖𝜖w

à
DGFx. 

 
Observe that both solutions satisfy the boundary 
conditions: 𝑓𝑓V(0) = 𝜖𝜖 and 𝑓𝑓V(∞) = 0, and then 
choosing the same 𝑓𝑓(0) = 𝑎𝑎, results in two 
different values for 𝑓𝑓′′(0) namely: 𝑓𝑓VV(0) =
{
F
D(~T{ó)
A({12)

 for the first and 𝑓𝑓VV(0) = (~T{ó)
A({12)

 for the 
second. This establishes non-uniqueness of 
solutions for problem (10-11). 
 
3.2.2. Exact solutions and asymptotic behavior for 
𝐵𝐵 ≠ 0, 𝑛𝑛 = 2
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For 𝐵𝐵 ≠ 0, 𝑛𝑛 = 2
S
, assume an asymptotic solution 

of the form ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧(ln 𝑧𝑧){. Substituting back 

into (14) yields 𝑝𝑝 = 2
}
, 𝑘𝑘 = w~Tó

{
x
2/}

= (3(𝐴𝐴 +

𝐵𝐵))2/} which for negative 𝐴𝐴 + 𝐵𝐵 does yield a 
positive solution (𝑘𝑘 < 0, 𝑧𝑧 > 0,	ln 𝑧𝑧 < 0) for 
ℎ(𝑧𝑧). This in turn yields the asymptotic behavior 
𝑓𝑓V → 	 (𝑘𝑘S𝜂𝜂	 + 	𝐾𝐾	)12. In fact, ℎ(𝑧𝑧) = 	𝑘𝑘𝑧𝑧√ln 𝑧𝑧à  is 
an exact solution to (14) if 𝐴𝐴 = −†ó

S
, 𝛼𝛼 =

−3𝑚𝑚, 𝑘𝑘 = √18𝑚𝑚à . It satisfies (15) if 
ã
}
(3(ln 𝜖𝜖)2/} + (ln 𝜖𝜖)1

C
à) = α	𝑓𝑓(0) − AúC

sqq(t)
  and 

where the additional condition 𝑘𝑘𝜖𝜖(ln 𝜖𝜖)2/} =
¢−𝑓𝑓′′(0)  ensures that the resulting (implicit) 
solution: ∫ £o

		oC(§• o)
C
à

sq(_)
r = −81𝑚𝑚S𝜂𝜂 satisfies (10-

11) for 𝜖𝜖 < 1. 
 
3.2.3. Proof of existence and uniqueness for 𝐵𝐵 ≠
0 
 
For 𝐵𝐵 ≠ 0 integrating (14) yields: 
 

ℎV(𝑧𝑧) − ℎV(𝑎𝑎) = −𝑛𝑛𝐵𝐵 î𝑧𝑧Sℎ1
2
0(𝑧𝑧) − 𝑎𝑎Sℎ1

2
0(𝑎𝑎)ï 

																													+	(𝐴𝐴 + 2𝑛𝑛𝐵𝐵) ∫ 𝜇𝜇ℎ1
F
D(𝜇𝜇)𝑑𝑑𝜇𝜇o

ë    (28)  
 
Observe that −𝑛𝑛𝐵𝐵 = −𝑚𝑚 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 = −𝛼𝛼. 
Equation (28) can be used as was done with 
equation (23), and with similar arguments to 
establish uniqueness of solutions that converge to 
(0,0) for 𝑛𝑛 > 1/2 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 < 0: 
 
Suppose that ℎ2 is a solution through the origin. 
Take another solution ℎS to (14) with initial 
conditions ℎS(𝑧𝑧) = ℎ2(𝑧𝑧) but a larger ℎ′S(𝑧𝑧), i.e., 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧). The two solutions may not 
intersect at any point 𝑎𝑎 < 𝑧𝑧, since if they did we 
should have ℎ′2(𝑎𝑎) > ℎ′S(𝑎𝑎) (the condition 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧) implies that ℎS < ℎ2 within the 
interval (𝑎𝑎, 𝑧𝑧) so that geometrically ℎS is under 
ℎ2). Now, the first term on the right hand side of 
(28) would be the same for ℎ2 and ℎS, and 
therefore we have: 
 
ℎSV (𝑎𝑎) − ℎ2V (𝑎𝑎) = ℎSV (𝑧𝑧) − ℎ2V (𝑧𝑧) 

    −(𝐴𝐴 + 2𝑛𝑛𝐵𝐵)∫

	

𝜇𝜇 ¶ℎS
1FD(𝜇𝜇) − ℎ2

1FD(𝜇𝜇)ß 𝑑𝑑𝜇𝜇
o
ë    (29) 

 
which implies that ℎ′S(𝑎𝑎) > ℎ′2(𝑎𝑎) since the 
right-hand side is positive for 𝑛𝑛 > 1/2  (ℎS(𝜇𝜇) <
ℎ2(𝜇𝜇) within the interval (𝑎𝑎, 𝑧𝑧)  and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 <
0). This is a contradiction, so therefore we have 
the following crucial uniqueness result stated in 

It  can  be  directly checked that this is a solution to (10-
11) provided                                 a  condition   that   can 
also  be obtained from the Crocco variables with h(z) as 
given above where:
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It can be directly checked that this is a solution to 

(10-11) provided α	𝑓𝑓(0) − AúC
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=
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Observe that both solutions satisfy the boundary 
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A({12)

 for the first and 𝑓𝑓VV(0) = (~T{ó)
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 for the 
second. This establishes non-uniqueness of 
solutions for problem (10-11). 
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= (3(𝐴𝐴 +

𝐵𝐵))2/} which for negative 𝐴𝐴 + 𝐵𝐵 does yield a 
positive solution (𝑘𝑘 < 0, 𝑧𝑧 > 0,	ln 𝑧𝑧 < 0) for 
ℎ(𝑧𝑧). This in turn yields the asymptotic behavior 
𝑓𝑓V → 	 (𝑘𝑘S𝜂𝜂	 + 	𝐾𝐾	)12. In fact, ℎ(𝑧𝑧) = 	𝑘𝑘𝑧𝑧√ln 𝑧𝑧à  is 
an exact solution to (14) if 𝐴𝐴 = −†ó

S
, 𝛼𝛼 =

−3𝑚𝑚, 𝑘𝑘 = √18𝑚𝑚à . It satisfies (15) if 
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where the additional condition 𝑘𝑘𝜖𝜖(ln 𝜖𝜖)2/} =
¢−𝑓𝑓′′(0)  ensures that the resulting (implicit) 
solution: ∫ £o

		oC(§• o)
C
à

sq(_)
r = −81𝑚𝑚S𝜂𝜂 satisfies (10-

11) for 𝜖𝜖 < 1. 
 
3.2.3. Proof of existence and uniqueness for 𝐵𝐵 ≠
0 
 
For 𝐵𝐵 ≠ 0 integrating (14) yields: 
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Observe that −𝑛𝑛𝐵𝐵 = −𝑚𝑚 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 = −𝛼𝛼. 
Equation (28) can be used as was done with 
equation (23), and with similar arguments to 
establish uniqueness of solutions that converge to 
(0,0) for 𝑛𝑛 > 1/2 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 < 0: 
 
Suppose that ℎ2 is a solution through the origin. 
Take another solution ℎS to (14) with initial 
conditions ℎS(𝑧𝑧) = ℎ2(𝑧𝑧) but a larger ℎ′S(𝑧𝑧), i.e., 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧). The two solutions may not 
intersect at any point 𝑎𝑎 < 𝑧𝑧, since if they did we 
should have ℎ′2(𝑎𝑎) > ℎ′S(𝑎𝑎) (the condition 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧) implies that ℎS < ℎ2 within the 
interval (𝑎𝑎, 𝑧𝑧) so that geometrically ℎS is under 
ℎ2). Now, the first term on the right hand side of 
(28) would be the same for ℎ2 and ℎS, and 
therefore we have: 
 
ℎSV (𝑎𝑎) − ℎ2V (𝑎𝑎) = ℎSV (𝑧𝑧) − ℎ2V (𝑧𝑧) 
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which implies that ℎ′S(𝑎𝑎) > ℎ′2(𝑎𝑎) since the 
right-hand side is positive for 𝑛𝑛 > 1/2  (ℎS(𝜇𝜇) <
ℎ2(𝜇𝜇) within the interval (𝑎𝑎, 𝑧𝑧)  and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 <
0). This is a contradiction, so therefore we have 
the following crucial uniqueness result stated in 
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It can be directly checked that this is a solution to 

(10-11) provided α	𝑓𝑓(0) − AúC

sqq(t)
=

w1sqq(t)x
D

r
, a 

condition that can also be obtained from the 
Crocco variables with ℎ(𝑧𝑧) as given above where: 
ℎ(𝜖𝜖) = wα	𝑓𝑓(0) − AúC

sqq(t)
x 𝜖𝜖 = J−𝑓𝑓VV(0)L0. 

On the other hand, the other (Crocco variable) 
solution ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧{ results in the solution: 
 

𝑓𝑓V(𝜂𝜂) = ô
2 − 𝑛𝑛
𝑛𝑛 + 1

√𝑘𝑘D 	𝜂𝜂 + 𝜖𝜖
01S
0T2	ö

0T2
01S

 
 

𝑓𝑓(𝜂𝜂) =
𝑛𝑛 + 1

(1 − 2𝑛𝑛)√𝑘𝑘D [	ô
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𝑛𝑛 + 1

√𝑘𝑘D 	𝜂𝜂 + 𝜖𝜖
01S
0T2	ö

S012
01S

− 𝜖𝜖
S012
0T2 	] + 	𝑓𝑓(0), 

and where −Jℎ(𝜖𝜖)L
F
D = 𝑓𝑓VV(0) = −	√𝑘𝑘D 	𝜖𝜖w

à
DGFx. 

 
Observe that both solutions satisfy the boundary 
conditions: 𝑓𝑓V(0) = 𝜖𝜖 and 𝑓𝑓V(∞) = 0, and then 
choosing the same 𝑓𝑓(0) = 𝑎𝑎, results in two 
different values for 𝑓𝑓′′(0) namely: 𝑓𝑓VV(0) =
{
F
D(~T{ó)
A({12)

 for the first and 𝑓𝑓VV(0) = (~T{ó)
A({12)

 for the 
second. This establishes non-uniqueness of 
solutions for problem (10-11). 
 
3.2.2. Exact solutions and asymptotic behavior for 
𝐵𝐵 ≠ 0, 𝑛𝑛 = 2

S
 

 

For 𝐵𝐵 ≠ 0, 𝑛𝑛 = 2
S
, assume an asymptotic solution 

of the form ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧(ln 𝑧𝑧){. Substituting back 

into (14) yields 𝑝𝑝 = 2
}
, 𝑘𝑘 = w~Tó

{
x
2/}

= (3(𝐴𝐴 +

𝐵𝐵))2/} which for negative 𝐴𝐴 + 𝐵𝐵 does yield a 
positive solution (𝑘𝑘 < 0, 𝑧𝑧 > 0,	ln 𝑧𝑧 < 0) for 
ℎ(𝑧𝑧). This in turn yields the asymptotic behavior 
𝑓𝑓V → 	 (𝑘𝑘S𝜂𝜂	 + 	𝐾𝐾	)12. In fact, ℎ(𝑧𝑧) = 	𝑘𝑘𝑧𝑧√ln 𝑧𝑧à  is 
an exact solution to (14) if 𝐴𝐴 = −†ó

S
, 𝛼𝛼 =

−3𝑚𝑚, 𝑘𝑘 = √18𝑚𝑚à . It satisfies (15) if 
ã
}
(3(ln 𝜖𝜖)2/} + (ln 𝜖𝜖)1

C
à) = α	𝑓𝑓(0) − AúC

sqq(t)
  and 

where the additional condition 𝑘𝑘𝜖𝜖(ln 𝜖𝜖)2/} =
¢−𝑓𝑓′′(0)  ensures that the resulting (implicit) 
solution: ∫ £o

		oC(§• o)
C
à

sq(_)
r = −81𝑚𝑚S𝜂𝜂 satisfies (10-

11) for 𝜖𝜖 < 1. 
 
3.2.3. Proof of existence and uniqueness for 𝐵𝐵 ≠
0 
 
For 𝐵𝐵 ≠ 0 integrating (14) yields: 
 

ℎV(𝑧𝑧) − ℎV(𝑎𝑎) = −𝑛𝑛𝐵𝐵 î𝑧𝑧Sℎ1
2
0(𝑧𝑧) − 𝑎𝑎Sℎ1

2
0(𝑎𝑎)ï 

																													+	(𝐴𝐴 + 2𝑛𝑛𝐵𝐵) ∫ 𝜇𝜇ℎ1
F
D(𝜇𝜇)𝑑𝑑𝜇𝜇o

ë    (28)  
 
Observe that −𝑛𝑛𝐵𝐵 = −𝑚𝑚 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 = −𝛼𝛼. 
Equation (28) can be used as was done with 
equation (23), and with similar arguments to 
establish uniqueness of solutions that converge to 
(0,0) for 𝑛𝑛 > 1/2 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 < 0: 
 
Suppose that ℎ2 is a solution through the origin. 
Take another solution ℎS to (14) with initial 
conditions ℎS(𝑧𝑧) = ℎ2(𝑧𝑧) but a larger ℎ′S(𝑧𝑧), i.e., 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧). The two solutions may not 
intersect at any point 𝑎𝑎 < 𝑧𝑧, since if they did we 
should have ℎ′2(𝑎𝑎) > ℎ′S(𝑎𝑎) (the condition 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧) implies that ℎS < ℎ2 within the 
interval (𝑎𝑎, 𝑧𝑧) so that geometrically ℎS is under 
ℎ2). Now, the first term on the right hand side of 
(28) would be the same for ℎ2 and ℎS, and 
therefore we have: 
 
ℎSV (𝑎𝑎) − ℎ2V (𝑎𝑎) = ℎSV (𝑧𝑧) − ℎ2V (𝑧𝑧) 

    −(𝐴𝐴 + 2𝑛𝑛𝐵𝐵)∫

	

𝜇𝜇 ¶ℎS
1FD(𝜇𝜇) − ℎ2

1FD(𝜇𝜇)ß 𝑑𝑑𝜇𝜇
o
ë    (29) 

 
which implies that ℎ′S(𝑎𝑎) > ℎ′2(𝑎𝑎) since the 
right-hand side is positive for 𝑛𝑛 > 1/2  (ℎS(𝜇𝜇) <
ℎ2(𝜇𝜇) within the interval (𝑎𝑎, 𝑧𝑧)  and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 <
0). This is a contradiction, so therefore we have 
the following crucial uniqueness result stated in 

On the other hand, the other (Crocco variable) solution 
h(z)=kzp results in the solution:
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Observe that −𝑛𝑛𝐵𝐵 = −𝑚𝑚 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 = −𝛼𝛼. 
Equation (28) can be used as was done with 
equation (23), and with similar arguments to 
establish uniqueness of solutions that converge to 
(0,0) for 𝑛𝑛 > 1/2 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 < 0: 
 
Suppose that ℎ2 is a solution through the origin. 
Take another solution ℎS to (14) with initial 
conditions ℎS(𝑧𝑧) = ℎ2(𝑧𝑧) but a larger ℎ′S(𝑧𝑧), i.e., 
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intersect at any point 𝑎𝑎 < 𝑧𝑧, since if they did we 
should have ℎ′2(𝑎𝑎) > ℎ′S(𝑎𝑎) (the condition 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧) implies that ℎS < ℎ2 within the 
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therefore we have: 
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which implies that ℎ′S(𝑎𝑎) > ℎ′2(𝑎𝑎) since the 
right-hand side is positive for 𝑛𝑛 > 1/2  (ℎS(𝜇𝜇) <
ℎ2(𝜇𝜇) within the interval (𝑎𝑎, 𝑧𝑧)  and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 <
0). This is a contradiction, so therefore we have 
the following crucial uniqueness result stated in 

Observe that both solutions satisfy the boundary 
conditions: f '(0)= ϵ and f '(∞)=0, and then choosing the 
same f (0)=a, results in two different values for f ''(0) 
namely:                         for the first and                       for 
the second. This establishes non-uniqueness of solutions 
for problem (10-11).   

3.2.2. Exact solutions and asymptotic behavior for B ≠ 0,n =
For B≠0,n =  , assume an asymptotic solution of the 
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solution: ∫ £o

		oC(§• o)
C
à

sq(_)
r = −81𝑚𝑚S𝜂𝜂 satisfies (10-

11) for 𝜖𝜖 < 1. 
 
3.2.3. Proof of existence and uniqueness for 𝐵𝐵 ≠
0 
 
For 𝐵𝐵 ≠ 0 integrating (14) yields: 
 

ℎV(𝑧𝑧) − ℎV(𝑎𝑎) = −𝑛𝑛𝐵𝐵 î𝑧𝑧Sℎ1
2
0(𝑧𝑧) − 𝑎𝑎Sℎ1

2
0(𝑎𝑎)ï 

																													+	(𝐴𝐴 + 2𝑛𝑛𝐵𝐵) ∫ 𝜇𝜇ℎ1
F
D(𝜇𝜇)𝑑𝑑𝜇𝜇o

ë    (28)  
 
Observe that −𝑛𝑛𝐵𝐵 = −𝑚𝑚 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 = −𝛼𝛼. 
Equation (28) can be used as was done with 
equation (23), and with similar arguments to 
establish uniqueness of solutions that converge to 
(0,0) for 𝑛𝑛 > 1/2 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 < 0: 
 
Suppose that ℎ2 is a solution through the origin. 
Take another solution ℎS to (14) with initial 
conditions ℎS(𝑧𝑧) = ℎ2(𝑧𝑧) but a larger ℎ′S(𝑧𝑧), i.e., 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧). The two solutions may not 
intersect at any point 𝑎𝑎 < 𝑧𝑧, since if they did we 
should have ℎ′2(𝑎𝑎) > ℎ′S(𝑎𝑎) (the condition 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧) implies that ℎS < ℎ2 within the 
interval (𝑎𝑎, 𝑧𝑧) so that geometrically ℎS is under 
ℎ2). Now, the first term on the right hand side of 
(28) would be the same for ℎ2 and ℎS, and 
therefore we have: 
 
ℎSV (𝑎𝑎) − ℎ2V (𝑎𝑎) = ℎSV (𝑧𝑧) − ℎ2V (𝑧𝑧) 

    −(𝐴𝐴 + 2𝑛𝑛𝐵𝐵)∫

	

𝜇𝜇 ¶ℎS
1FD(𝜇𝜇) − ℎ2

1FD(𝜇𝜇)ß 𝑑𝑑𝜇𝜇
o
ë    (29) 

 
which implies that ℎ′S(𝑎𝑎) > ℎ′2(𝑎𝑎) since the 
right-hand side is positive for 𝑛𝑛 > 1/2  (ℎS(𝜇𝜇) <
ℎ2(𝜇𝜇) within the interval (𝑎𝑎, 𝑧𝑧)  and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 <
0). This is a contradiction, so therefore we have 
the following crucial uniqueness result stated in 

Asymptotic Behavior and Existence of Similarity Solutions for a Boundary Layer Flow Problem 
 
 
more general. The (Crocco variable) solution 
ℎ(𝑧𝑧) = wα	𝑓𝑓(0) − AúC

sqq(t)
x 𝑧𝑧  results in the 

following solution to the original problem for 
𝑓𝑓′(𝜂𝜂) and 𝑓𝑓(𝜂𝜂): 

𝑓𝑓V(𝜂𝜂) = ùô
1
𝑛𝑛 − 1ö îα	𝑓𝑓

(0) −
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It can be directly checked that this is a solution to 

(10-11) provided α	𝑓𝑓(0) − AúC

sqq(t)
=

w1sqq(t)x
D

r
, a 

condition that can also be obtained from the 
Crocco variables with ℎ(𝑧𝑧) as given above where: 
ℎ(𝜖𝜖) = wα	𝑓𝑓(0) − AúC

sqq(t)
x 𝜖𝜖 = J−𝑓𝑓VV(0)L0. 

On the other hand, the other (Crocco variable) 
solution ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧{ results in the solution: 
 

𝑓𝑓V(𝜂𝜂) = ô
2 − 𝑛𝑛
𝑛𝑛 + 1

√𝑘𝑘D 	𝜂𝜂 + 𝜖𝜖
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and where −Jℎ(𝜖𝜖)L
F
D = 𝑓𝑓VV(0) = −	√𝑘𝑘D 	𝜖𝜖w

à
DGFx. 

 
Observe that both solutions satisfy the boundary 
conditions: 𝑓𝑓V(0) = 𝜖𝜖 and 𝑓𝑓V(∞) = 0, and then 
choosing the same 𝑓𝑓(0) = 𝑎𝑎, results in two 
different values for 𝑓𝑓′′(0) namely: 𝑓𝑓VV(0) =
{
F
D(~T{ó)
A({12)

 for the first and 𝑓𝑓VV(0) = (~T{ó)
A({12)

 for the 
second. This establishes non-uniqueness of 
solutions for problem (10-11). 
 
3.2.2. Exact solutions and asymptotic behavior for 
𝐵𝐵 ≠ 0, 𝑛𝑛 = 2
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For 𝐵𝐵 ≠ 0, 𝑛𝑛 = 2
S
, assume an asymptotic solution 

of the form ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧(ln 𝑧𝑧){. Substituting back 

into (14) yields 𝑝𝑝 = 2
}
, 𝑘𝑘 = w~Tó
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2/}
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𝐵𝐵))2/} which for negative 𝐴𝐴 + 𝐵𝐵 does yield a 
positive solution (𝑘𝑘 < 0, 𝑧𝑧 > 0,	ln 𝑧𝑧 < 0) for 
ℎ(𝑧𝑧). This in turn yields the asymptotic behavior 
𝑓𝑓V → 	 (𝑘𝑘S𝜂𝜂	 + 	𝐾𝐾	)12. In fact, ℎ(𝑧𝑧) = 	𝑘𝑘𝑧𝑧√ln 𝑧𝑧à  is 
an exact solution to (14) if 𝐴𝐴 = −†ó

S
, 𝛼𝛼 =

−3𝑚𝑚, 𝑘𝑘 = √18𝑚𝑚à . It satisfies (15) if 
ã
}
(3(ln 𝜖𝜖)2/} + (ln 𝜖𝜖)1

C
à) = α	𝑓𝑓(0) − AúC

sqq(t)
  and 
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¢−𝑓𝑓′′(0)  ensures that the resulting (implicit) 
solution: ∫ £o
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r = −81𝑚𝑚S𝜂𝜂 satisfies (10-

11) for 𝜖𝜖 < 1. 
 
3.2.3. Proof of existence and uniqueness for 𝐵𝐵 ≠
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For 𝐵𝐵 ≠ 0 integrating (14) yields: 
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F
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Observe that −𝑛𝑛𝐵𝐵 = −𝑚𝑚 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 = −𝛼𝛼. 
Equation (28) can be used as was done with 
equation (23), and with similar arguments to 
establish uniqueness of solutions that converge to 
(0,0) for 𝑛𝑛 > 1/2 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 < 0: 
 
Suppose that ℎ2 is a solution through the origin. 
Take another solution ℎS to (14) with initial 
conditions ℎS(𝑧𝑧) = ℎ2(𝑧𝑧) but a larger ℎ′S(𝑧𝑧), i.e., 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧). The two solutions may not 
intersect at any point 𝑎𝑎 < 𝑧𝑧, since if they did we 
should have ℎ′2(𝑎𝑎) > ℎ′S(𝑎𝑎) (the condition 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧) implies that ℎS < ℎ2 within the 
interval (𝑎𝑎, 𝑧𝑧) so that geometrically ℎS is under 
ℎ2). Now, the first term on the right hand side of 
(28) would be the same for ℎ2 and ℎS, and 
therefore we have: 
 
ℎSV (𝑎𝑎) − ℎ2V (𝑎𝑎) = ℎSV (𝑧𝑧) − ℎ2V (𝑧𝑧) 
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which implies that ℎ′S(𝑎𝑎) > ℎ′2(𝑎𝑎) since the 
right-hand side is positive for 𝑛𝑛 > 1/2  (ℎS(𝜇𝜇) <
ℎ2(𝜇𝜇) within the interval (𝑎𝑎, 𝑧𝑧)  and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 <
0). This is a contradiction, so therefore we have 
the following crucial uniqueness result stated in 
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an exact solution to (14) if 𝐴𝐴 = −†ó
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¢−𝑓𝑓′′(0)  ensures that the resulting (implicit) 
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r = −81𝑚𝑚S𝜂𝜂 satisfies (10-
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3.2.3. Proof of existence and uniqueness for 𝐵𝐵 ≠
0 
 
For 𝐵𝐵 ≠ 0 integrating (14) yields: 
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Observe that −𝑛𝑛𝐵𝐵 = −𝑚𝑚 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 = −𝛼𝛼. 
Equation (28) can be used as was done with 
equation (23), and with similar arguments to 
establish uniqueness of solutions that converge to 
(0,0) for 𝑛𝑛 > 1/2 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 < 0: 
 
Suppose that ℎ2 is a solution through the origin. 
Take another solution ℎS to (14) with initial 
conditions ℎS(𝑧𝑧) = ℎ2(𝑧𝑧) but a larger ℎ′S(𝑧𝑧), i.e., 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧). The two solutions may not 
intersect at any point 𝑎𝑎 < 𝑧𝑧, since if they did we 
should have ℎ′2(𝑎𝑎) > ℎ′S(𝑎𝑎) (the condition 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧) implies that ℎS < ℎ2 within the 
interval (𝑎𝑎, 𝑧𝑧) so that geometrically ℎS is under 
ℎ2). Now, the first term on the right hand side of 
(28) would be the same for ℎ2 and ℎS, and 
therefore we have: 
 
ℎSV (𝑎𝑎) − ℎ2V (𝑎𝑎) = ℎSV (𝑧𝑧) − ℎ2V (𝑧𝑧) 

    −(𝐴𝐴 + 2𝑛𝑛𝐵𝐵)∫
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which implies that ℎ′S(𝑎𝑎) > ℎ′2(𝑎𝑎) since the 
right-hand side is positive for 𝑛𝑛 > 1/2  (ℎS(𝜇𝜇) <
ℎ2(𝜇𝜇) within the interval (𝑎𝑎, 𝑧𝑧)  and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 <
0). This is a contradiction, so therefore we have 
the following crucial uniqueness result stated in 

Samer Al-Ashhab 
 

 

We first consider the case where 𝐵𝐵 = 0. This 
happens when 𝑚𝑚 = 0 in our derivation process 
since 𝐵𝐵 = −A

0
.  To discuss the asymptotic 

behavior of 𝑓𝑓V (and consequently 𝑓𝑓) as η → ∞ let 
ℎ(𝑧𝑧) be represented by ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{  for z close to 
0 (z > 0), and for some parameters k and 𝑝𝑝. 
Observe that k must be positive since ℎ(𝑧𝑧) is a 
positive function so that for  𝐴𝐴 < 0 and 0 < 𝑛𝑛 < 2

S
  

we have:  
 
𝑝𝑝 = }0

0T2
,											𝑘𝑘2T

F
D = ~

{({12)
                           (16) 

 

This implies that  𝑝𝑝 < 1 and consequently 𝑘𝑘 > 0 
which is consistent with the fact that ℎ(𝑧𝑧) must be 
a positive function. In fact ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{ in its own 
right is an exact solution to (14) which satisfies 
(15) if ℎV(𝜖𝜖) = 𝑘𝑘𝑝𝑝𝜖𝜖{12 = 𝛼𝛼𝛼𝛼 = 𝛼𝛼𝑓𝑓(0) > 0.  

Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (derivatives of 𝑓𝑓	as 
given above in (12)) and integrating the resulting 
equation, yields:  
 
𝑓𝑓V ≈ (	wS10

0T2
	𝑘𝑘

F
Dx 𝜂𝜂 + 𝐾𝐾	)

DGF
DEC	                             (17) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant (of 
integration). In other words: 
 
𝑓𝑓V → 	c ⋅ 𝜂𝜂

DGF
DEC	 as 𝜂𝜂 → ∞                                   (18) 

 
for 0 < 𝑛𝑛 < 2

S
 and for some constant 𝑐𝑐 > 0, where 

in fact 𝑐𝑐 = wS10
0T2

	𝑘𝑘
F
Dx

DGF
DEC. Observe that 𝑓𝑓V tends to 

zero as 𝜂𝜂 → ∞, while 
 
𝑓𝑓 → 	 01S

S012
c ⋅ 𝜂𝜂

CDEF
DEC + 𝐿𝐿                                     (19) 

 
where 𝐿𝐿	is a constant. Note that 𝑓𝑓	does not tend to 
constant as 𝜂𝜂 → ∞	since the exponent S012

01S
> 0.  

 
Now for 	𝑛𝑛 > 2

S
,  let  ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧 + 𝜅𝜅𝑧𝑧{  for 𝑧𝑧	close 

to 0 (𝑧𝑧 > 0). This yields a value of 𝑝𝑝 = 3 − 2
0
 

(observe that 𝑝𝑝 > 1), and it can be shown that the 
equation 𝜅𝜅𝑝𝑝(𝑝𝑝 − 1)𝜅𝜅

F
D = 𝐴𝐴 relates 𝑘𝑘 > 0 to 𝜅𝜅. 

Observe that this works for positive 𝐴𝐴 as well as 
negative 𝐴𝐴. This is the case where 𝜅𝜅 is positive 

when 𝐴𝐴 is positive, and it is negative when 𝐴𝐴 is 
negative. However, 𝑘𝑘	is positive in both cases. 
Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (12) and integrating 
the resulting equation yields:  
 
𝑓𝑓V ≈ (	w210

0
(𝑘𝑘)

F
Dx 𝜂𝜂 + 𝐾𝐾	)

D
DEF                           (20) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant. Therefore 
we have: 
 
𝑓𝑓V → 	c ⋅ 	𝜂𝜂

D
DEF   as    𝜂𝜂 → ∞,                             (21) 

 
for  2

S
< 𝑛𝑛 < 1 and for some constant 𝑐𝑐 > 0, 

which in turn implies that: 
 
𝑓𝑓 → 012

S012
⋅ 𝑐𝑐 ⋅ 	𝜂𝜂

CDEF
DEF + 𝑓𝑓                                  (22) 

 
so that 𝑓𝑓 tends to a constant 𝑓𝑓   as  𝜂𝜂 → ∞ since 
the exponent on 𝜂𝜂 is negative. On the other hand, 
observe that if 𝑛𝑛 > 1 the first term in (20) is 
negative, and then in the case of even radicals on 
exponents the equation will terminate and cannot 
be extended with infinite 𝜂𝜂, otherwise 𝑓𝑓′ will be 
negative or become unbounded which is a 
contradiction: In fact equation (20) suggests that 
𝑓𝑓′ and 𝑓𝑓′′ reach zero at a finite value of 𝜂𝜂 when 
the expression in parentheses reaches zero. This 
shows the natural and crucial result that for 𝑛𝑛 >
1, 𝑓𝑓′ goes to zero very rapidly and may reach zero 
at a finite 𝜂𝜂 which is consistent with the results 
obtained in Wei & Al-Ashhab (2014) for a similar 
equation. Finally observe that, in this case of 𝑛𝑛 >
1, 𝑓𝑓 tends to a constant as 𝜂𝜂 → ∞ since 𝑓𝑓′ reaches 
zero at finite 𝜂𝜂 as discussed above. 
 
    For 𝑛𝑛 = 1/2, observe that we may assume an 
approximation of the form ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧(ln 𝑧𝑧){	 near 
𝑧𝑧 = 0, where substituting back into (14) yields 

𝑝𝑝 = 2
}
, and 𝑘𝑘 = w~

{
x
F
à = (3𝐴𝐴)

F
à which for negative 

𝐴𝐴 does yield the positive (since 𝑧𝑧 ≈ 0 with 𝑧𝑧 > 0) 
approximate solution ℎ(𝑧𝑧) ≈ (3𝐴𝐴)

F
à𝑧𝑧(ln 𝑧𝑧)

F
à, and 

where it can be concluded that a solution 
satisfying (14-15) exists, but with possibly 
additional conditions on the parameters of the 
problem. This in turn yields an asymptotic 
behavior of the form 𝑓𝑓V → (𝑘𝑘S𝜂𝜂 + 𝐾𝐾)12. 
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0
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S
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0T2
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D = ~

{({12)
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where it can be concluded that a solution 
satisfying (14-15) exists, but with possibly 
additional conditions on the parameters of the 
problem. This in turn yields an asymptotic 
behavior of the form 𝑓𝑓V → (𝑘𝑘S𝜂𝜂 + 𝐾𝐾)12. 
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form h(z)≈ kz(ln z)p. Substituting back into (14) yields
                                              which   for  negative  A+B 
does yield a positive solution (k < 0,z >0, ln z<0) for 
h(z). This in turn yields the asymptotic behavior,
                          In fact,                      an  exact  solution 
to (14) if                                         It  satisfies   (15)   if
                                                  and where the additional 
condition                              ensures   that  the  resulting 
(implicit) solution:                                satisfies (10-11) 
for ϵ <1.
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more general. The (Crocco variable) solution 
ℎ(𝑧𝑧) = wα	𝑓𝑓(0) − AúC

sqq(t)
x 𝑧𝑧  results in the 

following solution to the original problem for 
𝑓𝑓′(𝜂𝜂) and 𝑓𝑓(𝜂𝜂): 

𝑓𝑓V(𝜂𝜂) = ùô
1
𝑛𝑛 − 1ö îα	𝑓𝑓

(0) −
𝑚𝑚ϵS

𝑓𝑓VV(0)ï

2
0
𝜂𝜂 + 𝜖𝜖21

2
0	û

0
012

 

𝑓𝑓(𝜂𝜂) = 𝑓𝑓(0) +	  

𝑛𝑛

ùw1𝑛𝑛 − 1xîα	𝑓𝑓(0) −
𝑚𝑚ϵ2

𝑓𝑓′′(0)
ï

1
𝑛𝑛
𝜂𝜂 + 𝜖𝜖1−

1
𝑛𝑛	û

2𝑛𝑛−1
𝑛𝑛−1

− 𝜖𝜖
2𝑛𝑛−1
𝑛𝑛

(2𝑛𝑛 − 1) îα	𝑓𝑓(0) − 𝑚𝑚ϵ2

𝑓𝑓′′(0)
ï

1
𝑛𝑛

 

 
It can be directly checked that this is a solution to 

(10-11) provided α	𝑓𝑓(0) − AúC

sqq(t)
=

w1sqq(t)x
D

r
, a 

condition that can also be obtained from the 
Crocco variables with ℎ(𝑧𝑧) as given above where: 
ℎ(𝜖𝜖) = wα	𝑓𝑓(0) − AúC

sqq(t)
x 𝜖𝜖 = J−𝑓𝑓VV(0)L0. 

On the other hand, the other (Crocco variable) 
solution ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧{ results in the solution: 
 

𝑓𝑓V(𝜂𝜂) = ô
2 − 𝑛𝑛
𝑛𝑛 + 1

√𝑘𝑘D 	𝜂𝜂 + 𝜖𝜖
01S
0T2	ö

0T2
01S

 
 

𝑓𝑓(𝜂𝜂) =
𝑛𝑛 + 1

(1 − 2𝑛𝑛)√𝑘𝑘D [	ô
2 − 𝑛𝑛
𝑛𝑛 + 1

√𝑘𝑘D 	𝜂𝜂 + 𝜖𝜖
01S
0T2	ö

S012
01S

− 𝜖𝜖
S012
0T2 	] + 	𝑓𝑓(0), 

and where −Jℎ(𝜖𝜖)L
F
D = 𝑓𝑓VV(0) = −	√𝑘𝑘D 	𝜖𝜖w

à
DGFx. 

 
Observe that both solutions satisfy the boundary 
conditions: 𝑓𝑓V(0) = 𝜖𝜖 and 𝑓𝑓V(∞) = 0, and then 
choosing the same 𝑓𝑓(0) = 𝑎𝑎, results in two 
different values for 𝑓𝑓′′(0) namely: 𝑓𝑓VV(0) =
{
F
D(~T{ó)
A({12)

 for the first and 𝑓𝑓VV(0) = (~T{ó)
A({12)

 for the 
second. This establishes non-uniqueness of 
solutions for problem (10-11). 
 
3.2.2. Exact solutions and asymptotic behavior for 
𝐵𝐵 ≠ 0, 𝑛𝑛 = 2

S
 

 

For 𝐵𝐵 ≠ 0, 𝑛𝑛 = 2
S
, assume an asymptotic solution 

of the form ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧(ln 𝑧𝑧){. Substituting back 

into (14) yields 𝑝𝑝 = 2
}
, 𝑘𝑘 = w~Tó

{
x
2/}

= (3(𝐴𝐴 +

𝐵𝐵))2/} which for negative 𝐴𝐴 + 𝐵𝐵 does yield a 
positive solution (𝑘𝑘 < 0, 𝑧𝑧 > 0,	ln 𝑧𝑧 < 0) for 
ℎ(𝑧𝑧). This in turn yields the asymptotic behavior 
𝑓𝑓V → 	 (𝑘𝑘S𝜂𝜂	 + 	𝐾𝐾	)12. In fact, ℎ(𝑧𝑧) = 	𝑘𝑘𝑧𝑧√ln 𝑧𝑧à  is 
an exact solution to (14) if 𝐴𝐴 = −†ó

S
, 𝛼𝛼 =

−3𝑚𝑚, 𝑘𝑘 = √18𝑚𝑚à . It satisfies (15) if 
ã
}
(3(ln 𝜖𝜖)2/} + (ln 𝜖𝜖)1

C
à) = α	𝑓𝑓(0) − AúC

sqq(t)
  and 

where the additional condition 𝑘𝑘𝜖𝜖(ln 𝜖𝜖)2/} =
¢−𝑓𝑓′′(0)  ensures that the resulting (implicit) 
solution: ∫ £o

		oC(§• o)
C
à

sq(_)
r = −81𝑚𝑚S𝜂𝜂 satisfies (10-

11) for 𝜖𝜖 < 1. 
 
3.2.3. Proof of existence and uniqueness for 𝐵𝐵 ≠
0 
 
For 𝐵𝐵 ≠ 0 integrating (14) yields: 
 

ℎV(𝑧𝑧) − ℎV(𝑎𝑎) = −𝑛𝑛𝐵𝐵 î𝑧𝑧Sℎ1
2
0(𝑧𝑧) − 𝑎𝑎Sℎ1

2
0(𝑎𝑎)ï 

																													+	(𝐴𝐴 + 2𝑛𝑛𝐵𝐵) ∫ 𝜇𝜇ℎ1
F
D(𝜇𝜇)𝑑𝑑𝜇𝜇o

ë    (28)  
 
Observe that −𝑛𝑛𝐵𝐵 = −𝑚𝑚 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 = −𝛼𝛼. 
Equation (28) can be used as was done with 
equation (23), and with similar arguments to 
establish uniqueness of solutions that converge to 
(0,0) for 𝑛𝑛 > 1/2 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 < 0: 
 
Suppose that ℎ2 is a solution through the origin. 
Take another solution ℎS to (14) with initial 
conditions ℎS(𝑧𝑧) = ℎ2(𝑧𝑧) but a larger ℎ′S(𝑧𝑧), i.e., 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧). The two solutions may not 
intersect at any point 𝑎𝑎 < 𝑧𝑧, since if they did we 
should have ℎ′2(𝑎𝑎) > ℎ′S(𝑎𝑎) (the condition 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧) implies that ℎS < ℎ2 within the 
interval (𝑎𝑎, 𝑧𝑧) so that geometrically ℎS is under 
ℎ2). Now, the first term on the right hand side of 
(28) would be the same for ℎ2 and ℎS, and 
therefore we have: 
 
ℎSV (𝑎𝑎) − ℎ2V (𝑎𝑎) = ℎSV (𝑧𝑧) − ℎ2V (𝑧𝑧) 

    −(𝐴𝐴 + 2𝑛𝑛𝐵𝐵)∫

	

𝜇𝜇 ¶ℎS
1FD(𝜇𝜇) − ℎ2

1FD(𝜇𝜇)ß 𝑑𝑑𝜇𝜇
o
ë    (29) 

 
which implies that ℎ′S(𝑎𝑎) > ℎ′2(𝑎𝑎) since the 
right-hand side is positive for 𝑛𝑛 > 1/2  (ℎS(𝜇𝜇) <
ℎ2(𝜇𝜇) within the interval (𝑎𝑎, 𝑧𝑧)  and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 <
0). This is a contradiction, so therefore we have 
the following crucial uniqueness result stated in 
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It can be directly checked that this is a solution to 
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solution ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧{ results in the solution: 
 

𝑓𝑓V(𝜂𝜂) = ô
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and where −Jℎ(𝜖𝜖)L
F
D = 𝑓𝑓VV(0) = −	√𝑘𝑘D 	𝜖𝜖w

à
DGFx. 

 
Observe that both solutions satisfy the boundary 
conditions: 𝑓𝑓V(0) = 𝜖𝜖 and 𝑓𝑓V(∞) = 0, and then 
choosing the same 𝑓𝑓(0) = 𝑎𝑎, results in two 
different values for 𝑓𝑓′′(0) namely: 𝑓𝑓VV(0) =
{
F
D(~T{ó)
A({12)

 for the first and 𝑓𝑓VV(0) = (~T{ó)
A({12)

 for the 
second. This establishes non-uniqueness of 
solutions for problem (10-11). 
 
3.2.2. Exact solutions and asymptotic behavior for 
𝐵𝐵 ≠ 0, 𝑛𝑛 = 2

S
 

 

For 𝐵𝐵 ≠ 0, 𝑛𝑛 = 2
S
, assume an asymptotic solution 

of the form ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧(ln 𝑧𝑧){. Substituting back 

into (14) yields 𝑝𝑝 = 2
}
, 𝑘𝑘 = w~Tó

{
x
2/}

= (3(𝐴𝐴 +

𝐵𝐵))2/} which for negative 𝐴𝐴 + 𝐵𝐵 does yield a 
positive solution (𝑘𝑘 < 0, 𝑧𝑧 > 0,	ln 𝑧𝑧 < 0) for 
ℎ(𝑧𝑧). This in turn yields the asymptotic behavior 
𝑓𝑓V → 	 (𝑘𝑘S𝜂𝜂	 + 	𝐾𝐾	)12. In fact, ℎ(𝑧𝑧) = 	𝑘𝑘𝑧𝑧√ln 𝑧𝑧à  is 
an exact solution to (14) if 𝐴𝐴 = −†ó

S
, 𝛼𝛼 =

−3𝑚𝑚, 𝑘𝑘 = √18𝑚𝑚à . It satisfies (15) if 
ã
}
(3(ln 𝜖𝜖)2/} + (ln 𝜖𝜖)1

C
à) = α	𝑓𝑓(0) − AúC

sqq(t)
  and 

where the additional condition 𝑘𝑘𝜖𝜖(ln 𝜖𝜖)2/} =
¢−𝑓𝑓′′(0)  ensures that the resulting (implicit) 
solution: ∫ £o

		oC(§• o)
C
à

sq(_)
r = −81𝑚𝑚S𝜂𝜂 satisfies (10-

11) for 𝜖𝜖 < 1. 
 
3.2.3. Proof of existence and uniqueness for 𝐵𝐵 ≠
0 
 
For 𝐵𝐵 ≠ 0 integrating (14) yields: 
 

ℎV(𝑧𝑧) − ℎV(𝑎𝑎) = −𝑛𝑛𝐵𝐵 î𝑧𝑧Sℎ1
2
0(𝑧𝑧) − 𝑎𝑎Sℎ1

2
0(𝑎𝑎)ï 

																													+	(𝐴𝐴 + 2𝑛𝑛𝐵𝐵) ∫ 𝜇𝜇ℎ1
F
D(𝜇𝜇)𝑑𝑑𝜇𝜇o

ë    (28)  
 
Observe that −𝑛𝑛𝐵𝐵 = −𝑚𝑚 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 = −𝛼𝛼. 
Equation (28) can be used as was done with 
equation (23), and with similar arguments to 
establish uniqueness of solutions that converge to 
(0,0) for 𝑛𝑛 > 1/2 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 < 0: 
 
Suppose that ℎ2 is a solution through the origin. 
Take another solution ℎS to (14) with initial 
conditions ℎS(𝑧𝑧) = ℎ2(𝑧𝑧) but a larger ℎ′S(𝑧𝑧), i.e., 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧). The two solutions may not 
intersect at any point 𝑎𝑎 < 𝑧𝑧, since if they did we 
should have ℎ′2(𝑎𝑎) > ℎ′S(𝑎𝑎) (the condition 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧) implies that ℎS < ℎ2 within the 
interval (𝑎𝑎, 𝑧𝑧) so that geometrically ℎS is under 
ℎ2). Now, the first term on the right hand side of 
(28) would be the same for ℎ2 and ℎS, and 
therefore we have: 
 
ℎSV (𝑎𝑎) − ℎ2V (𝑎𝑎) = ℎSV (𝑧𝑧) − ℎ2V (𝑧𝑧) 
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which implies that ℎ′S(𝑎𝑎) > ℎ′2(𝑎𝑎) since the 
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ℎ2(𝜇𝜇) within the interval (𝑎𝑎, 𝑧𝑧)  and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 <
0). This is a contradiction, so therefore we have 
the following crucial uniqueness result stated in 
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establish uniqueness of solutions that converge to 
(0,0) for 𝑛𝑛 > 1/2 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 < 0: 
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intersect at any point 𝑎𝑎 < 𝑧𝑧, since if they did we 
should have ℎ′2(𝑎𝑎) > ℎ′S(𝑎𝑎) (the condition 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧) implies that ℎS < ℎ2 within the 
interval (𝑎𝑎, 𝑧𝑧) so that geometrically ℎS is under 
ℎ2). Now, the first term on the right hand side of 
(28) would be the same for ℎ2 and ℎS, and 
therefore we have: 
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0). This is a contradiction, so therefore we have 
the following crucial uniqueness result stated in 
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0). This is a contradiction, so therefore we have 
the following crucial uniqueness result stated in 
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It can be directly checked that this is a solution to 

(10-11) provided α	𝑓𝑓(0) − AúC

sqq(t)
=

w1sqq(t)x
D

r
, a 

condition that can also be obtained from the 
Crocco variables with ℎ(𝑧𝑧) as given above where: 
ℎ(𝜖𝜖) = wα	𝑓𝑓(0) − AúC

sqq(t)
x 𝜖𝜖 = J−𝑓𝑓VV(0)L0. 

On the other hand, the other (Crocco variable) 
solution ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧{ results in the solution: 
 

𝑓𝑓V(𝜂𝜂) = ô
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F
D = 𝑓𝑓VV(0) = −	√𝑘𝑘D 	𝜖𝜖w

à
DGFx. 

 
Observe that both solutions satisfy the boundary 
conditions: 𝑓𝑓V(0) = 𝜖𝜖 and 𝑓𝑓V(∞) = 0, and then 
choosing the same 𝑓𝑓(0) = 𝑎𝑎, results in two 
different values for 𝑓𝑓′′(0) namely: 𝑓𝑓VV(0) =
{
F
D(~T{ó)
A({12)

 for the first and 𝑓𝑓VV(0) = (~T{ó)
A({12)

 for the 
second. This establishes non-uniqueness of 
solutions for problem (10-11). 
 
3.2.2. Exact solutions and asymptotic behavior for 
𝐵𝐵 ≠ 0, 𝑛𝑛 = 2
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For 𝐵𝐵 ≠ 0, 𝑛𝑛 = 2
S
, assume an asymptotic solution 

of the form ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧(ln 𝑧𝑧){. Substituting back 

into (14) yields 𝑝𝑝 = 2
}
, 𝑘𝑘 = w~Tó
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𝐵𝐵))2/} which for negative 𝐴𝐴 + 𝐵𝐵 does yield a 
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ℎ(𝑧𝑧). This in turn yields the asymptotic behavior 
𝑓𝑓V → 	 (𝑘𝑘S𝜂𝜂	 + 	𝐾𝐾	)12. In fact, ℎ(𝑧𝑧) = 	𝑘𝑘𝑧𝑧√ln 𝑧𝑧à  is 
an exact solution to (14) if 𝐴𝐴 = −†ó

S
, 𝛼𝛼 =

−3𝑚𝑚, 𝑘𝑘 = √18𝑚𝑚à . It satisfies (15) if 
ã
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where the additional condition 𝑘𝑘𝜖𝜖(ln 𝜖𝜖)2/} =
¢−𝑓𝑓′′(0)  ensures that the resulting (implicit) 
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sq(_)
r = −81𝑚𝑚S𝜂𝜂 satisfies (10-
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Equation (28) can be used as was done with 
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positive solution (𝑘𝑘 < 0, 𝑧𝑧 > 0,	ln 𝑧𝑧 < 0) for 
ℎ(𝑧𝑧). This in turn yields the asymptotic behavior 
𝑓𝑓V → 	 (𝑘𝑘S𝜂𝜂	 + 	𝐾𝐾	)12. In fact, ℎ(𝑧𝑧) = 	𝑘𝑘𝑧𝑧√ln 𝑧𝑧à  is 
an exact solution to (14) if 𝐴𝐴 = −†ó

S
, 𝛼𝛼 =

−3𝑚𝑚, 𝑘𝑘 = √18𝑚𝑚à . It satisfies (15) if 
ã
}
(3(ln 𝜖𝜖)2/} + (ln 𝜖𝜖)1

C
à) = α	𝑓𝑓(0) − AúC

sqq(t)
  and 

where the additional condition 𝑘𝑘𝜖𝜖(ln 𝜖𝜖)2/} =
¢−𝑓𝑓′′(0)  ensures that the resulting (implicit) 
solution: ∫ £o

		oC(§• o)
C
à

sq(_)
r = −81𝑚𝑚S𝜂𝜂 satisfies (10-

11) for 𝜖𝜖 < 1. 
 
3.2.3. Proof of existence and uniqueness for 𝐵𝐵 ≠
0 
 
For 𝐵𝐵 ≠ 0 integrating (14) yields: 
 

ℎV(𝑧𝑧) − ℎV(𝑎𝑎) = −𝑛𝑛𝐵𝐵 î𝑧𝑧Sℎ1
2
0(𝑧𝑧) − 𝑎𝑎Sℎ1

2
0(𝑎𝑎)ï 

																													+	(𝐴𝐴 + 2𝑛𝑛𝐵𝐵) ∫ 𝜇𝜇ℎ1
F
D(𝜇𝜇)𝑑𝑑𝜇𝜇o

ë    (28)  
 
Observe that −𝑛𝑛𝐵𝐵 = −𝑚𝑚 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 = −𝛼𝛼. 
Equation (28) can be used as was done with 
equation (23), and with similar arguments to 
establish uniqueness of solutions that converge to 
(0,0) for 𝑛𝑛 > 1/2 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 < 0: 
 
Suppose that ℎ2 is a solution through the origin. 
Take another solution ℎS to (14) with initial 
conditions ℎS(𝑧𝑧) = ℎ2(𝑧𝑧) but a larger ℎ′S(𝑧𝑧), i.e., 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧). The two solutions may not 
intersect at any point 𝑎𝑎 < 𝑧𝑧, since if they did we 
should have ℎ′2(𝑎𝑎) > ℎ′S(𝑎𝑎) (the condition 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧) implies that ℎS < ℎ2 within the 
interval (𝑎𝑎, 𝑧𝑧) so that geometrically ℎS is under 
ℎ2). Now, the first term on the right hand side of 
(28) would be the same for ℎ2 and ℎS, and 
therefore we have: 
 
ℎSV (𝑎𝑎) − ℎ2V (𝑎𝑎) = ℎSV (𝑧𝑧) − ℎ2V (𝑧𝑧) 

    −(𝐴𝐴 + 2𝑛𝑛𝐵𝐵)∫

	

𝜇𝜇 ¶ℎS
1FD(𝜇𝜇) − ℎ2

1FD(𝜇𝜇)ß 𝑑𝑑𝜇𝜇
o
ë    (29) 

 
which implies that ℎ′S(𝑎𝑎) > ℎ′2(𝑎𝑎) since the 
right-hand side is positive for 𝑛𝑛 > 1/2  (ℎS(𝜇𝜇) <
ℎ2(𝜇𝜇) within the interval (𝑎𝑎, 𝑧𝑧)  and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 <
0). This is a contradiction, so therefore we have 
the following crucial uniqueness result stated in 

Asymptotic Behavior and Existence of Similarity Solutions for a Boundary Layer Flow Problem 
 
 
more general. The (Crocco variable) solution 
ℎ(𝑧𝑧) = wα	𝑓𝑓(0) − AúC

sqq(t)
x 𝑧𝑧  results in the 

following solution to the original problem for 
𝑓𝑓′(𝜂𝜂) and 𝑓𝑓(𝜂𝜂): 

𝑓𝑓V(𝜂𝜂) = ùô
1
𝑛𝑛 − 1ö îα	𝑓𝑓

(0) −
𝑚𝑚ϵS

𝑓𝑓VV(0)ï

2
0
𝜂𝜂 + 𝜖𝜖21

2
0	û

0
012

 

𝑓𝑓(𝜂𝜂) = 𝑓𝑓(0) +	  

𝑛𝑛

ùw1𝑛𝑛 − 1xîα	𝑓𝑓(0) −
𝑚𝑚ϵ2

𝑓𝑓′′(0)
ï

1
𝑛𝑛
𝜂𝜂 + 𝜖𝜖1−

1
𝑛𝑛	û

2𝑛𝑛−1
𝑛𝑛−1

− 𝜖𝜖
2𝑛𝑛−1
𝑛𝑛

(2𝑛𝑛 − 1) îα	𝑓𝑓(0) − 𝑚𝑚ϵ2

𝑓𝑓′′(0)
ï

1
𝑛𝑛

 

 
It can be directly checked that this is a solution to 

(10-11) provided α	𝑓𝑓(0) − AúC

sqq(t)
=

w1sqq(t)x
D

r
, a 

condition that can also be obtained from the 
Crocco variables with ℎ(𝑧𝑧) as given above where: 
ℎ(𝜖𝜖) = wα	𝑓𝑓(0) − AúC

sqq(t)
x 𝜖𝜖 = J−𝑓𝑓VV(0)L0. 

On the other hand, the other (Crocco variable) 
solution ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧{ results in the solution: 
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D = 𝑓𝑓VV(0) = −	√𝑘𝑘D 	𝜖𝜖w

à
DGFx. 

 
Observe that both solutions satisfy the boundary 
conditions: 𝑓𝑓V(0) = 𝜖𝜖 and 𝑓𝑓V(∞) = 0, and then 
choosing the same 𝑓𝑓(0) = 𝑎𝑎, results in two 
different values for 𝑓𝑓′′(0) namely: 𝑓𝑓VV(0) =
{
F
D(~T{ó)
A({12)

 for the first and 𝑓𝑓VV(0) = (~T{ó)
A({12)

 for the 
second. This establishes non-uniqueness of 
solutions for problem (10-11). 
 
3.2.2. Exact solutions and asymptotic behavior for 
𝐵𝐵 ≠ 0, 𝑛𝑛 = 2
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𝑓𝑓V → 	 (𝑘𝑘S𝜂𝜂	 + 	𝐾𝐾	)12. In fact, ℎ(𝑧𝑧) = 	𝑘𝑘𝑧𝑧√ln 𝑧𝑧à  is 
an exact solution to (14) if 𝐴𝐴 = −†ó
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r = −81𝑚𝑚S𝜂𝜂 satisfies (10-

11) for 𝜖𝜖 < 1. 
 
3.2.3. Proof of existence and uniqueness for 𝐵𝐵 ≠
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For 𝐵𝐵 ≠ 0 integrating (14) yields: 
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Observe that −𝑛𝑛𝐵𝐵 = −𝑚𝑚 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 = −𝛼𝛼. 
Equation (28) can be used as was done with 
equation (23), and with similar arguments to 
establish uniqueness of solutions that converge to 
(0,0) for 𝑛𝑛 > 1/2 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 < 0: 
 
Suppose that ℎ2 is a solution through the origin. 
Take another solution ℎS to (14) with initial 
conditions ℎS(𝑧𝑧) = ℎ2(𝑧𝑧) but a larger ℎ′S(𝑧𝑧), i.e., 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧). The two solutions may not 
intersect at any point 𝑎𝑎 < 𝑧𝑧, since if they did we 
should have ℎ′2(𝑎𝑎) > ℎ′S(𝑎𝑎) (the condition 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧) implies that ℎS < ℎ2 within the 
interval (𝑎𝑎, 𝑧𝑧) so that geometrically ℎS is under 
ℎ2). Now, the first term on the right hand side of 
(28) would be the same for ℎ2 and ℎS, and 
therefore we have: 
 
ℎSV (𝑎𝑎) − ℎ2V (𝑎𝑎) = ℎSV (𝑧𝑧) − ℎ2V (𝑧𝑧) 
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which implies that ℎ′S(𝑎𝑎) > ℎ′2(𝑎𝑎) since the 
right-hand side is positive for 𝑛𝑛 > 1/2  (ℎS(𝜇𝜇) <
ℎ2(𝜇𝜇) within the interval (𝑎𝑎, 𝑧𝑧)  and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 <
0). This is a contradiction, so therefore we have 
the following crucial uniqueness result stated in 
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For 𝐵𝐵 ≠ 0 integrating (14) yields: 
 

ℎV(𝑧𝑧) − ℎV(𝑎𝑎) = −𝑛𝑛𝐵𝐵 î𝑧𝑧Sℎ1
2
0(𝑧𝑧) − 𝑎𝑎Sℎ1

2
0(𝑎𝑎)ï 

																													+	(𝐴𝐴 + 2𝑛𝑛𝐵𝐵) ∫ 𝜇𝜇ℎ1
F
D(𝜇𝜇)𝑑𝑑𝜇𝜇o

ë    (28)  
 
Observe that −𝑛𝑛𝐵𝐵 = −𝑚𝑚 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 = −𝛼𝛼. 
Equation (28) can be used as was done with 
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establish uniqueness of solutions that converge to 
(0,0) for 𝑛𝑛 > 1/2 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 < 0: 
 
Suppose that ℎ2 is a solution through the origin. 
Take another solution ℎS to (14) with initial 
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ℎ2). Now, the first term on the right hand side of 
(28) would be the same for ℎ2 and ℎS, and 
therefore we have: 
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which implies that ℎ′S(𝑎𝑎) > ℎ′2(𝑎𝑎) since the 
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ℎ2(𝜇𝜇) within the interval (𝑎𝑎, 𝑧𝑧)  and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 <
0). This is a contradiction, so therefore we have 
the following crucial uniqueness result stated in 
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2𝑛𝑛−1
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𝑓𝑓′′(0)
ï

1
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It can be directly checked that this is a solution to 

(10-11) provided α	𝑓𝑓(0) − AúC

sqq(t)
=

w1sqq(t)x
D

r
, a 

condition that can also be obtained from the 
Crocco variables with ℎ(𝑧𝑧) as given above where: 
ℎ(𝜖𝜖) = wα	𝑓𝑓(0) − AúC

sqq(t)
x 𝜖𝜖 = J−𝑓𝑓VV(0)L0. 

On the other hand, the other (Crocco variable) 
solution ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧{ results in the solution: 
 

𝑓𝑓V(𝜂𝜂) = ô
2 − 𝑛𝑛
𝑛𝑛 + 1

√𝑘𝑘D 	𝜂𝜂 + 𝜖𝜖
01S
0T2	ö

0T2
01S

 
 

𝑓𝑓(𝜂𝜂) =
𝑛𝑛 + 1

(1 − 2𝑛𝑛)√𝑘𝑘D [	ô
2 − 𝑛𝑛
𝑛𝑛 + 1

√𝑘𝑘D 	𝜂𝜂 + 𝜖𝜖
01S
0T2	ö

S012
01S

− 𝜖𝜖
S012
0T2 	] + 	𝑓𝑓(0), 

and where −Jℎ(𝜖𝜖)L
F
D = 𝑓𝑓VV(0) = −	√𝑘𝑘D 	𝜖𝜖w

à
DGFx. 

 
Observe that both solutions satisfy the boundary 
conditions: 𝑓𝑓V(0) = 𝜖𝜖 and 𝑓𝑓V(∞) = 0, and then 
choosing the same 𝑓𝑓(0) = 𝑎𝑎, results in two 
different values for 𝑓𝑓′′(0) namely: 𝑓𝑓VV(0) =
{
F
D(~T{ó)
A({12)

 for the first and 𝑓𝑓VV(0) = (~T{ó)
A({12)

 for the 
second. This establishes non-uniqueness of 
solutions for problem (10-11). 
 
3.2.2. Exact solutions and asymptotic behavior for 
𝐵𝐵 ≠ 0, 𝑛𝑛 = 2

S
 

 

For 𝐵𝐵 ≠ 0, 𝑛𝑛 = 2
S
, assume an asymptotic solution 

of the form ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧(ln 𝑧𝑧){. Substituting back 

into (14) yields 𝑝𝑝 = 2
}
, 𝑘𝑘 = w~Tó

{
x
2/}

= (3(𝐴𝐴 +

𝐵𝐵))2/} which for negative 𝐴𝐴 + 𝐵𝐵 does yield a 
positive solution (𝑘𝑘 < 0, 𝑧𝑧 > 0,	ln 𝑧𝑧 < 0) for 
ℎ(𝑧𝑧). This in turn yields the asymptotic behavior 
𝑓𝑓V → 	 (𝑘𝑘S𝜂𝜂	 + 	𝐾𝐾	)12. In fact, ℎ(𝑧𝑧) = 	𝑘𝑘𝑧𝑧√ln 𝑧𝑧à  is 
an exact solution to (14) if 𝐴𝐴 = −†ó

S
, 𝛼𝛼 =

−3𝑚𝑚, 𝑘𝑘 = √18𝑚𝑚à . It satisfies (15) if 
ã
}
(3(ln 𝜖𝜖)2/} + (ln 𝜖𝜖)1

C
à) = α	𝑓𝑓(0) − AúC

sqq(t)
  and 

where the additional condition 𝑘𝑘𝜖𝜖(ln 𝜖𝜖)2/} =
¢−𝑓𝑓′′(0)  ensures that the resulting (implicit) 
solution: ∫ £o

		oC(§• o)
C
à

sq(_)
r = −81𝑚𝑚S𝜂𝜂 satisfies (10-

11) for 𝜖𝜖 < 1. 
 
3.2.3. Proof of existence and uniqueness for 𝐵𝐵 ≠
0 
 
For 𝐵𝐵 ≠ 0 integrating (14) yields: 
 

ℎV(𝑧𝑧) − ℎV(𝑎𝑎) = −𝑛𝑛𝐵𝐵 î𝑧𝑧Sℎ1
2
0(𝑧𝑧) − 𝑎𝑎Sℎ1

2
0(𝑎𝑎)ï 

																													+	(𝐴𝐴 + 2𝑛𝑛𝐵𝐵) ∫ 𝜇𝜇ℎ1
F
D(𝜇𝜇)𝑑𝑑𝜇𝜇o

ë    (28)  
 
Observe that −𝑛𝑛𝐵𝐵 = −𝑚𝑚 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 = −𝛼𝛼. 
Equation (28) can be used as was done with 
equation (23), and with similar arguments to 
establish uniqueness of solutions that converge to 
(0,0) for 𝑛𝑛 > 1/2 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 < 0: 
 
Suppose that ℎ2 is a solution through the origin. 
Take another solution ℎS to (14) with initial 
conditions ℎS(𝑧𝑧) = ℎ2(𝑧𝑧) but a larger ℎ′S(𝑧𝑧), i.e., 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧). The two solutions may not 
intersect at any point 𝑎𝑎 < 𝑧𝑧, since if they did we 
should have ℎ′2(𝑎𝑎) > ℎ′S(𝑎𝑎) (the condition 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧) implies that ℎS < ℎ2 within the 
interval (𝑎𝑎, 𝑧𝑧) so that geometrically ℎS is under 
ℎ2). Now, the first term on the right hand side of 
(28) would be the same for ℎ2 and ℎS, and 
therefore we have: 
 
ℎSV (𝑎𝑎) − ℎ2V (𝑎𝑎) = ℎSV (𝑧𝑧) − ℎ2V (𝑧𝑧) 

    −(𝐴𝐴 + 2𝑛𝑛𝐵𝐵)∫

	

𝜇𝜇 ¶ℎS
1FD(𝜇𝜇) − ℎ2

1FD(𝜇𝜇)ß 𝑑𝑑𝜇𝜇
o
ë    (29) 

 
which implies that ℎ′S(𝑎𝑎) > ℎ′2(𝑎𝑎) since the 
right-hand side is positive for 𝑛𝑛 > 1/2  (ℎS(𝜇𝜇) <
ℎ2(𝜇𝜇) within the interval (𝑎𝑎, 𝑧𝑧)  and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 <
0). This is a contradiction, so therefore we have 
the following crucial uniqueness result stated in 

3.2.3. Proof of existence and uniqueness for B ≠ 0
For B≠0 integrating (14) yields:
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different values for 𝑓𝑓′′(0) namely: 𝑓𝑓VV(0) =
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 for the 
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solutions for problem (10-11). 
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S
 

 

For 𝐵𝐵 ≠ 0, 𝑛𝑛 = 2
S
, assume an asymptotic solution 
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𝐵𝐵))2/} which for negative 𝐴𝐴 + 𝐵𝐵 does yield a 
positive solution (𝑘𝑘 < 0, 𝑧𝑧 > 0,	ln 𝑧𝑧 < 0) for 
ℎ(𝑧𝑧). This in turn yields the asymptotic behavior 
𝑓𝑓V → 	 (𝑘𝑘S𝜂𝜂	 + 	𝐾𝐾	)12. In fact, ℎ(𝑧𝑧) = 	𝑘𝑘𝑧𝑧√ln 𝑧𝑧à  is 
an exact solution to (14) if 𝐴𝐴 = −†ó

S
, 𝛼𝛼 =

−3𝑚𝑚, 𝑘𝑘 = √18𝑚𝑚à . It satisfies (15) if 
ã
}
(3(ln 𝜖𝜖)2/} + (ln 𝜖𝜖)1

C
à) = α	𝑓𝑓(0) − AúC

sqq(t)
  and 

where the additional condition 𝑘𝑘𝜖𝜖(ln 𝜖𝜖)2/} =
¢−𝑓𝑓′′(0)  ensures that the resulting (implicit) 
solution: ∫ £o

		oC(§• o)
C
à

sq(_)
r = −81𝑚𝑚S𝜂𝜂 satisfies (10-

11) for 𝜖𝜖 < 1. 
 
3.2.3. Proof of existence and uniqueness for 𝐵𝐵 ≠
0 
 
For 𝐵𝐵 ≠ 0 integrating (14) yields: 
 

ℎV(𝑧𝑧) − ℎV(𝑎𝑎) = −𝑛𝑛𝐵𝐵 î𝑧𝑧Sℎ1
2
0(𝑧𝑧) − 𝑎𝑎Sℎ1

2
0(𝑎𝑎)ï 

																													+	(𝐴𝐴 + 2𝑛𝑛𝐵𝐵) ∫ 𝜇𝜇ℎ1
F
D(𝜇𝜇)𝑑𝑑𝜇𝜇o

ë    (28)  
 
Observe that −𝑛𝑛𝐵𝐵 = −𝑚𝑚 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 = −𝛼𝛼. 
Equation (28) can be used as was done with 
equation (23), and with similar arguments to 
establish uniqueness of solutions that converge to 
(0,0) for 𝑛𝑛 > 1/2 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 < 0: 
 
Suppose that ℎ2 is a solution through the origin. 
Take another solution ℎS to (14) with initial 
conditions ℎS(𝑧𝑧) = ℎ2(𝑧𝑧) but a larger ℎ′S(𝑧𝑧), i.e., 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧). The two solutions may not 
intersect at any point 𝑎𝑎 < 𝑧𝑧, since if they did we 
should have ℎ′2(𝑎𝑎) > ℎ′S(𝑎𝑎) (the condition 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧) implies that ℎS < ℎ2 within the 
interval (𝑎𝑎, 𝑧𝑧) so that geometrically ℎS is under 
ℎ2). Now, the first term on the right hand side of 
(28) would be the same for ℎ2 and ℎS, and 
therefore we have: 
 
ℎSV (𝑎𝑎) − ℎ2V (𝑎𝑎) = ℎSV (𝑧𝑧) − ℎ2V (𝑧𝑧) 

    −(𝐴𝐴 + 2𝑛𝑛𝐵𝐵)∫

	

𝜇𝜇 ¶ℎS
1FD(𝜇𝜇) − ℎ2

1FD(𝜇𝜇)ß 𝑑𝑑𝜇𝜇
o
ë    (29) 

 
which implies that ℎ′S(𝑎𝑎) > ℎ′2(𝑎𝑎) since the 
right-hand side is positive for 𝑛𝑛 > 1/2  (ℎS(𝜇𝜇) <
ℎ2(𝜇𝜇) within the interval (𝑎𝑎, 𝑧𝑧)  and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 <
0). This is a contradiction, so therefore we have 
the following crucial uniqueness result stated in 
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establish uniqueness of solutions that converge to 
(0,0) for 𝑛𝑛 > 1/2 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 < 0: 
 
Suppose that ℎ2 is a solution through the origin. 
Take another solution ℎS to (14) with initial 
conditions ℎS(𝑧𝑧) = ℎ2(𝑧𝑧) but a larger ℎ′S(𝑧𝑧), i.e., 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧). The two solutions may not 
intersect at any point 𝑎𝑎 < 𝑧𝑧, since if they did we 
should have ℎ′2(𝑎𝑎) > ℎ′S(𝑎𝑎) (the condition 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧) implies that ℎS < ℎ2 within the 
interval (𝑎𝑎, 𝑧𝑧) so that geometrically ℎS is under 
ℎ2). Now, the first term on the right hand side of 
(28) would be the same for ℎ2 and ℎS, and 
therefore we have: 
 
ℎSV (𝑎𝑎) − ℎ2V (𝑎𝑎) = ℎSV (𝑧𝑧) − ℎ2V (𝑧𝑧) 

    −(𝐴𝐴 + 2𝑛𝑛𝐵𝐵)∫

	

𝜇𝜇 ¶ℎS
1FD(𝜇𝜇) − ℎ2

1FD(𝜇𝜇)ß 𝑑𝑑𝜇𝜇
o
ë    (29) 

 
which implies that ℎ′S(𝑎𝑎) > ℎ′2(𝑎𝑎) since the 
right-hand side is positive for 𝑛𝑛 > 1/2  (ℎS(𝜇𝜇) <
ℎ2(𝜇𝜇) within the interval (𝑎𝑎, 𝑧𝑧)  and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 <
0). This is a contradiction, so therefore we have 
the following crucial uniqueness result stated in 

(28)

Observe that -nB=-m and A+2nB=-α. Equation (28) 
can be used as was done with equation (23), and with 
similar arguments to establish uniqueness of solutions 
that converge to (0,0) for n>1/2 and A+2nB<0:

Suppose that h1 is a solution through the origin. Take 
another solution h2 to (14) with initial conditions 
h2(z)=h1 (z)  but  a  larger              i.e.,                        The 
two  solutions may not intersect at any point a < z, since 
if they did we should have                 (the condition 
               implies that h2<h1 within the interval (a,z)
so that geometrically h2 is under h1). Now, the 
first term on the right hand side of (28) would be 
the same for h1 and h2, and therefore we have:

Asymptotic Behavior and Existence of Similarity Solutions for a Boundary Layer Flow Problem 
 
 
more general. The (Crocco variable) solution 
ℎ(𝑧𝑧) = wα	𝑓𝑓(0) − AúC

sqq(t)
x 𝑧𝑧  results in the 

following solution to the original problem for 
𝑓𝑓′(𝜂𝜂) and 𝑓𝑓(𝜂𝜂): 

𝑓𝑓V(𝜂𝜂) = ùô
1
𝑛𝑛 − 1ö îα	𝑓𝑓
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It can be directly checked that this is a solution to 

(10-11) provided α	𝑓𝑓(0) − AúC

sqq(t)
=

w1sqq(t)x
D

r
, a 

condition that can also be obtained from the 
Crocco variables with ℎ(𝑧𝑧) as given above where: 
ℎ(𝜖𝜖) = wα	𝑓𝑓(0) − AúC

sqq(t)
x 𝜖𝜖 = J−𝑓𝑓VV(0)L0. 

On the other hand, the other (Crocco variable) 
solution ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧{ results in the solution: 
 

𝑓𝑓V(𝜂𝜂) = ô
2 − 𝑛𝑛
𝑛𝑛 + 1

√𝑘𝑘D 	𝜂𝜂 + 𝜖𝜖
01S
0T2	ö

0T2
01S

 
 

𝑓𝑓(𝜂𝜂) =
𝑛𝑛 + 1

(1 − 2𝑛𝑛)√𝑘𝑘D [	ô
2 − 𝑛𝑛
𝑛𝑛 + 1

√𝑘𝑘D 	𝜂𝜂 + 𝜖𝜖
01S
0T2	ö

S012
01S

− 𝜖𝜖
S012
0T2 	] + 	𝑓𝑓(0), 

and where −Jℎ(𝜖𝜖)L
F
D = 𝑓𝑓VV(0) = −	√𝑘𝑘D 	𝜖𝜖w

à
DGFx. 

 
Observe that both solutions satisfy the boundary 
conditions: 𝑓𝑓V(0) = 𝜖𝜖 and 𝑓𝑓V(∞) = 0, and then 
choosing the same 𝑓𝑓(0) = 𝑎𝑎, results in two 
different values for 𝑓𝑓′′(0) namely: 𝑓𝑓VV(0) =
{
F
D(~T{ó)
A({12)

 for the first and 𝑓𝑓VV(0) = (~T{ó)
A({12)

 for the 
second. This establishes non-uniqueness of 
solutions for problem (10-11). 
 
3.2.2. Exact solutions and asymptotic behavior for 
𝐵𝐵 ≠ 0, 𝑛𝑛 = 2

S
 

 

For 𝐵𝐵 ≠ 0, 𝑛𝑛 = 2
S
, assume an asymptotic solution 

of the form ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧(ln 𝑧𝑧){. Substituting back 

into (14) yields 𝑝𝑝 = 2
}
, 𝑘𝑘 = w~Tó

{
x
2/}

= (3(𝐴𝐴 +

𝐵𝐵))2/} which for negative 𝐴𝐴 + 𝐵𝐵 does yield a 
positive solution (𝑘𝑘 < 0, 𝑧𝑧 > 0,	ln 𝑧𝑧 < 0) for 
ℎ(𝑧𝑧). This in turn yields the asymptotic behavior 
𝑓𝑓V → 	 (𝑘𝑘S𝜂𝜂	 + 	𝐾𝐾	)12. In fact, ℎ(𝑧𝑧) = 	𝑘𝑘𝑧𝑧√ln 𝑧𝑧à  is 
an exact solution to (14) if 𝐴𝐴 = −†ó

S
, 𝛼𝛼 =

−3𝑚𝑚, 𝑘𝑘 = √18𝑚𝑚à . It satisfies (15) if 
ã
}
(3(ln 𝜖𝜖)2/} + (ln 𝜖𝜖)1

C
à) = α	𝑓𝑓(0) − AúC

sqq(t)
  and 

where the additional condition 𝑘𝑘𝜖𝜖(ln 𝜖𝜖)2/} =
¢−𝑓𝑓′′(0)  ensures that the resulting (implicit) 
solution: ∫ £o

		oC(§• o)
C
à

sq(_)
r = −81𝑚𝑚S𝜂𝜂 satisfies (10-

11) for 𝜖𝜖 < 1. 
 
3.2.3. Proof of existence and uniqueness for 𝐵𝐵 ≠
0 
 
For 𝐵𝐵 ≠ 0 integrating (14) yields: 
 

ℎV(𝑧𝑧) − ℎV(𝑎𝑎) = −𝑛𝑛𝐵𝐵 î𝑧𝑧Sℎ1
2
0(𝑧𝑧) − 𝑎𝑎Sℎ1

2
0(𝑎𝑎)ï 

																													+	(𝐴𝐴 + 2𝑛𝑛𝐵𝐵) ∫ 𝜇𝜇ℎ1
F
D(𝜇𝜇)𝑑𝑑𝜇𝜇o

ë    (28)  
 
Observe that −𝑛𝑛𝐵𝐵 = −𝑚𝑚 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 = −𝛼𝛼. 
Equation (28) can be used as was done with 
equation (23), and with similar arguments to 
establish uniqueness of solutions that converge to 
(0,0) for 𝑛𝑛 > 1/2 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 < 0: 
 
Suppose that ℎ2 is a solution through the origin. 
Take another solution ℎS to (14) with initial 
conditions ℎS(𝑧𝑧) = ℎ2(𝑧𝑧) but a larger ℎ′S(𝑧𝑧), i.e., 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧). The two solutions may not 
intersect at any point 𝑎𝑎 < 𝑧𝑧, since if they did we 
should have ℎ′2(𝑎𝑎) > ℎ′S(𝑎𝑎) (the condition 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧) implies that ℎS < ℎ2 within the 
interval (𝑎𝑎, 𝑧𝑧) so that geometrically ℎS is under 
ℎ2). Now, the first term on the right hand side of 
(28) would be the same for ℎ2 and ℎS, and 
therefore we have: 
 
ℎSV (𝑎𝑎) − ℎ2V (𝑎𝑎) = ℎSV (𝑧𝑧) − ℎ2V (𝑧𝑧) 

    −(𝐴𝐴 + 2𝑛𝑛𝐵𝐵)∫

	

𝜇𝜇 ¶ℎS
1FD(𝜇𝜇) − ℎ2

1FD(𝜇𝜇)ß 𝑑𝑑𝜇𝜇
o
ë    (29) 

 
which implies that ℎ′S(𝑎𝑎) > ℎ′2(𝑎𝑎) since the 
right-hand side is positive for 𝑛𝑛 > 1/2  (ℎS(𝜇𝜇) <
ℎ2(𝜇𝜇) within the interval (𝑎𝑎, 𝑧𝑧)  and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 <
0). This is a contradiction, so therefore we have 
the following crucial uniqueness result stated in 
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Observe that both solutions satisfy the boundary 
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solutions for problem (10-11). 
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For 𝐵𝐵 ≠ 0 integrating (14) yields: 
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Observe that −𝑛𝑛𝐵𝐵 = −𝑚𝑚 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 = −𝛼𝛼. 
Equation (28) can be used as was done with 
equation (23), and with similar arguments to 
establish uniqueness of solutions that converge to 
(0,0) for 𝑛𝑛 > 1/2 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 < 0: 
 
Suppose that ℎ2 is a solution through the origin. 
Take another solution ℎS to (14) with initial 
conditions ℎS(𝑧𝑧) = ℎ2(𝑧𝑧) but a larger ℎ′S(𝑧𝑧), i.e., 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧). The two solutions may not 
intersect at any point 𝑎𝑎 < 𝑧𝑧, since if they did we 
should have ℎ′2(𝑎𝑎) > ℎ′S(𝑎𝑎) (the condition 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧) implies that ℎS < ℎ2 within the 
interval (𝑎𝑎, 𝑧𝑧) so that geometrically ℎS is under 
ℎ2). Now, the first term on the right hand side of 
(28) would be the same for ℎ2 and ℎS, and 
therefore we have: 
 
ℎSV (𝑎𝑎) − ℎ2V (𝑎𝑎) = ℎSV (𝑧𝑧) − ℎ2V (𝑧𝑧) 
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which implies that ℎ′S(𝑎𝑎) > ℎ′2(𝑎𝑎) since the 
right-hand side is positive for 𝑛𝑛 > 1/2  (ℎS(𝜇𝜇) <
ℎ2(𝜇𝜇) within the interval (𝑎𝑎, 𝑧𝑧)  and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 <
0). This is a contradiction, so therefore we have 
the following crucial uniqueness result stated in 
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0T2 	] + 	𝑓𝑓(0), 

and where −Jℎ(𝜖𝜖)L
F
D = 𝑓𝑓VV(0) = −	√𝑘𝑘D 	𝜖𝜖w

à
DGFx. 

 
Observe that both solutions satisfy the boundary 
conditions: 𝑓𝑓V(0) = 𝜖𝜖 and 𝑓𝑓V(∞) = 0, and then 
choosing the same 𝑓𝑓(0) = 𝑎𝑎, results in two 
different values for 𝑓𝑓′′(0) namely: 𝑓𝑓VV(0) =
{
F
D(~T{ó)
A({12)

 for the first and 𝑓𝑓VV(0) = (~T{ó)
A({12)

 for the 
second. This establishes non-uniqueness of 
solutions for problem (10-11). 
 
3.2.2. Exact solutions and asymptotic behavior for 
𝐵𝐵 ≠ 0, 𝑛𝑛 = 2

S
 

 

For 𝐵𝐵 ≠ 0, 𝑛𝑛 = 2
S
, assume an asymptotic solution 

of the form ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧(ln 𝑧𝑧){. Substituting back 

into (14) yields 𝑝𝑝 = 2
}
, 𝑘𝑘 = w~Tó

{
x
2/}

= (3(𝐴𝐴 +

𝐵𝐵))2/} which for negative 𝐴𝐴 + 𝐵𝐵 does yield a 
positive solution (𝑘𝑘 < 0, 𝑧𝑧 > 0,	ln 𝑧𝑧 < 0) for 
ℎ(𝑧𝑧). This in turn yields the asymptotic behavior 
𝑓𝑓V → 	 (𝑘𝑘S𝜂𝜂	 + 	𝐾𝐾	)12. In fact, ℎ(𝑧𝑧) = 	𝑘𝑘𝑧𝑧√ln 𝑧𝑧à  is 
an exact solution to (14) if 𝐴𝐴 = −†ó

S
, 𝛼𝛼 =

−3𝑚𝑚, 𝑘𝑘 = √18𝑚𝑚à . It satisfies (15) if 
ã
}
(3(ln 𝜖𝜖)2/} + (ln 𝜖𝜖)1

C
à) = α	𝑓𝑓(0) − AúC

sqq(t)
  and 

where the additional condition 𝑘𝑘𝜖𝜖(ln 𝜖𝜖)2/} =
¢−𝑓𝑓′′(0)  ensures that the resulting (implicit) 
solution: ∫ £o

		oC(§• o)
C
à

sq(_)
r = −81𝑚𝑚S𝜂𝜂 satisfies (10-

11) for 𝜖𝜖 < 1. 
 
3.2.3. Proof of existence and uniqueness for 𝐵𝐵 ≠
0 
 
For 𝐵𝐵 ≠ 0 integrating (14) yields: 
 

ℎV(𝑧𝑧) − ℎV(𝑎𝑎) = −𝑛𝑛𝐵𝐵 î𝑧𝑧Sℎ1
2
0(𝑧𝑧) − 𝑎𝑎Sℎ1

2
0(𝑎𝑎)ï 

																													+	(𝐴𝐴 + 2𝑛𝑛𝐵𝐵) ∫ 𝜇𝜇ℎ1
F
D(𝜇𝜇)𝑑𝑑𝜇𝜇o

ë    (28)  
 
Observe that −𝑛𝑛𝐵𝐵 = −𝑚𝑚 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 = −𝛼𝛼. 
Equation (28) can be used as was done with 
equation (23), and with similar arguments to 
establish uniqueness of solutions that converge to 
(0,0) for 𝑛𝑛 > 1/2 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 < 0: 
 
Suppose that ℎ2 is a solution through the origin. 
Take another solution ℎS to (14) with initial 
conditions ℎS(𝑧𝑧) = ℎ2(𝑧𝑧) but a larger ℎ′S(𝑧𝑧), i.e., 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧). The two solutions may not 
intersect at any point 𝑎𝑎 < 𝑧𝑧, since if they did we 
should have ℎ′2(𝑎𝑎) > ℎ′S(𝑎𝑎) (the condition 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧) implies that ℎS < ℎ2 within the 
interval (𝑎𝑎, 𝑧𝑧) so that geometrically ℎS is under 
ℎ2). Now, the first term on the right hand side of 
(28) would be the same for ℎ2 and ℎS, and 
therefore we have: 
 
ℎSV (𝑎𝑎) − ℎ2V (𝑎𝑎) = ℎSV (𝑧𝑧) − ℎ2V (𝑧𝑧) 

    −(𝐴𝐴 + 2𝑛𝑛𝐵𝐵)∫
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o
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which implies that ℎ′S(𝑎𝑎) > ℎ′2(𝑎𝑎) since the 
right-hand side is positive for 𝑛𝑛 > 1/2  (ℎS(𝜇𝜇) <
ℎ2(𝜇𝜇) within the interval (𝑎𝑎, 𝑧𝑧)  and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 <
0). This is a contradiction, so therefore we have 
the following crucial uniqueness result stated in 
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more general. The (Crocco variable) solution 
ℎ(𝑧𝑧) = wα	𝑓𝑓(0) − AúC

sqq(t)
x 𝑧𝑧  results in the 
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𝑓𝑓′(𝜂𝜂) and 𝑓𝑓(𝜂𝜂): 
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¢−𝑓𝑓′′(0)  ensures that the resulting (implicit) 
solution: ∫ £o
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r = −81𝑚𝑚S𝜂𝜂 satisfies (10-

11) for 𝜖𝜖 < 1. 
 
3.2.3. Proof of existence and uniqueness for 𝐵𝐵 ≠
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For 𝐵𝐵 ≠ 0 integrating (14) yields: 
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Observe that −𝑛𝑛𝐵𝐵 = −𝑚𝑚 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 = −𝛼𝛼. 
Equation (28) can be used as was done with 
equation (23), and with similar arguments to 
establish uniqueness of solutions that converge to 
(0,0) for 𝑛𝑛 > 1/2 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 < 0: 
 
Suppose that ℎ2 is a solution through the origin. 
Take another solution ℎS to (14) with initial 
conditions ℎS(𝑧𝑧) = ℎ2(𝑧𝑧) but a larger ℎ′S(𝑧𝑧), i.e., 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧). The two solutions may not 
intersect at any point 𝑎𝑎 < 𝑧𝑧, since if they did we 
should have ℎ′2(𝑎𝑎) > ℎ′S(𝑎𝑎) (the condition 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧) implies that ℎS < ℎ2 within the 
interval (𝑎𝑎, 𝑧𝑧) so that geometrically ℎS is under 
ℎ2). Now, the first term on the right hand side of 
(28) would be the same for ℎ2 and ℎS, and 
therefore we have: 
 
ℎSV (𝑎𝑎) − ℎ2V (𝑎𝑎) = ℎSV (𝑧𝑧) − ℎ2V (𝑧𝑧) 
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ℎ2(𝜇𝜇) within the interval (𝑎𝑎, 𝑧𝑧)  and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 <
0). This is a contradiction, so therefore we have 
the following crucial uniqueness result stated in 
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more general. The (Crocco variable) solution 
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which implies that ℎ′S(𝑎𝑎) > ℎ′2(𝑎𝑎) since the 
right-hand side is positive for 𝑛𝑛 > 1/2  (ℎS(𝜇𝜇) <
ℎ2(𝜇𝜇) within the interval (𝑎𝑎, 𝑧𝑧)  and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 <
0). This is a contradiction, so therefore we have 
the following crucial uniqueness result stated in 

(29)

which implies that      since the right-
hand side is positive for n >1/2 (h2(μ) < 

h1(μ) within the interval (a,z)  and A+2nB<0). This is 
a contradiction, so therefore we have the following 
crucial uniqueness result stated in Theorem 6 (note 
that A+2nB=-α<0 in many applied problems).

Asymptotic Behavior and Existence of Similarity Solutions for a Boundary Layer Flow Problem 
 
 
more general. The (Crocco variable) solution 
ℎ(𝑧𝑧) = wα	𝑓𝑓(0) − AúC

sqq(t)
x 𝑧𝑧  results in the 

following solution to the original problem for 
𝑓𝑓′(𝜂𝜂) and 𝑓𝑓(𝜂𝜂): 

𝑓𝑓V(𝜂𝜂) = ùô
1
𝑛𝑛 − 1ö îα	𝑓𝑓

(0) −
𝑚𝑚ϵS

𝑓𝑓VV(0)ï

2
0
𝜂𝜂 + 𝜖𝜖21

2
0	û

0
012

 

𝑓𝑓(𝜂𝜂) = 𝑓𝑓(0) +	  

𝑛𝑛

ùw1𝑛𝑛 − 1xîα	𝑓𝑓(0) −
𝑚𝑚ϵ2

𝑓𝑓′′(0)
ï

1
𝑛𝑛
𝜂𝜂 + 𝜖𝜖1−

1
𝑛𝑛	û

2𝑛𝑛−1
𝑛𝑛−1

− 𝜖𝜖
2𝑛𝑛−1
𝑛𝑛

(2𝑛𝑛 − 1) îα	𝑓𝑓(0) − 𝑚𝑚ϵ2

𝑓𝑓′′(0)
ï

1
𝑛𝑛

 

 
It can be directly checked that this is a solution to 

(10-11) provided α	𝑓𝑓(0) − AúC

sqq(t)
=

w1sqq(t)x
D

r
, a 

condition that can also be obtained from the 
Crocco variables with ℎ(𝑧𝑧) as given above where: 
ℎ(𝜖𝜖) = wα	𝑓𝑓(0) − AúC

sqq(t)
x 𝜖𝜖 = J−𝑓𝑓VV(0)L0. 

On the other hand, the other (Crocco variable) 
solution ℎ(𝑧𝑧) = 𝑘𝑘𝑧𝑧{ results in the solution: 
 

𝑓𝑓V(𝜂𝜂) = ô
2 − 𝑛𝑛
𝑛𝑛 + 1

√𝑘𝑘D 	𝜂𝜂 + 𝜖𝜖
01S
0T2	ö

0T2
01S

 
 

𝑓𝑓(𝜂𝜂) =
𝑛𝑛 + 1

(1 − 2𝑛𝑛)√𝑘𝑘D [	ô
2 − 𝑛𝑛
𝑛𝑛 + 1

√𝑘𝑘D 	𝜂𝜂 + 𝜖𝜖
01S
0T2	ö

S012
01S

− 𝜖𝜖
S012
0T2 	] + 	𝑓𝑓(0), 

and where −Jℎ(𝜖𝜖)L
F
D = 𝑓𝑓VV(0) = −	√𝑘𝑘D 	𝜖𝜖w

à
DGFx. 

 
Observe that both solutions satisfy the boundary 
conditions: 𝑓𝑓V(0) = 𝜖𝜖 and 𝑓𝑓V(∞) = 0, and then 
choosing the same 𝑓𝑓(0) = 𝑎𝑎, results in two 
different values for 𝑓𝑓′′(0) namely: 𝑓𝑓VV(0) =
{
F
D(~T{ó)
A({12)

 for the first and 𝑓𝑓VV(0) = (~T{ó)
A({12)

 for the 
second. This establishes non-uniqueness of 
solutions for problem (10-11). 
 
3.2.2. Exact solutions and asymptotic behavior for 
𝐵𝐵 ≠ 0, 𝑛𝑛 = 2

S
 

 

For 𝐵𝐵 ≠ 0, 𝑛𝑛 = 2
S
, assume an asymptotic solution 

of the form ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧(ln 𝑧𝑧){. Substituting back 

into (14) yields 𝑝𝑝 = 2
}
, 𝑘𝑘 = w~Tó

{
x
2/}

= (3(𝐴𝐴 +

𝐵𝐵))2/} which for negative 𝐴𝐴 + 𝐵𝐵 does yield a 
positive solution (𝑘𝑘 < 0, 𝑧𝑧 > 0,	ln 𝑧𝑧 < 0) for 
ℎ(𝑧𝑧). This in turn yields the asymptotic behavior 
𝑓𝑓V → 	 (𝑘𝑘S𝜂𝜂	 + 	𝐾𝐾	)12. In fact, ℎ(𝑧𝑧) = 	𝑘𝑘𝑧𝑧√ln 𝑧𝑧à  is 
an exact solution to (14) if 𝐴𝐴 = −†ó

S
, 𝛼𝛼 =

−3𝑚𝑚, 𝑘𝑘 = √18𝑚𝑚à . It satisfies (15) if 
ã
}
(3(ln 𝜖𝜖)2/} + (ln 𝜖𝜖)1

C
à) = α	𝑓𝑓(0) − AúC

sqq(t)
  and 

where the additional condition 𝑘𝑘𝜖𝜖(ln 𝜖𝜖)2/} =
¢−𝑓𝑓′′(0)  ensures that the resulting (implicit) 
solution: ∫ £o

		oC(§• o)
C
à

sq(_)
r = −81𝑚𝑚S𝜂𝜂 satisfies (10-

11) for 𝜖𝜖 < 1. 
 
3.2.3. Proof of existence and uniqueness for 𝐵𝐵 ≠
0 
 
For 𝐵𝐵 ≠ 0 integrating (14) yields: 
 

ℎV(𝑧𝑧) − ℎV(𝑎𝑎) = −𝑛𝑛𝐵𝐵 î𝑧𝑧Sℎ1
2
0(𝑧𝑧) − 𝑎𝑎Sℎ1

2
0(𝑎𝑎)ï 

																													+	(𝐴𝐴 + 2𝑛𝑛𝐵𝐵) ∫ 𝜇𝜇ℎ1
F
D(𝜇𝜇)𝑑𝑑𝜇𝜇o

ë    (28)  
 
Observe that −𝑛𝑛𝐵𝐵 = −𝑚𝑚 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 = −𝛼𝛼. 
Equation (28) can be used as was done with 
equation (23), and with similar arguments to 
establish uniqueness of solutions that converge to 
(0,0) for 𝑛𝑛 > 1/2 and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 < 0: 
 
Suppose that ℎ2 is a solution through the origin. 
Take another solution ℎS to (14) with initial 
conditions ℎS(𝑧𝑧) = ℎ2(𝑧𝑧) but a larger ℎ′S(𝑧𝑧), i.e., 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧). The two solutions may not 
intersect at any point 𝑎𝑎 < 𝑧𝑧, since if they did we 
should have ℎ′2(𝑎𝑎) > ℎ′S(𝑎𝑎) (the condition 
ℎ′S(𝑧𝑧) > ℎ′2(𝑧𝑧) implies that ℎS < ℎ2 within the 
interval (𝑎𝑎, 𝑧𝑧) so that geometrically ℎS is under 
ℎ2). Now, the first term on the right hand side of 
(28) would be the same for ℎ2 and ℎS, and 
therefore we have: 
 
ℎSV (𝑎𝑎) − ℎ2V (𝑎𝑎) = ℎSV (𝑧𝑧) − ℎ2V (𝑧𝑧) 

    −(𝐴𝐴 + 2𝑛𝑛𝐵𝐵)∫

	

𝜇𝜇 ¶ℎS
1FD(𝜇𝜇) − ℎ2

1FD(𝜇𝜇)ß 𝑑𝑑𝜇𝜇
o
ë    (29) 

 
which implies that ℎ′S(𝑎𝑎) > ℎ′2(𝑎𝑎) since the 
right-hand side is positive for 𝑛𝑛 > 1/2  (ℎS(𝜇𝜇) <
ℎ2(𝜇𝜇) within the interval (𝑎𝑎, 𝑧𝑧)  and 𝐴𝐴 + 2𝑛𝑛𝐵𝐵 <
0). This is a contradiction, so therefore we have 
the following crucial uniqueness result stated in 

Theorem 6  There   is  a  unique solution to (14) subject 
to (15) for n >1/2  and A+2nB<0.

4. Numerical solutions

The established results were confirmed by numerical 
solutions where some figures are included as illustrations. 
Figure 1 is an illustration of Theorem 2 where a solution 
in the first quadrant does not exist for n <   ,B=0. The 
figure shows different values of    , however note 
that higher values of       take the values of h(0) down 
(curves marked with 'o', '-', and '⋅') but never reaching 
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We first consider the case where 𝐵𝐵 = 0. This 
happens when 𝑚𝑚 = 0 in our derivation process 
since 𝐵𝐵 = −A

0
.  To discuss the asymptotic 

behavior of 𝑓𝑓V (and consequently 𝑓𝑓) as η → ∞ let 
ℎ(𝑧𝑧) be represented by ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{  for z close to 
0 (z > 0), and for some parameters k and 𝑝𝑝. 
Observe that k must be positive since ℎ(𝑧𝑧) is a 
positive function so that for  𝐴𝐴 < 0 and 0 < 𝑛𝑛 < 2

S
  

we have:  
 
𝑝𝑝 = }0

0T2
,											𝑘𝑘2T

F
D = ~

{({12)
                           (16) 

 

This implies that  𝑝𝑝 < 1 and consequently 𝑘𝑘 > 0 
which is consistent with the fact that ℎ(𝑧𝑧) must be 
a positive function. In fact ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{ in its own 
right is an exact solution to (14) which satisfies 
(15) if ℎV(𝜖𝜖) = 𝑘𝑘𝑝𝑝𝜖𝜖{12 = 𝛼𝛼𝛼𝛼 = 𝛼𝛼𝑓𝑓(0) > 0.  

Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (derivatives of 𝑓𝑓	as 
given above in (12)) and integrating the resulting 
equation, yields:  
 
𝑓𝑓V ≈ (	wS10

0T2
	𝑘𝑘

F
Dx 𝜂𝜂 + 𝐾𝐾	)

DGF
DEC	                             (17) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant (of 
integration). In other words: 
 
𝑓𝑓V → 	c ⋅ 𝜂𝜂

DGF
DEC	 as 𝜂𝜂 → ∞                                   (18) 

 
for 0 < 𝑛𝑛 < 2

S
 and for some constant 𝑐𝑐 > 0, where 

in fact 𝑐𝑐 = wS10
0T2

	𝑘𝑘
F
Dx

DGF
DEC. Observe that 𝑓𝑓V tends to 

zero as 𝜂𝜂 → ∞, while 
 
𝑓𝑓 → 	 01S

S012
c ⋅ 𝜂𝜂

CDEF
DEC + 𝐿𝐿                                     (19) 

 
where 𝐿𝐿	is a constant. Note that 𝑓𝑓	does not tend to 
constant as 𝜂𝜂 → ∞	since the exponent S012

01S
> 0.  

 
Now for 	𝑛𝑛 > 2

S
,  let  ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧 + 𝜅𝜅𝑧𝑧{  for 𝑧𝑧	close 

to 0 (𝑧𝑧 > 0). This yields a value of 𝑝𝑝 = 3 − 2
0
 

(observe that 𝑝𝑝 > 1), and it can be shown that the 
equation 𝜅𝜅𝑝𝑝(𝑝𝑝 − 1)𝜅𝜅

F
D = 𝐴𝐴 relates 𝑘𝑘 > 0 to 𝜅𝜅. 

Observe that this works for positive 𝐴𝐴 as well as 
negative 𝐴𝐴. This is the case where 𝜅𝜅 is positive 

when 𝐴𝐴 is positive, and it is negative when 𝐴𝐴 is 
negative. However, 𝑘𝑘	is positive in both cases. 
Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (12) and integrating 
the resulting equation yields:  
 
𝑓𝑓V ≈ (	w210

0
(𝑘𝑘)

F
Dx 𝜂𝜂 + 𝐾𝐾	)

D
DEF                           (20) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant. Therefore 
we have: 
 
𝑓𝑓V → 	c ⋅ 	𝜂𝜂

D
DEF   as    𝜂𝜂 → ∞,                             (21) 

 
for  2

S
< 𝑛𝑛 < 1 and for some constant 𝑐𝑐 > 0, 

which in turn implies that: 
 
𝑓𝑓 → 012

S012
⋅ 𝑐𝑐 ⋅ 	𝜂𝜂

CDEF
DEF + 𝑓𝑓                                  (22) 

 
so that 𝑓𝑓 tends to a constant 𝑓𝑓   as  𝜂𝜂 → ∞ since 
the exponent on 𝜂𝜂 is negative. On the other hand, 
observe that if 𝑛𝑛 > 1 the first term in (20) is 
negative, and then in the case of even radicals on 
exponents the equation will terminate and cannot 
be extended with infinite 𝜂𝜂, otherwise 𝑓𝑓′ will be 
negative or become unbounded which is a 
contradiction: In fact equation (20) suggests that 
𝑓𝑓′ and 𝑓𝑓′′ reach zero at a finite value of 𝜂𝜂 when 
the expression in parentheses reaches zero. This 
shows the natural and crucial result that for 𝑛𝑛 >
1, 𝑓𝑓′ goes to zero very rapidly and may reach zero 
at a finite 𝜂𝜂 which is consistent with the results 
obtained in Wei & Al-Ashhab (2014) for a similar 
equation. Finally observe that, in this case of 𝑛𝑛 >
1, 𝑓𝑓 tends to a constant as 𝜂𝜂 → ∞ since 𝑓𝑓′ reaches 
zero at finite 𝜂𝜂 as discussed above. 
 
    For 𝑛𝑛 = 1/2, observe that we may assume an 
approximation of the form ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧(ln 𝑧𝑧){	 near 
𝑧𝑧 = 0, where substituting back into (14) yields 

𝑝𝑝 = 2
}
, and 𝑘𝑘 = w~

{
x
F
à = (3𝐴𝐴)

F
à which for negative 

𝐴𝐴 does yield the positive (since 𝑧𝑧 ≈ 0 with 𝑧𝑧 > 0) 
approximate solution ℎ(𝑧𝑧) ≈ (3𝐴𝐴)

F
à𝑧𝑧(ln 𝑧𝑧)

F
à, and 

where it can be concluded that a solution 
satisfying (14-15) exists, but with possibly 
additional conditions on the parameters of the 
problem. This in turn yields an asymptotic 
behavior of the form 𝑓𝑓V → (𝑘𝑘S𝜂𝜂 + 𝐾𝐾)12. 
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Theorem 6 (note that 𝐴𝐴 + 2𝑛𝑛𝑛𝑛 = −𝛼𝛼 < 0 in 
many applied problems). 
 
Theorem 6 There is a unique solution to (14) 
subject to (15) for 𝑛𝑛 > 1/2  and 𝐴𝐴 + 2𝑛𝑛𝑛𝑛 < 0. 
 
4. Numerical solutions 
 
The established results were confirmed by 
numerical solutions where some figures are 
included as illustrations. Figure 1 is an illustration 
of Theorem 2 where a solution in the first 
quadrant does not exist for 𝑛𝑛 < 2

S
, 𝑛𝑛 = 0. The 

figure shows different values of ℎV(1), however 
note that higher values of ℎV(1)  take the values of 
ℎ(0) down (curves marked with 'o', '-', and '⋅') but 
never reaching the boundary condition ℎ(0) = 0, 
as they eventually take a sharp turn for higher 
values of ℎ(0) (curves marked with '-⋅ ', and '*'). 
Figure 2 is an illustration of Theorem 6 in which a 
solution does exist satisfying the required 
boundary conditions for this singular problem at 
𝑧𝑧 = 0.  
 

 

Figure 1. No solution case for 𝑛𝑛 < 2
S
; 𝑛𝑛 = 0 

(Theorem 2). [𝑛𝑛 = 0.4, 𝐴𝐴 = 0.1, 𝑛𝑛 = 0. I.C.'s 
ℎ(1) = 1, 	ℎV(1) = 0.5, 1, 1.1, 1.2, 1.5]. 
 
    Figure 3 is an illustration of Theorem 4. It can 
be observed that a solution exists here, yet 
numerical results are difficult to illustrate exactly 
since the derivatives are infinite around 𝑥𝑥 = 0 
(𝑦𝑦 ∼ 	𝑥𝑥t.†). In fact, the “bifurcation” here between 
the two curves results from a slight change of the 
initial condition ℎ(1) at 𝑧𝑧 = 1, this sharpness can 
be attributed to the small value of 𝑛𝑛 = 0.2. 
Advanced integrators will be needed to extend the 
numerical solution to the singularity at (0,0). 
 

 
Figure 2. Existence of solutions for 𝑛𝑛 > 2

S
 and 

𝐴𝐴 + 2𝑛𝑛𝑛𝑛 < 0 (Theorem 6). [ℎ(1) = 1,𝑚𝑚 =
0.6, 𝛼𝛼 = 1: pseudo-plastic fluid (solid line)  𝑛𝑛 =
0.5086, ℎV(1) = 0.6 and dilatant fluid (solid line-
*) 𝑛𝑛 = 4, ℎV(1) = 1.018]. 

 
Figure 3. Solutions having infinite derivatives 
(Theorem 4). [𝑛𝑛 = 0.2, 𝐴𝐴 = 0.9, 𝑛𝑛 = −2, ℎV(1) =
0.4]. 

 
Figure 4. Non-uniqueness of solutions case 
(Proposition 5).	[𝑛𝑛 = 0.2		(𝑛𝑛 < 0.5), 𝐴𝐴 = −2, 𝑛𝑛 =
2, ℎV w5 ⋅ (2)1

Æ
àx = 5 ⋅ (2)1

Ø
à].  
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the boundary condition h(0)=0, as they eventually take 
a sharp turn for higher values of h(0) (curves marked 
with '-⋅ ', and '*'). Figure 2 is an illustration of Theorem 
6 in which a solution does exist satisfying the required 
boundary conditions for this singular problem at z=0. 

Samer Al-Ashhab 
 

Theorem 6 (note that 𝐴𝐴 + 2𝑛𝑛𝑛𝑛 = −𝛼𝛼 < 0 in 
many applied problems). 
 
Theorem 6 There is a unique solution to (14) 
subject to (15) for 𝑛𝑛 > 1/2  and 𝐴𝐴 + 2𝑛𝑛𝑛𝑛 < 0. 
 
4. Numerical solutions 
 
The established results were confirmed by 
numerical solutions where some figures are 
included as illustrations. Figure 1 is an illustration 
of Theorem 2 where a solution in the first 
quadrant does not exist for 𝑛𝑛 < 2

S
, 𝑛𝑛 = 0. The 

figure shows different values of ℎV(1), however 
note that higher values of ℎV(1)  take the values of 
ℎ(0) down (curves marked with 'o', '-', and '⋅') but 
never reaching the boundary condition ℎ(0) = 0, 
as they eventually take a sharp turn for higher 
values of ℎ(0) (curves marked with '-⋅ ', and '*'). 
Figure 2 is an illustration of Theorem 6 in which a 
solution does exist satisfying the required 
boundary conditions for this singular problem at 
𝑧𝑧 = 0.  
 

 

Figure 1. No solution case for 𝑛𝑛 < 2
S
; 𝑛𝑛 = 0 

(Theorem 2). [𝑛𝑛 = 0.4, 𝐴𝐴 = 0.1, 𝑛𝑛 = 0. I.C.'s 
ℎ(1) = 1, 	ℎV(1) = 0.5, 1, 1.1, 1.2, 1.5]. 
 
    Figure 3 is an illustration of Theorem 4. It can 
be observed that a solution exists here, yet 
numerical results are difficult to illustrate exactly 
since the derivatives are infinite around 𝑥𝑥 = 0 
(𝑦𝑦 ∼ 	𝑥𝑥t.†). In fact, the “bifurcation” here between 
the two curves results from a slight change of the 
initial condition ℎ(1) at 𝑧𝑧 = 1, this sharpness can 
be attributed to the small value of 𝑛𝑛 = 0.2. 
Advanced integrators will be needed to extend the 
numerical solution to the singularity at (0,0). 
 

 
Figure 2. Existence of solutions for 𝑛𝑛 > 2

S
 and 

𝐴𝐴 + 2𝑛𝑛𝑛𝑛 < 0 (Theorem 6). [ℎ(1) = 1,𝑚𝑚 =
0.6, 𝛼𝛼 = 1: pseudo-plastic fluid (solid line)  𝑛𝑛 =
0.5086, ℎV(1) = 0.6 and dilatant fluid (solid line-
*) 𝑛𝑛 = 4, ℎV(1) = 1.018]. 

 
Figure 3. Solutions having infinite derivatives 
(Theorem 4). [𝑛𝑛 = 0.2, 𝐴𝐴 = 0.9, 𝑛𝑛 = −2, ℎV(1) =
0.4]. 

 
Figure 4. Non-uniqueness of solutions case 
(Proposition 5).	[𝑛𝑛 = 0.2		(𝑛𝑛 < 0.5), 𝐴𝐴 = −2, 𝑛𝑛 =
2, ℎV w5 ⋅ (2)1

Æ
àx = 5 ⋅ (2)1

Ø
à].  

 

Fig. 1. No solution case for n<     ;B=0 
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0
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S
  

we have:  
 
𝑝𝑝 = }0

0T2
,											𝑘𝑘2T

F
D = ~

{({12)
                           (16) 

 

This implies that  𝑝𝑝 < 1 and consequently 𝑘𝑘 > 0 
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Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (derivatives of 𝑓𝑓	as 
given above in (12)) and integrating the resulting 
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𝑓𝑓V ≈ (	wS10

0T2
	𝑘𝑘

F
Dx 𝜂𝜂 + 𝐾𝐾	)

DGF
DEC	                             (17) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant (of 
integration). In other words: 
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DGF
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for 0 < 𝑛𝑛 < 2

S
 and for some constant 𝑐𝑐 > 0, where 

in fact 𝑐𝑐 = wS10
0T2

	𝑘𝑘
F
Dx

DGF
DEC. Observe that 𝑓𝑓V tends to 

zero as 𝜂𝜂 → ∞, while 
 
𝑓𝑓 → 	 01S

S012
c ⋅ 𝜂𝜂

CDEF
DEC + 𝐿𝐿                                     (19) 

 
where 𝐿𝐿	is a constant. Note that 𝑓𝑓	does not tend to 
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01S
> 0.  
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S
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to 0 (𝑧𝑧 > 0). This yields a value of 𝑝𝑝 = 3 − 2
0
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F
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0
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F
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D
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for large 𝜂𝜂 and where 𝐾𝐾 is a constant. Therefore 
we have: 
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S
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S012
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    For 𝑛𝑛 = 1/2, observe that we may assume an 
approximation of the form ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧(ln 𝑧𝑧){	 near 
𝑧𝑧 = 0, where substituting back into (14) yields 

𝑝𝑝 = 2
}
, and 𝑘𝑘 = w~

{
x
F
à = (3𝐴𝐴)

F
à which for negative 

𝐴𝐴 does yield the positive (since 𝑧𝑧 ≈ 0 with 𝑧𝑧 > 0) 
approximate solution ℎ(𝑧𝑧) ≈ (3𝐴𝐴)

F
à𝑧𝑧(ln 𝑧𝑧)

F
à, and 

where it can be concluded that a solution 
satisfying (14-15) exists, but with possibly 
additional conditions on the parameters of the 
problem. This in turn yields an asymptotic 
behavior of the form 𝑓𝑓V → (𝑘𝑘S𝜂𝜂 + 𝐾𝐾)12. 
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never reaching the boundary condition ℎ(0) = 0, 
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values of ℎ(0) (curves marked with '-⋅ ', and '*'). 
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Figure 3. Solutions having infinite derivatives 
(Theorem 4). [𝑛𝑛 = 0.2, 𝐴𝐴 = 0.9, 𝑛𝑛 = −2, ℎV(1) =
0.4]. 

 
Figure 4. Non-uniqueness of solutions case 
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Figure 3 is an illustration of Theorem 4. It can be 
observed that a solution exists here, yet numerical 
results are difficult to illustrate exactly since the 
derivatives are infinite around x=0 ( y∼ x0.5). In fact, 
the “bifurcation” here between the two curves results 
from a slight change of the initial condition h(1) at 
z=1, this sharpness can be attributed to the small value 
of n=0.2. Advanced integrators will be needed to 
extend the numerical solution to the singularity at (0,0).
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Fig. 2. Existence of solutions for n >1/2 and A+2nB<0 
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Fig. 3. Solutions having infinite derivatives (Theorem 
4). [n=0.2,A=0.9,B=-2,          =0.4].
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quadrant does not exist for 𝑛𝑛 < 2

S
, 𝑛𝑛 = 0. The 

figure shows different values of ℎV(1), however 
note that higher values of ℎV(1)  take the values of 
ℎ(0) down (curves marked with 'o', '-', and '⋅') but 
never reaching the boundary condition ℎ(0) = 0, 
as they eventually take a sharp turn for higher 
values of ℎ(0) (curves marked with '-⋅ ', and '*'). 
Figure 2 is an illustration of Theorem 6 in which a 
solution does exist satisfying the required 
boundary conditions for this singular problem at 
𝑧𝑧 = 0.  
 

 

Figure 1. No solution case for 𝑛𝑛 < 2
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    Figure 3 is an illustration of Theorem 4. It can 
be observed that a solution exists here, yet 
numerical results are difficult to illustrate exactly 
since the derivatives are infinite around 𝑥𝑥 = 0 
(𝑦𝑦 ∼ 	𝑥𝑥t.†). In fact, the “bifurcation” here between 
the two curves results from a slight change of the 
initial condition ℎ(1) at 𝑧𝑧 = 1, this sharpness can 
be attributed to the small value of 𝑛𝑛 = 0.2. 
Advanced integrators will be needed to extend the 
numerical solution to the singularity at (0,0). 
 

 
Figure 2. Existence of solutions for 𝑛𝑛 > 2
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 and 

𝐴𝐴 + 2𝑛𝑛𝑛𝑛 < 0 (Theorem 6). [ℎ(1) = 1,𝑚𝑚 =
0.6, 𝛼𝛼 = 1: pseudo-plastic fluid (solid line)  𝑛𝑛 =
0.5086, ℎV(1) = 0.6 and dilatant fluid (solid line-
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Figure 4. Non-uniqueness of solutions case 
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 Finally, Figure 4 is an illustration of the non-uniqueness 
result exhibited in Proposition 5. Observe that the required 
boundary conditions here are satisfied as h(0)=0 and we 
have the same h'(ϵ) for both solutions. The difference in 
h(ϵ) in this case corresponds to a difference in f ''(0) while 
the boundary conditions for f (η) and f '(η) are also satisfied.
Remark The values of n had to be chosen in the range 
0< n <   for Figures 1, 3, and 4 to be consistent with 
the obtained results, which corresponds to pseudo-
plastic fluid. For Figure 2, since n >    , illustrations 
were made for pseudo-plastic and dilatant fluids.

5. Conclusions 

The asymptotic behavior of similarity solutions to a 
boundary layer flow problem characterized by a power-
law rheology has been examined for different values of 
the power-law index n >0. Exact solutions to the problem 
were exhibited in some cases. Conditions were determined 
where existence and uniqueness of the problem can be 
established. Instances were found where uniqueness 
fails. Non-uniqueness of solutions has been exhibited in 
those instances by explicit multiple solutions that satisfy 
the governing differential equation and its boundary 
conditions. The study utilized a generalized Crocco 
variable transformation which enabled us to add a new 
understanding to the problem and establish new results.
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We first consider the case where 𝐵𝐵 = 0. This 
happens when 𝑚𝑚 = 0 in our derivation process 
since 𝐵𝐵 = −A

0
.  To discuss the asymptotic 

behavior of 𝑓𝑓V (and consequently 𝑓𝑓) as η → ∞ let 
ℎ(𝑧𝑧) be represented by ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{  for z close to 
0 (z > 0), and for some parameters k and 𝑝𝑝. 
Observe that k must be positive since ℎ(𝑧𝑧) is a 
positive function so that for  𝐴𝐴 < 0 and 0 < 𝑛𝑛 < 2

S
  

we have:  
 
𝑝𝑝 = }0

0T2
,											𝑘𝑘2T

F
D = ~

{({12)
                           (16) 

 

This implies that  𝑝𝑝 < 1 and consequently 𝑘𝑘 > 0 
which is consistent with the fact that ℎ(𝑧𝑧) must be 
a positive function. In fact ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧{ in its own 
right is an exact solution to (14) which satisfies 
(15) if ℎV(𝜖𝜖) = 𝑘𝑘𝑝𝑝𝜖𝜖{12 = 𝛼𝛼𝛼𝛼 = 𝛼𝛼𝑓𝑓(0) > 0.  

Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (derivatives of 𝑓𝑓	as 
given above in (12)) and integrating the resulting 
equation, yields:  
 
𝑓𝑓V ≈ (	wS10

0T2
	𝑘𝑘

F
Dx 𝜂𝜂 + 𝐾𝐾	)

DGF
DEC	                             (17) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant (of 
integration). In other words: 
 
𝑓𝑓V → 	c ⋅ 𝜂𝜂

DGF
DEC	 as 𝜂𝜂 → ∞                                   (18) 

 
for 0 < 𝑛𝑛 < 2

S
 and for some constant 𝑐𝑐 > 0, where 

in fact 𝑐𝑐 = wS10
0T2

	𝑘𝑘
F
Dx

DGF
DEC. Observe that 𝑓𝑓V tends to 

zero as 𝜂𝜂 → ∞, while 
 
𝑓𝑓 → 	 01S

S012
c ⋅ 𝜂𝜂

CDEF
DEC + 𝐿𝐿                                     (19) 

 
where 𝐿𝐿	is a constant. Note that 𝑓𝑓	does not tend to 
constant as 𝜂𝜂 → ∞	since the exponent S012

01S
> 0.  

 
Now for 	𝑛𝑛 > 2

S
,  let  ℎ(𝑧𝑧) ≈ 	𝑘𝑘𝑧𝑧 + 𝜅𝜅𝑧𝑧{  for 𝑧𝑧	close 

to 0 (𝑧𝑧 > 0). This yields a value of 𝑝𝑝 = 3 − 2
0
 

(observe that 𝑝𝑝 > 1), and it can be shown that the 
equation 𝜅𝜅𝑝𝑝(𝑝𝑝 − 1)𝜅𝜅

F
D = 𝐴𝐴 relates 𝑘𝑘 > 0 to 𝜅𝜅. 

Observe that this works for positive 𝐴𝐴 as well as 
negative 𝐴𝐴. This is the case where 𝜅𝜅 is positive 

when 𝐴𝐴 is positive, and it is negative when 𝐴𝐴 is 
negative. However, 𝑘𝑘	is positive in both cases. 
Substituting back the values of 𝑧𝑧	and ℎ(𝑧𝑧) in 
terms of the Crocco variables (12) and integrating 
the resulting equation yields:  
 
𝑓𝑓V ≈ (	w210

0
(𝑘𝑘)

F
Dx 𝜂𝜂 + 𝐾𝐾	)

D
DEF                           (20) 

 
for large 𝜂𝜂 and where 𝐾𝐾 is a constant. Therefore 
we have: 
 
𝑓𝑓V → 	c ⋅ 	𝜂𝜂

D
DEF   as    𝜂𝜂 → ∞,                             (21) 

 
for  2

S
< 𝑛𝑛 < 1 and for some constant 𝑐𝑐 > 0, 

which in turn implies that: 
 
𝑓𝑓 → 012

S012
⋅ 𝑐𝑐 ⋅ 	𝜂𝜂

CDEF
DEF + 𝑓𝑓                                  (22) 

 
so that 𝑓𝑓 tends to a constant 𝑓𝑓   as  𝜂𝜂 → ∞ since 
the exponent on 𝜂𝜂 is negative. On the other hand, 
observe that if 𝑛𝑛 > 1 the first term in (20) is 
negative, and then in the case of even radicals on 
exponents the equation will terminate and cannot 
be extended with infinite 𝜂𝜂, otherwise 𝑓𝑓′ will be 
negative or become unbounded which is a 
contradiction: In fact equation (20) suggests that 
𝑓𝑓′ and 𝑓𝑓′′ reach zero at a finite value of 𝜂𝜂 when 
the expression in parentheses reaches zero. This 
shows the natural and crucial result that for 𝑛𝑛 >
1, 𝑓𝑓′ goes to zero very rapidly and may reach zero 
at a finite 𝜂𝜂 which is consistent with the results 
obtained in Wei & Al-Ashhab (2014) for a similar 
equation. Finally observe that, in this case of 𝑛𝑛 >
1, 𝑓𝑓 tends to a constant as 𝜂𝜂 → ∞ since 𝑓𝑓′ reaches 
zero at finite 𝜂𝜂 as discussed above. 
 
    For 𝑛𝑛 = 1/2, observe that we may assume an 
approximation of the form ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧(ln 𝑧𝑧){	 near 
𝑧𝑧 = 0, where substituting back into (14) yields 

𝑝𝑝 = 2
}
, and 𝑘𝑘 = w~

{
x
F
à = (3𝐴𝐴)

F
à which for negative 

𝐴𝐴 does yield the positive (since 𝑧𝑧 ≈ 0 with 𝑧𝑧 > 0) 
approximate solution ℎ(𝑧𝑧) ≈ (3𝐴𝐴)

F
à𝑧𝑧(ln 𝑧𝑧)

F
à, and 

where it can be concluded that a solution 
satisfying (14-15) exists, but with possibly 
additional conditions on the parameters of the 
problem. This in turn yields an asymptotic 
behavior of the form 𝑓𝑓V → (𝑘𝑘S𝜂𝜂 + 𝐾𝐾)12. 
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DEF   as    𝜂𝜂 → ∞,                             (21) 

 
for  2

S
< 𝑛𝑛 < 1 and for some constant 𝑐𝑐 > 0, 

which in turn implies that: 
 
𝑓𝑓 → 012

S012
⋅ 𝑐𝑐 ⋅ 	𝜂𝜂

CDEF
DEF + 𝑓𝑓                                  (22) 

 
so that 𝑓𝑓 tends to a constant 𝑓𝑓   as  𝜂𝜂 → ∞ since 
the exponent on 𝜂𝜂 is negative. On the other hand, 
observe that if 𝑛𝑛 > 1 the first term in (20) is 
negative, and then in the case of even radicals on 
exponents the equation will terminate and cannot 
be extended with infinite 𝜂𝜂, otherwise 𝑓𝑓′ will be 
negative or become unbounded which is a 
contradiction: In fact equation (20) suggests that 
𝑓𝑓′ and 𝑓𝑓′′ reach zero at a finite value of 𝜂𝜂 when 
the expression in parentheses reaches zero. This 
shows the natural and crucial result that for 𝑛𝑛 >
1, 𝑓𝑓′ goes to zero very rapidly and may reach zero 
at a finite 𝜂𝜂 which is consistent with the results 
obtained in Wei & Al-Ashhab (2014) for a similar 
equation. Finally observe that, in this case of 𝑛𝑛 >
1, 𝑓𝑓 tends to a constant as 𝜂𝜂 → ∞ since 𝑓𝑓′ reaches 
zero at finite 𝜂𝜂 as discussed above. 
 
    For 𝑛𝑛 = 1/2, observe that we may assume an 
approximation of the form ℎ(𝑧𝑧) ≈ 𝑘𝑘𝑧𝑧(ln 𝑧𝑧){	 near 
𝑧𝑧 = 0, where substituting back into (14) yields 

𝑝𝑝 = 2
}
, and 𝑘𝑘 = w~

{
x
F
à = (3𝐴𝐴)

F
à which for negative 

𝐴𝐴 does yield the positive (since 𝑧𝑧 ≈ 0 with 𝑧𝑧 > 0) 
approximate solution ℎ(𝑧𝑧) ≈ (3𝐴𝐴)

F
à𝑧𝑧(ln 𝑧𝑧)

F
à, and 

where it can be concluded that a solution 
satisfying (14-15) exists, but with possibly 
additional conditions on the parameters of the 
problem. This in turn yields an asymptotic 
behavior of the form 𝑓𝑓V → (𝑘𝑘S𝜂𝜂 + 𝐾𝐾)12. 
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السلوك المتقارب ووجود حلول تشابه لمسألة
تدفق ذات طبقة حدودية

سامر الأشهب
قسم الرياضيات، جامعة الإمام محمد بن سعود الإسلامية،

ص.ب. 90950، الرياض 11623، المملكة العربية السعودية

الملخص

يتــم إعتبــار مســألة تدفــق بوجــود طبقــة حدوديــة لمائــع غيــر نيوتونــي خاضــع لقانــون القــوة (والــذي نفتــرض أنــه غيــر قابــل للضغــط). يتــم 
ــت  ــم ثواب ــر وقي ــم المؤش ــروط (قي ــد الش ــم تحدي ــذا ويت ــوة. ه ــون الق ــر قان ــة لمؤش ــم الموجب ــع القي ــابه لجمي ــول التش ــة حل ــود ووحداني ــي وج ــر ف النظ
فــي  الدقيقــة  الحلــول  وعــرض  إيجــاد  ويتــم  يتحققــان.  لا  وحيــث  الحلــول  ووحدانيــة  وجــود  مــن  كل  يتحقــق  حيــث  المســألة)  فــي  مختلفــة 
بعــض الحــالات. يتــم كذلــك تحديــد الســلوك المتقــارب للحلــول وذلــك لجميــع القيــم الموجبــة لمؤشــر قانــون القــوة للمائــع غيــر النيوتونــي.
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