
An ameliorated two-stage randomized response model for estimating a rare stigmatized 
characteristic using Poisson distribution

Garib Nath Singh , Surbhi Suman *

Dept.  of Applied mathematics, Indian Institute of Technology (Indian School of Mines)
Dhanbad, Jharkhand, India 826004.

*Corresponding author: surbhi.iitism@yahoo.com

Abstract

The present work sheds light on the estimation procedure of a mean number of persons in the population bearing 
a rare sensitive characteristic using the Poisson distribution. A modified two-stage randomized response model 
for the rare sensitive characteristic is used to acquire the truthful response. Subsequently unbiased estimators are 
proposed for two situations when the information on another supplementary rare non-sensitive characteristic is 
known as well as unknown. The variances of the proposed estimators and their estimates are derived. Empirical 
studies are executed to show the dominance of the proposed estimators over some contemporary estimators.
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1. Introduction

The problem of non-response occurs due to several 
factors in sample surveys. The sensitive (stigmatized) 
nature of a characteristic under study is one of the most 
likely reasons for inviting a non-response or misleading 
response in the survey data. Such data reduce the size 
of the desired sample and produce the bias estimates. 
The problem of non-response due to stigmatized nature 
of characteristics was addressed by Warner (1965), 
who introduced a randomized response technique for 
collecting the responses from interviewees selected in the 
sample. The randomized response technique was further 
improved by Greenberg et al. (1969), Mangat et al. 
(1992), Singh et al. (1994), Singh et al. (2003), Chaudhuri 
et al. (2016), Tarray & Singh (2017) among others.  
Mangat & Singh (1990) and Mangat (1992) introduced 
two-stage related and unrelated randomized response 
techniques which substantially improved the performance 
of resultant estimators over the Warner (1965) estimator. 

Land et al. (2012) suggested an estimation procedure 
for the mean number of persons in the population bearing 
a rare sensitive characteristic. A large sample is required to 
be drawn from the population for estimating the parameter 
of a rare sensitive characteristic. Such situations also 
validate the use of the Poisson probability distribution 
in developing a suitable estimation procedure. Motivated 
with these arguments, Singh and Tarray (2014; 2017), 
Singh et al. (2018) suggested randomized response models 
and estimation procedures for the similar problems.

In follow up of the previous works, the present study 
introduces a modified two-stage unrelated randomized 
response model and estimation procedures for mean 
number of persons in the population who possess a 
rare sensitive attribute. The proposed model under 
the Poisson approximation is an improved version of 
Mangat (1992) and Singh et al. (1994) models, and 
the resultant estimation procedures were more accurate 
than Land et al. (2012), Singh & Tarray (2014; 2017) 
estimators. The properties of the suggested estimation 
procedures have been examined for the cases of known 
and unknown unrelated rare non-sensitive attribute.

2. The proposed estimation procedure when the 
proportion of an unrelated rare non-
sensitive attribute in the population is known 

Consider a finite population Ω of size N, in which some 
of the individuals possess a rare sensitive attribute A. 
Let   and   be the true proportions of the rare sensitive 
attribute A and unrelated rare non-sensitive attribute B 
in the population, respectively. To estimate the mean 
number of persons who possess the rare sensitive 
attribute in the population, a large sample of size n is 
drawn using simple random sampling with replacement 
scheme (SRSWR) such that for small    and   (i.e.
            and               ), we have   and   for the large sample 
size n.
 When the proportion   of an unrelated rare 
non-sensitive attribute is known, each individual 
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R1 consists of the following statements:

(i) “I possess the rare sensitive attribute A” with 
probability U , and 

(ii) “Go to the randomization device  R2” with 
probability  1-U . 
The second stage randomization device 
R2   consists of the following statements:

(i) “I possess the rare sensitive attribute A” with 
probability P1.

(ii) “I possess the rare non-sensitive 
attribute B ” with probability P2 .

(iii) Draw one more card with probability P3
where P1+P2+P3=1,  . If the statement (iii) is selected by 
the respondent, then it is required to repeat the process 
without replacing the card. In the second 
draw, if the statement (iii) reappeared, 
then the respondent has to report “No”. 

Using the above randomization devices, the 
probability of obtaining answer “yes” 
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estimator  is given by 
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âl

al

0 0~ ( ) ( ) =i ix P E xl lÞ

ˆ( ) =a aE l l

4 
 

estimator  is given by 

(5) 

Proof. The variance of the proposed 

estimator  is derived as  

 

This is because . 

Utilizing this result, then substituting the 

value of , and performing some algebraic 

simplification, we obtain the expression for 

the variance of the estimator  as given in 

equation (5).  

 

Theorem 2.3. The unbiased estimate of the 

variance  is given by 

 

                                                               (6) 

Proof. It may be seen that 

 

Putting the value of  and performing some 

algebraic simplification, we have  

 

 

3.  The proposed estimation procedure 

when the proportion of an unrelated 

rare non-sensitive attribute in the 

population is unknown  
When the true proportion   of an unrelated 

rare non-sensitive attribute B in the 

population is unknown, each respondent 

selected in the sample has provided two sets 

of randomization devices  and 

 where each set of the 

randomization device consists of the similar 

statements with different probabilities as 

described in Section 2. 

 Initially, respondents were provided 

the first set of randomization devices 

 for their use in two-stages. The 

randomization device  used in the first 

stage consists of the following statements: 

(i) “I possess the rare sensitive attribute  ” 

with probability , and  

(ii) “Go to the randomization device ” 

with probability . 

âl
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âl

)ˆ( aV l

=1
2

2
1 3

ˆˆ( ) = .
(1 ) 1

1

n

i
i

a

x
V

kn U U P P
k

l
é ùæ ö+ - +ç ÷ê ú-è øë û

å

0
=1

2
2

1 3

ˆˆ[ ( )] = .
(1 ) 1

1

n

i
aE V

kn U U P P
k

l
l

é ùæ ö+ - +ç ÷ê ú-è øë û

å

0l

ˆ ˆˆ[ ( )] = ( ).a aE V Vl l

bp

11 12( , )R R

21 22( , )R R

11 12( , )R R

11R

A

1U

12R

11 U-

4 
 

estimator  is given by 

(5) 

Proof. The variance of the proposed 

estimator  is derived as  

 

This is because . 

Utilizing this result, then substituting the 

value of , and performing some algebraic 

simplification, we obtain the expression for 

the variance of the estimator  as given in 

equation (5).  

 

Theorem 2.3. The unbiased estimate of the 

variance  is given by 

 

                                                               (6) 

Proof. It may be seen that 

 

Putting the value of  and performing some 

algebraic simplification, we have  

 

 

3.  The proposed estimation procedure 

when the proportion of an unrelated 

rare non-sensitive attribute in the 

population is unknown  
When the true proportion   of an unrelated 

rare non-sensitive attribute B in the 

population is unknown, each respondent 

selected in the sample has provided two sets 

of randomization devices  and 

 where each set of the 

randomization device consists of the similar 

statements with different probabilities as 

described in Section 2. 

 Initially, respondents were provided 

the first set of randomization devices 

 for their use in two-stages. The 

randomization device  used in the first 

stage consists of the following statements: 

(i) “I possess the rare sensitive attribute  ” 

with probability , and  

(ii) “Go to the randomization device ” 

with probability . 

âl
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The probabilities of getting a yes-
answer from the respondent using the 
above randomization response devices are
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âul b̂ul
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âul

2

2 2 3 1
=1

2

1 2 3 2
=1

2 2 2 1 3

3 1 2
=1

2 2
1

ˆ( ) =

(1 ) 1 ( )
1

(1 ) 1  ( )
1

(1 )(1 ) 1
1

1 (

1

, )
1

au

n

i
i

n

i
i

n

i i
i

V

kQ U Q V x
k

kU P P V x
k

kPQ U U Q
k

kP Cov x x
k

n

l

é ùì üæ ö- +ê úí ýç ÷-è øî þê ú
ê ú
ì üæ öê ú+ - +í ýç ÷ê ú-è øî þê ú

æ öê ú- - - +ç ÷ê ú-è øê ú
ê úæ ö+ç ÷ê ú-è øë û

D

å

å

å
2

*
2 2 3

2
*

1 2 3
2
1

2 2 2 1

*
3 3

(1 ) 1
1

1 (1 ) 1= 1
(1 )(1 )

1 1
1 1

a

b

ab

kQ U Q
k

kU P P
kn

PQ U U
k kQ P
k k

l

l

l

é ùì üæ ö- +ê úí ýç ÷-è øî þê ú
ê ú
ì üæ öê ú+ - +í ýç ÷ê ú-è øî þD ê ú

- - -ê ú
ê úæ öæ öê ú+ +ç ÷ç ÷- -ê úè øè øë û

6 
 

of the mean number of persons in the 

population who possess a rare sensitive 

attribute  and a non-sensitive attribute , 

respectively, are derived as 

     

                                                                   (9)    

and

                                                                 (10) 

where,  

 

 

and  

3.1 Properties of the proposed estimators 

 and  

The properties of estimators  and  are 

given in the following theorems:  

Theorem 3.1. The proposed estimators  

and  are unbiased for parameters  and 

, respectively.  

Proof. This property is the consequence of 

the results  and .  

Theorem 3.2. The variances of the proposed 

estimators  and  are 

 (11)   

and

 (12)  

Proof. The variance of the proposed 

estimator  is derived as 

(13) 

where 

A B

2 2 3 1
=1

1
1 2 3 2

=1

(1 ) 1
11ˆ =

(1 ) 1
1

n

i
i

au n

i
i

kQ U Q x
k

n kU P P x
k

l

é ùæ ö- +ç ÷ê ú-è øê ú
ê úD æ ö- - +ê úç ÷-è øë û

å

å

2 2 1 3 1
=1

2
1 2 3 2

=1

(1 ) 1
11ˆ =

(1 ) 1
1

n

i
i

bu n

i
i

kU U Q Q x
k

n kU P P x
k

l

é ùæ ö+ - +ç ÷ê ú-è øê ú
ê úD æ ö- - +ê úç ÷-è øë û

å

å

1 2 1 1 2 ,b a b aD = - 2 1 2 2 1 ,b a b aD = -

1 1 1 3= (1 ) 1 , 
1
kU U P P
k

a æ ö+ - +ç ÷-è ø

2 1 2 3

1 2 2 1 3

 = (1 ) 1 ,
1

= (1 ) 1  ,
1

kU P P
k

kU U Q Q
k

a

b

æ ö- +ç ÷-è ø
æ ö+ - +ç ÷-è ø

2 2 2 3(1 ) 1 .
1
kQ U Q
k

b æ ö= - +ç ÷-è ø

aul̂ bul̂
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âul

2

2 2 3 1
=1

2

1 2 3 2
=1

2 2 2 1 3

3 1 2
=1

2 2
1

ˆ( ) =

(1 ) 1 ( )
1

(1 ) 1  ( )
1

(1 )(1 ) 1
1

1 (

1

, )
1

au

n

i
i

n

i
i

n

i i
i

V

kQ U Q V x
k

kU P P V x
k

kPQ U U Q
k

kP Cov x x
k

n

l

é ùì üæ ö- +ê úí ýç ÷-è øî þê ú
ê ú
ì üæ öê ú+ - +í ýç ÷ê ú-è øî þê ú

æ öê ú- - - +ç ÷ê ú-è øê ú
ê úæ ö+ç ÷ê ú-è øë û

D

å

å

å
2

*
2 2 3

2
*

1 2 3
2
1

2 2 2 1

*
3 3

(1 ) 1
1

1 (1 ) 1= 1
(1 )(1 )

1 1
1 1

a

b

ab

kQ U Q
k

kU P P
kn

PQ U U
k kQ P
k k

l

l

l

é ùì üæ ö- +ê úí ýç ÷-è øî þê ú
ê ú
ì üæ öê ú+ - +í ýç ÷ê ú-è øî þD ê ú

- - -ê ú
ê úæ öæ öê ú+ +ç ÷ç ÷- -ê úè øè øë û

6 
 

of the mean number of persons in the 

population who possess a rare sensitive 

attribute  and a non-sensitive attribute , 

respectively, are derived as 

     

                                                                   (9)    

and

                                                                 (10) 

where,  

 

 

and  

3.1 Properties of the proposed estimators 

 and  

The properties of estimators  and  are 

given in the following theorems:  

Theorem 3.1. The proposed estimators  

and  are unbiased for parameters  and 

, respectively.  

Proof. This property is the consequence of 

the results  and .  

Theorem 3.2. The variances of the proposed 

estimators  and  are 

 (11)   

and

 (12)  

Proof. The variance of the proposed 

estimator  is derived as 

(13) 

where 

A B

2 2 3 1
=1

1
1 2 3 2

=1

(1 ) 1
11ˆ =

(1 ) 1
1

n

i
i

au n

i
i

kQ U Q x
k

n kU P P x
k

l

é ùæ ö- +ç ÷ê ú-è øê ú
ê úD æ ö- - +ê úç ÷-è øë û

å

å

2 2 1 3 1
=1

2
1 2 3 2

=1

(1 ) 1
11ˆ =

(1 ) 1
1

n

i
i

bu n

i
i

kU U Q Q x
k

n kU P P x
k

l

é ùæ ö+ - +ç ÷ê ú-è øê ú
ê úD æ ö- - +ê úç ÷-è øë û

å

å

1 2 1 1 2 ,b a b aD = - 2 1 2 2 1 ,b a b aD = -

1 1 1 3= (1 ) 1 , 
1
kU U P P
k

a æ ö+ - +ç ÷-è ø

2 1 2 3

1 2 2 1 3

 = (1 ) 1 ,
1

= (1 ) 1  ,
1

kU P P
k

kU U Q Q
k

a

b

æ ö- +ç ÷-è ø
æ ö+ - +ç ÷-è ø

2 2 2 3(1 ) 1 .
1
kQ U Q
k

b æ ö= - +ç ÷-è ø

aul̂ bul̂
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âul

2

2 2 3 1
=1

2

1 2 3 2
=1

2 2 2 1 3

3 1 2
=1

2 2
1

ˆ( ) =

(1 ) 1 ( )
1

(1 ) 1  ( )
1

(1 )(1 ) 1
1

1 (

1

, )
1

au

n

i
i

n

i
i

n

i i
i

V

kQ U Q V x
k

kU P P V x
k

kPQ U U Q
k

kP Cov x x
k

n

l

é ùì üæ ö- +ê úí ýç ÷-è øî þê ú
ê ú
ì üæ öê ú+ - +í ýç ÷ê ú-è øî þê ú

æ öê ú- - - +ç ÷ê ú-è øê ú
ê úæ ö+ç ÷ê ú-è øë û

D

å

å

å
2

*
2 2 3

2
*

1 2 3
2
1

2 2 2 1

*
3 3

(1 ) 1
1

1 (1 ) 1= 1
(1 )(1 )

1 1
1 1

a

b

ab

kQ U Q
k

kU P P
kn

PQ U U
k kQ P
k k

l

l

l

é ùì üæ ö- +ê úí ýç ÷-è øî þê ú
ê ú
ì üæ öê ú+ - +í ýç ÷ê ú-è øî þD ê ú

- - -ê ú
ê úæ öæ öê ú+ +ç ÷ç ÷- -ê úè øè øë û

6 
 

of the mean number of persons in the 

population who possess a rare sensitive 

attribute  and a non-sensitive attribute , 

respectively, are derived as 

     

                                                                   (9)    

and

                                                                 (10) 

where,  

 

 

and  

3.1 Properties of the proposed estimators 

 and  

The properties of estimators  and  are 

given in the following theorems:  

Theorem 3.1. The proposed estimators  

and  are unbiased for parameters  and 

, respectively.  

Proof. This property is the consequence of 

the results  and .  

Theorem 3.2. The variances of the proposed 

estimators  and  are 

 (11)   

and

 (12)  

Proof. The variance of the proposed 

estimator  is derived as 

(13) 

where 

A B

2 2 3 1
=1

1
1 2 3 2

=1

(1 ) 1
11ˆ =

(1 ) 1
1

n

i
i

au n

i
i

kQ U Q x
k

n kU P P x
k

l

é ùæ ö- +ç ÷ê ú-è øê ú
ê úD æ ö- - +ê úç ÷-è øë û

å

å

2 2 1 3 1
=1

2
1 2 3 2

=1

(1 ) 1
11ˆ =

(1 ) 1
1

n

i
i

bu n

i
i

kU U Q Q x
k

n kU P P x
k

l

é ùæ ö+ - +ç ÷ê ú-è øê ú
ê úD æ ö- - +ê úç ÷-è øë û

å

å

1 2 1 1 2 ,b a b aD = - 2 1 2 2 1 ,b a b aD = -

1 1 1 3= (1 ) 1 , 
1
kU U P P
k

a æ ö+ - +ç ÷-è ø

2 1 2 3

1 2 2 1 3

 = (1 ) 1 ,
1

= (1 ) 1  ,
1

kU P P
k

kU U Q Q
k

a

b

æ ö- +ç ÷-è ø
æ ö+ - +ç ÷-è ø

2 2 2 3(1 ) 1 .
1
kQ U Q
k

b æ ö= - +ç ÷-è ø

aul̂ bul̂
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âul b̂ul
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âul

b̂ul al

bl

*
1( ) =i aE x l *

2( ) =i bE x l
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Corrections before publication 

As per the suggestion, we have rechecked the manuscript thoroughly for typographical errors. 
The following corrections are needed before the publication of accepted manuscript in your 
esteemed journal:  

1. On page 1, section 2, line no 3, the notations a  and b    are missing. The corrected line 

should be “Let a  and b   be the true proportions of the rare” instead of “Let and   be the 
true proportions of the rare”. 

2. On page 2, In proof of Theorem 2.1, “,’ should be used after the word ‘that’ instead of 
full stop ‘.’ 

3. On page 3, section 3, line 19, after the word probability symbol 1P is missing.  

4. On page 3, section 3, before equation (7), line should be written as “ Let 11 12 1, ,..., nx x x  

and 21 22 2, ,..., nx x x  be random samples from  Poisson distribution with parameters *
a  and 

*
b respectively” instead of “Let 11 12 1, ,..., nx x x  and 21 22 2, ,..., nx x x  are the first and second 

responses, respectively, obtained from the selected n  individuals for the same question.” 
5. The expression of estimate of  variance in the equation (15) should be written as  

2 2 2 2 2 2
1 1 1 1 1 1 2 1 1 2 1 2 1 22

2

1ˆ ˆ ˆˆ( ) = ( 2 ) ( 2 ))bu a bV
n

                      
 instead of 

2 2 2 2 2 2
1 1 1 1 1 1 2 1 1 2 1 2 1 22

2

1ˆ ˆ ˆˆ( ) = ( 2 ) ( 2 )) .au a bV
n

                      
 

6. In section 6, point no. (i), first line ‘he’ should be replaced by ‘the’. In line, 6th line of 
point no (i), the last word ‘thi’ should be replaced by ‘this’.  
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âl âul
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âl

1 1
ˆ( )tl 1 2

ˆ( )tl

1 1 1 2
11 12

ˆ ˆ[( ) ] [( ) ]= 100  = 100.ˆ ˆ[ ] [ ]
t t

a a

V VE and E
V V
l l
l l

´ ´
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Let the range of  U be from 0.3 to 0.9 with a step of 0.2, 
and  P1 ranges from 0.4 to 0.8 with a step of 0.1. We 
also set U1=(0.5,0.7)   and U2=(0.5,0.3).
 The percent relative efficiencies  E11, E12, 
E21 and E22  are calculated for all combinations of 
parametric choices but are only shown with respect to 
the most recent model suggested by Singh and Tarray 
(2017) (Tables 1 and 2). The variation in the percent 
relative efficiencies with respect to k can be observed 
for almost all combinations of parametric choices and in 
Figures 1 and 2 for a few parametric choices.

5.2 Comparison in terms of privacy protection
The measures of privacy protection are obtained for the   
  with respect to    and    (Figures 3 and 4) 
for some parametric choices of (P1, P2, P3). 

The values of   and U  are selected in the range 
[0.1,1] and [0.3,0.6], respectively.  L, L1, L2 and   are 
the measures of privacy protection for respondents 
proposed, Singh and Tarray (2017) and Singh 
and Tarray (2014) models respectively, which 
are calculated as per the discussion in Section 4.

6. Interpretation of the results

(i) Data from the tables show that the calculated 
percent relative efficiencies exceed 100, which indicates 
that the proposed model and estimation procedures 
perform better than that of Singh and Tarray (2014; 2017). 
Since the model discussed by Singh and Tarray (2017) is 
better than the model discussed by Land et al. (2012), this 
research model is also better than Land’s et al. (2012).

(ii) From the results, substantial gain is observed 
for the smaller values of   and larger values of  
  

(iii) From Table 1, it is observed that the values of percent 
relative efficiencies increas as the values of U decrease. 

(iv) From Table 2, it is visible that the values of 

12 
 

1.5 
0.5 106.73 116.04 105.47 109.93 103.84 105.53 
1 108.44 119.78 106.86 112.33 104.81 106.90 

1.5 110.06 123.32 108.20 114.64 105.76 108.24 

0.5 

0.5 

0.5 

0.5 161.97 388.75 133.94 193.98 116.95 132.36 

1 181.81 480.28 146.73 228.94 124.18 146.02 
1.5 197.15 551.64 157.39 258.20 130.63 158.23 

1 
0.5 149.68 332.54 126.53 173.82 112.99 124.89 
1 161.97 388.75 133.94 193.98 116.95 132.36 

1.5 172.57 437.54 140.64 212.27 120.67 139.39 

1.5 
0.5 145.14 311.86 123.88 166.63 111.62 122.30 
1 153.99 352.21 129.09 180.76 114.34 127.43 

1.5 161.97 388.75 133.94 193.98 116.95 132.36 

0.3 

0.5 
0.5 119.48 178.17 115.46 139.92 110.45 118.80 
1 126.00 203.26 121.42 154.95 114.96 126.80 

1.5 130.96 222.73 126.34 167.50 118.96 133.95 

1 
0.5 115.39 162.70 111.98 131.23 107.98 114.42 
1 119.48 178.17 115.46 139.92 110.45 118.80 

1.5 122.98 191.56 118.59 147.79 112.78 122.92 

1.5 

0.5 113.86 156.99 110.73 128.13 107.12 112.90 

1 116.83 168.12 113.18 134.22 108.82 115.91 
1.5 119.48 178.17 115.46 139.92 110.45 118.80 

 

5.2 Comparison in terms of privacy 

protection 

The measures of privacy protection are 

obtained for the  with respect to and 

 (Figs. 3 and 4) for some parametric 

choices of .  

 

 

The values of  and  are selected in the 

range [0.1,1] and [0.3,0.6], respectively.  

and  are the measures of privacy 

protection for respondents proposed, Singh 

and Tarray (2017) and Singh and Tarray 

(2014) models respectively, which are 

calculated as per the discussion in Section 4. 
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 and  are calculated for all 
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only shown with respect to the most recent 

model suggested by Singh and Tarray (2017) 
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observed for almost all combinations of 
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few parametric choices.  
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Table 1.  Percentage relative efficiencies of the estimator with respect to the estimator  

  
 0.4 0.5 0.6 0.7 0.8 

  
 0.5 0.1 0.4 0.2 0.2 0.1 0.2 0.1 0.1 

  
 0.2 0.5 0.1 0.3 0.2 0.3 0.1 0.2 0.1 

     
       

0.3 0.5 0.5 110.69 187.12 111.89 144.16 128.41 147.56 113.65 130.13 114.31 
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1.5 114.71 274.38 117.37 176.47 148.84 192.72 123.16 157.54 126.67 
 

1 0.5 108.49 157.89 109.25 131.74 120.88 133.38 110.27 121.73 110.60 
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1.5 112.19 212.86 113.81 154.39 134.74 160.42 116.54 137.83 117.75 
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1.5 103.26 124.58 103.88 113.99 109.70 115.83 105.00 110.82 105.51 
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Fig. 1. Percent relative efficiencies with respect to k for 
T=0.3, P1=0.7 and P2=0.1.

Fig. 2. Percent relative efficiencies with respect to k for 
T=0.3, P1=0.4 and P2=0.5.
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1 101.42 111.69 101.73 106.54 104.53 107.52 102.35 105.16 102.65 

  
1.5 101.84 116.24 102.26 108.82 106.05 110.23 103.10 106.95 103.54 

 
1 0.5 100.70 104.59 100.85 102.88 102.11 103.33 101.15 102.40 101.29 

  
1 100.95 106.99 101.16 104.13 102.94 104.74 101.56 103.33 101.75 

  
1.5 101.19 109.36 101.45 105.35 103.74 106.14 101.96 104.25 102.20 

 
1.5 0.5 100.61 103.78 100.75 102.46 101.83 102.85 101.01 102.09 101.13 

  
1 100.79 105.39 100.96 103.30 102.39 103.80 101.28 102.71 101.44 

  
1.5 100.95 106.99 101.16 104.13 102.94 104.74 101.56 103.33 101.75 
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1.5 
0.5 106.73 116.04 105.47 109.93 103.84 105.53 
1 108.44 119.78 106.86 112.33 104.81 106.90 

1.5 110.06 123.32 108.20 114.64 105.76 108.24 

0.5 

0.5 

0.5 

0.5 161.97 388.75 133.94 193.98 116.95 132.36 

1 181.81 480.28 146.73 228.94 124.18 146.02 
1.5 197.15 551.64 157.39 258.20 130.63 158.23 

1 
0.5 149.68 332.54 126.53 173.82 112.99 124.89 
1 161.97 388.75 133.94 193.98 116.95 132.36 

1.5 172.57 437.54 140.64 212.27 120.67 139.39 

1.5 
0.5 145.14 311.86 123.88 166.63 111.62 122.30 
1 153.99 352.21 129.09 180.76 114.34 127.43 

1.5 161.97 388.75 133.94 193.98 116.95 132.36 

0.3 

0.5 
0.5 119.48 178.17 115.46 139.92 110.45 118.80 
1 126.00 203.26 121.42 154.95 114.96 126.80 

1.5 130.96 222.73 126.34 167.50 118.96 133.95 

1 
0.5 115.39 162.70 111.98 131.23 107.98 114.42 
1 119.48 178.17 115.46 139.92 110.45 118.80 

1.5 122.98 191.56 118.59 147.79 112.78 122.92 

1.5 

0.5 113.86 156.99 110.73 128.13 107.12 112.90 

1 116.83 168.12 113.18 134.22 108.82 115.91 
1.5 119.48 178.17 115.46 139.92 110.45 118.80 

 

5.2 Comparison in terms of privacy 

protection 

The measures of privacy protection are 

obtained for the  with respect to and 

 (Figs. 3 and 4) for some parametric 

choices of .  

 

 

The values of  and  are selected in the 

range [0.1,1] and [0.3,0.6], respectively.  

and  are the measures of privacy 

protection for respondents proposed, Singh 

and Tarray (2017) and Singh and Tarray 

(2014) models respectively, which are 

calculated as per the discussion in Section 4. 
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percent relative efficiencies increase and decrease 
for decreasing values of U1 and U2 , respectively.
(v) From Figures 1 and 2, the values of percent relative 
efficiencies increase as the values of k decrease.
(vi) Figures 3 and 4 clearly show that the level of 
privacy protection of the proposed randomized response 
model is better than the contemporary randomized 
response models of Singh and Tarray (2014; 2017).

7. Conclusions and recommendations

The proposed two-stage randomized response model and 
subsequent estimation procedures have shown exceptional 

performance in comparison to similar types of models 
and estimation procedures. It is worthwhile to mention 
that the suggested model and resultant estimators are 
much more efficient than the contemporary estimators, 
and at the same time, provide more safeguards in terms 
of privacy protection. The theoretical and empirical 
results also reveal that the proposed model is more 
adequate in terms of ascertaining truthful responses from 
respondents, and subsequent estimation procedures are 
more effective at estimating the mean number of persons 
in the population who possess a rare sensitive attribute.
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نموذج استجابة عشوائية ثنائي الطور ومُحَسن لتقدير صفة نادرة
باستخدام توزيع بواسون 

غاريث ناث سينغ، سوربي سومان
قسم الرياضيات التطبيقية، المعهد الهندي للتكنولوجيا (المدرسة الهندية للمناجم)

دانباد، جهارخاند، الهند

الملخص

العمــل الحالــي يلقــي الضــوء علــى إجــراء تقديــر لمتوســط عــدد الأشــخاص مــن بين الســكان الذيــن يحملون صفــة نادرة حساســة باســتخدام توزيع بواســون. 
وقــد تــم اســتخدام نمــوذج اســتجابة عشــوائية ثنائــي الطــور ومُعــدل لتلــك الصفة الحساســة النــادرة للحصــول على الإجابــة الصحيحــة. وفيما بعد، تــم اقتراح 
مقــدرات غيــر متحيــزة عندمــا تكــون المعلومــات المتوفــرة عــن صفــة أخــرى غيــر حساســة معروفــة أو عندمــا تكــون المعلومــات غيــر معروفــة. وقــد تــم 
اســتنتاج متغيــرات المقــدرات المقترحــة، كمــا تــم عمــل دراســات تجريبيــة لتوضيــح مــدى هيمنــة المقــدرات المقترحــة علــى بعــض المقــدرات المعاصــرة.
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