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Abstract

The Hosoya polynomials of diameter 1 and diameter 2 graphs are known. We extend the concept of a vertex join of 
a graph to a subdivided join. Then we give the formula of the Hosoya polynomial of a subdivided join of a complete 
graph and the formula of the Hosoya polynomial of a subdivided join of diameter 2 graphs. 
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1. Introduction

There is a well-developed relationship between        
chemistry and graph theory, such that in chemical 
graphs, the  vertices of a graph correspond to the 
atoms of the molecule, and the edges represent the 
chemical bonds. We need the concept of distance in 
graph theory to be able to define the Wiener index, 
which is a tool for obtaining the boiling points of alkanes 
(Wiener, 1947). Sagan et al. (1996) studied the Wiener 
polynomial of a graph as a generating function in q and 
revealed that the derivative of the Wiener polynomial was 
the q-analog of the Wiener index of a graph. The Wiener 
polynomial is a counting polynomial with applications 
to mathematical and physical chemistry. The structure 
of molecules and their branching patterns are studied 
through their molecular graphs, which are simple
connected graphs. The Wiener index correlates 
with chemical properties of organic compounds by 
quantifying the branching pattern of a molecule through 
its molecular graph. 
Let G be a connected graph and let V(G)={u1, u2, … , un} 
be the vertex set of G, the Wiener index of a graph G,
 is given by:
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where d(G,w)≥1 is the number of vertex pairs at distance 
w. The Hosoya polynomial has applications to two 
important topological indices: the Wiener and 
hyper-Wiener.

Thus, the Wiener index is given by the 
first derivative of the Hosoya polynomial 
H(G, z) shown in Equation 4 at z=1, That is
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even and odd cycles have different formulae. 
Similarly, non-isomorphic trees of the same size 
have different formulae of the Hosoya polynomial.
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(i) an even cycle C2n is 
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In this paper, we extend the concept of a vertex join 
of a graph to a subdivided join. We give some properties 
of subdivided join of a graph. Then we give a formula 
for the Hosoya polynomial of a subdivided join of a 
complete graph. Finally, the Hosoya polynomial of a 
subdivided join of a graph with diameter 2 is obtained.

2. Subdivided join and diameter 2 graphs

In this section, we give a brief discussion on diameter 
2 graphs and subdivided joins of these graphs. Let 
d(u,v) denote the minimum distance between any two 
vertices u and v in a graph G. A graph with maximum 
distance equal to k between pairs of vertices is said 
to be a diameter k graph. In this paper we shall 
consider graphs with diameter 1 and diameter 2.

Let G be a graph with vertex set V(G)={u1, u2, … , un}, 
edge set E(G) and let a vertex w be a vertex not in V(G). A 
vertex join of a graph G, is the graph denoted by G ̂ with 
vertex set V(G ̂)={u1, u2, … , un}   {w} and edge set E(G )= 
E(G)   {{u1,w},{u2,w}, … , {un,w}}. To ease notation, an edge 
e   {{u1,w},{u2,w}, … , {un,w}} is called a join edge and 
vertex w is called a join vertex. If each join edge, {ui,w}, of 
a vertex join, G ̂, ,is replaced by a path P(q+1) the resulting 
graph is called a subdivided join of a graph G denoted 
by Ĝq. A path P(q+1) in a subdivided join which replaced 
a join edge of G is called a join path. We denote a join
path by P ̂ and to ease notation, we label     as a join path 
from vertex ui to vertex w. It is clear from definitions that, 
for every pair of vertices ui and uj in G we have classes 
of cycles consisting of the shortest path between ui and uj 
and the two join paths        and       . We define a transversal 
to be a set of cycles such that no cycles belong to the 
same class. The element of the transversal are called the 
join cycles of Ĝ_q. We denote a join cycle with one edge 
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We denote a join cycle with one edge of G 

by 𝐶𝐶o:	and a join cycle with two edges of G 

by 𝐶𝐶o1. 

We now state some properties of a 

subdivided join which are useful in some 

proofs in this paper.  

Lemma 2.1 Let G be a diameter 2 graph 

of order n and size m. Let Ĝm be the 

subdivided join of G. Then 
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of G by           and a join cycle with two edges of G by C ̂_.
We now state some properties of a subdivided 
join which are useful in some proofs in this paper. 
Lemma 2.1 Let G be a diameter 2 graph of order n 
and size m. Let Ĝq be the subdivided join of G. Then
(i) the order of Ĝq is equal to qn+1.
(ii) the number of join paths in Ĝq  is equal to n. 
(iii) the total number of join cycles, C 1 in Ĝq  is m.
(iv) the total number of join cycles, C ̂2 in Ĝq  is (n¦2)-m. 
 (v) the total number of join cycles in Ĝq  is equal to (n¦2). 
A vertex cycle cover of a graph G is a set of cycles 
which are subgraphs of G and contain all vertices 
of G. Since in this paper we are discussing vertex 
pairs, we extend the vertex cycle cover terminology 
to vertex pair cycle cover which is a set of cycles that 
are subgraphs of G and contain all vertex pairs of G. 
Lemma 2.2 Let G be a graph of order n and size m 
with diameter at most 2. Let Ĝq be the subdivided join 
of G. Then every vertex pair in Ĝq belong to some join 
cycle in Ĝq, that is Ĝq has a vertex pair join cycle cover.
Proof. There are four cases to be considered:
Case 1. A pair of vertices vi,vj  V(G)  are either 
at distance 1 or 2 from each other since G is a 
diameter at most 2 graph. By definition, each 
of these pairs of vertices belong to a join cycle. 
Case 2. A pair of vertices vj, vt   V(     ) such that 
both vertices are in the same join path Pj and 
vt       V(G)  . By definition of a join cycle each 
of these pairs of vertices belong to a join cycle. 
Case 3. A pair of vertices   vi   ,vt such   that vi              V(G),  
vt    V( Pj ) and w ≠ vt ≠ vj. By definition the 
join path Pj joins vertex w and vertex   vj     V(G) in 
the subdivided join. Thus vj             V(  P j  ). But by 
part (i) the pair vi   ,   vj is on the join cycle. Since 
vt        V( P j  ), then the pair vi  ,vt  is on this join cycle.
Case 4. A pair of vertices vr ,vt such that vr ,vt is not in 
V(G), vt  ≠ w≠ vr , vr     V( Pi ) and vt        V( P j ). 
Let  vi ,vj   V(G), such that vi V(P i ) and vj  V( P j ). If 
d(vi,vj)=1, then vr,vt    C1, while if d(vi,vj)=2, then vr,vt  C 2. 
Thus every vertex pair in  Gq  belong to some join cycle 
in  Gq , hence  Gq  has a vertex pair join cycle cover.
Lemma 2.3 Let G be a graph of order n and size m 
with diameter at most 2. Let Gq be the subdivided 
join of G. Then the shortest path between any pair 
of vertices in Gq lie on some join cycle of Gq.
Proof. There are four cases of pairs of 
vertices on a join cycle to be considered:

Case 1. A pair of vertices vi ,vj     V(G)  . It is clear that the 
construction of   Ĝq  does not affect the shortest path in G. 
But vi ,vj are on the join cycle consisting of the 
shortest path between vi and vj and join paths Pi  
and Pj . 

Case 2. A pair of vertices vs , vt      V(Pj ), that is both vs,
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denoted by Ĝm. A path 𝑃𝑃md: in a 

subdivided join which replaced a join edge 

of 𝐺𝐺i is called a join path. We denote a join 

path by 𝑃𝑃i and to ease notation, we label 𝑃𝑃iG 

as a join path from vertex 𝑢𝑢G to vertex w. It 

is clear from definitions that, for every pair 
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transversal are called the join cycles of Ĝm. 

We denote a join cycle with one edge of G 

by 𝐶𝐶o:	and a join cycle with two edges of G 

by 𝐶𝐶o1. 

We now state some properties of a 

subdivided join which are useful in some 

proofs in this paper.  

Lemma 2.1 Let G be a diameter 2 graph 

of order n and size m. Let Ĝm be the 

subdivided join of G. Then 

 

 

(i) the order of Ĝm is equal to qn+1. 

(ii) the number of join paths in Ĝm	is equal 

to n.  

(iii) the total number of join cycles, 𝐶𝐶o: in 

Ĝm	is m. 

(iv) the total number of join cycles, 𝐶𝐶o1 in 

Ĝm	is F<1I −m.  

 (v) the total number of join cycles in Ĝm	is 

equal to F<1I.  

A vertex cycle cover of a graph G is a set 

of cycles which are subgraphs of G and 

contain all vertices of G. Since in this 

paper we are discussing vertex pairs, we 

extend the vertex cycle cover terminology 

to vertex pair cycle cover which is a set of 

cycles that are subgraphs of G and contain 

all vertex pairs of G.  

Lemma 2.2 Let G be a graph of order n 

and size m with diameter at most 2. Let Ĝm 

be the subdivided join of G. Then every 

vertex pair in Ĝm belong to some join cycle 

in Ĝm, that is Ĝm has a vertex pair join 

cycle cover. 

Proof. There are four cases to be 

considered: 

Case 1. A pair of vertices vq, vr ∈ V(G)	are 

either at distance 1 or 2 from each other 

since G is a diameter at most 2 graph. By 

definition, each of these pairs of vertices 

belong to a join cycle.  

Case 2. A pair of vertices vr, vu ∈	V(𝑃𝑃i	H ) 

such that both vertices are in the same join 

path 𝑃𝑃i	H and vu ∈ 	V(G)	. By definition of a 

join cycle each of these pairs of vertices 

belong to a join cycle.  

Case 3. A pair of vertices vq, vu such that 

vq ∈ 	V(G)	, vu ∈	V(𝑃𝑃iH ) and w	 ≠ 	 vu ≠

	vr.	By definition the join path 𝑃𝑃iH joins 

vertex w and vertex vr ∈ 	V(G) in the 

subdivided join. Thus vr ∈	V(𝑃𝑃iH ). But by 

part (i) the pair vq, vr is on the join cycle. 

Since vu ∈	V(𝑃𝑃iH ), then the pair vq, vu is on 

this join cycle. 
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2. Subdivided join and 

diameter 2 graphs 

In this section, we give a brief discussion 

on diameter 2 graphs and subdivided joins 

of these graphs. Let d(u,v) denote the 

minimum distance between any two 

vertices u and v in a graph G. A graph with 

maximum distance equal to k between 

pairs of vertices is said to be a diameter k 

graph. In this paper we shall consider 

graphs with diameter 1 and diameter 2. 

Let G be a graph with vertex set 

V(G)={𝑢𝑢:, 𝑢𝑢1, … , 𝑢𝑢<}, edge set E(G) and 

let a vertex w be a vertex not in V(G). A 

vertex join of a graph G, is the graph 

denoted by 𝐺𝐺i with vertex set V(𝐺𝐺i)={𝑢𝑢:, 

𝑢𝑢1, … , 𝑢𝑢<}	∪ {𝑤𝑤} and edge set E(𝐺𝐺i)= 

E(G) ∪{{𝑢𝑢:,w},{𝑢𝑢1,w}, … , {𝑢𝑢<,w}}. To 

ease notation, an edge e ∈ {{𝑢𝑢:,w},{𝑢𝑢1,w}, 

… , {𝑢𝑢<,w}} is called a join edge and 

vertex w is called a join vertex. If each join 

edge, {𝑢𝑢G,w}, of a vertex join, 𝐺𝐺i, is 

replaced by a path 𝑃𝑃md: the resulting graph 

is called a subdivided join of a graph G 

denoted by Ĝm. A path 𝑃𝑃md: in a 

subdivided join which replaced a join edge 

of 𝐺𝐺i is called a join path. We denote a join 

path by 𝑃𝑃i and to ease notation, we label 𝑃𝑃iG 

as a join path from vertex 𝑢𝑢G to vertex w. It 

is clear from definitions that, for every pair 

of vertices 𝑢𝑢G and 𝑢𝑢H in G we have classes 

of cycles consisting of the shortest path 

between 𝑢𝑢G and 𝑢𝑢H and the two join paths 

𝑃𝑃iG and 𝑃𝑃iH. We define a transversal to be a 

set of cycles such that no cycles belong to 

the same class. The element of the 

transversal are called the join cycles of Ĝm. 

We denote a join cycle with one edge of G 

by 𝐶𝐶o:	and a join cycle with two edges of G 

by 𝐶𝐶o1. 

We now state some properties of a 

subdivided join which are useful in some 

proofs in this paper.  

Lemma 2.1 Let G be a diameter 2 graph 

of order n and size m. Let Ĝm be the 

subdivided join of G. Then 
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graph. In this paper we shall consider 

graphs with diameter 1 and diameter 2. 

Let G be a graph with vertex set 

V(G)={𝑢𝑢:, 𝑢𝑢1, … , 𝑢𝑢<}, edge set E(G) and 

let a vertex w be a vertex not in V(G). A 

vertex join of a graph G, is the graph 

denoted by 𝐺𝐺i with vertex set V(𝐺𝐺i)={𝑢𝑢:, 

𝑢𝑢1, … , 𝑢𝑢<}	∪ {𝑤𝑤} and edge set E(𝐺𝐺i)= 

E(G) ∪{{𝑢𝑢:,w},{𝑢𝑢1,w}, … , {𝑢𝑢<,w}}. To 

ease notation, an edge e ∈ {{𝑢𝑢:,w},{𝑢𝑢1,w}, 

… , {𝑢𝑢<,w}} is called a join edge and 

vertex w is called a join vertex. If each join 

edge, {𝑢𝑢G,w}, of a vertex join, 𝐺𝐺i, is 

replaced by a path 𝑃𝑃md: the resulting graph 

is called a subdivided join of a graph G 

denoted by Ĝm. A path 𝑃𝑃md: in a 

subdivided join which replaced a join edge 

of 𝐺𝐺i is called a join path. We denote a join 

path by 𝑃𝑃i and to ease notation, we label 𝑃𝑃iG 

as a join path from vertex 𝑢𝑢G to vertex w. It 

is clear from definitions that, for every pair 

of vertices 𝑢𝑢G and 𝑢𝑢H in G we have classes 

of cycles consisting of the shortest path 

between 𝑢𝑢G and 𝑢𝑢H and the two join paths 

𝑃𝑃iG and 𝑃𝑃iH. We define a transversal to be a 

set of cycles such that no cycles belong to 

the same class. The element of the 

transversal are called the join cycles of Ĝm. 

We denote a join cycle with one edge of G 

by 𝐶𝐶o:	and a join cycle with two edges of G 

by 𝐶𝐶o1. 

We now state some properties of a 

subdivided join which are useful in some 

proofs in this paper.  

Lemma 2.1 Let G be a diameter 2 graph 

of order n and size m. Let Ĝm be the 

subdivided join of G. Then 
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(i) the order of Ĝm is equal to qn+1. 

(ii) the number of join paths in Ĝm	is equal 

to n.  

(iii) the total number of join cycles, 𝐶𝐶o: in 

Ĝm	is m. 

(iv) the total number of join cycles, 𝐶𝐶o1 in 

Ĝm	is F<1I −m.  

 (v) the total number of join cycles in Ĝm	is 

equal to F<1I.  

A vertex cycle cover of a graph G is a set 

of cycles which are subgraphs of G and 

contain all vertices of G. Since in this 

paper we are discussing vertex pairs, we 

extend the vertex cycle cover terminology 

to vertex pair cycle cover which is a set of 

cycles that are subgraphs of G and contain 

all vertex pairs of G.  

Lemma 2.2 Let G be a graph of order n 

and size m with diameter at most 2. Let Ĝm 

be the subdivided join of G. Then every 

vertex pair in Ĝm belong to some join cycle 

in Ĝm, that is Ĝm has a vertex pair join 

cycle cover. 

Proof. There are four cases to be 

considered: 

Case 1. A pair of vertices vq, vr ∈ V(G)	are 

either at distance 1 or 2 from each other 

since G is a diameter at most 2 graph. By 

definition, each of these pairs of vertices 

belong to a join cycle.  

Case 2. A pair of vertices vr, vu ∈	V(𝑃𝑃i	H ) 

such that both vertices are in the same join 

path 𝑃𝑃i	H and vu ∈ 	V(G)	. By definition of a 

join cycle each of these pairs of vertices 

belong to a join cycle.  

Case 3. A pair of vertices vq, vu such that 

vq ∈ 	V(G)	, vu ∈	V(𝑃𝑃iH ) and w	 ≠ 	 vu ≠

	vr.	By definition the join path 𝑃𝑃iH joins 

vertex w and vertex vr ∈ 	V(G) in the 

subdivided join. Thus vr ∈	V(𝑃𝑃iH ). But by 

part (i) the pair vq, vr is on the join cycle. 

Since vu ∈	V(𝑃𝑃iH ), then the pair vq, vu is on 

this join cycle. 
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Case 4. A pair of vertices vx, vu such that 

vx, vu is not in V(G), vu 	≠ 	w ≠ 	vx, vx ∈

	V(𝑃𝑃iG ) and vu ∈	V(𝑃𝑃iH ). Let vq, vr ∈ V(G), 

such that vq ∈	V(𝑃𝑃iG ) and vr ∈	V(𝑃𝑃iH ). If 

d(vq, vr)=1, then vx, vu ∈ 𝐶𝐶o:, while if 

d(vq, vr)=2, then vx, vu ∈ 𝐶𝐶o1.	 

Thus every vertex pair in 𝐺𝐺im belong to 

some join cycle in 𝐺𝐺im, hence 𝐺𝐺im has a 

vertex pair join cycle cover. 

Lemma 2.3 Let G be a graph of order n 

and size m with diameter at most 2. Let 𝐺𝐺im 

be the subdivided join of G. Then the 

shortest path between any pair of vertices 

in 𝐺𝐺im lie on some join cycle of 𝐺𝐺im. 

Proof. There are four cases of pairs of 

vertices on a join cycle to be considered: 

Case 1. A pair of vertices vq, vr ∈ V(G)	. It 

is clear that the construction of Ĝm does not 

affect the shortest path in G. But vq, vr are 

on the join cycle consisting of the shortest 

path between vq and vr and join paths 𝑃𝑃i	G 

and 𝑃𝑃i	H .  

Case 2. A pair of vertices vy, vu ∈	V(𝑃𝑃i	H ), 

that is both vy, vu are lying on the same 

join path 𝑃𝑃i	H. Let the path from vy to vu on 

𝑃𝑃i	H be called 𝑃𝑃z{. Assume there is another 

path from vy to vu shorter than 𝑃𝑃z{, say 

path 𝑃𝑃|z{ . Then it is clear that 𝑃𝑃z{ ∪ 𝑃𝑃|z{	is a 

cycle. By construction of Ĝm, the only 

possibility is that 𝑃𝑃z{ ∪ 𝑃𝑃|z{ is some cycle 

consisting of some join path, say 𝑃𝑃i	}  and 

some edges in G. Thus 𝑃𝑃|z{ is a path 

consisting of join path 𝑃𝑃i	} and at least one 

more edge. Thus |E(𝑃𝑃|z{)| > q+1. But 

E(𝑃𝑃z{) ⊆ E(𝑃𝑃|H) where |E(𝑃𝑃i	})|= q = 

|E(𝑃𝑃|H)|, therefore |E(𝑃𝑃z{,)| ≤	q. Hence 𝑃𝑃z{ 

is the shortest path between vy to vu and is 

on some join cycle.  

Case 3. A pair of vertices vq, vu such that 

vq ∈ 	V(G)	, vu ∈	V(𝑃𝑃iH ) and w	 ≠ 	 vu ≠

	vr.	It is clear by construction that the only 

paths from vq to vu are the join path cycle 

consisting of a path from vq to vu, 𝑃𝑃i	G and 

𝑃𝑃i	H. Hence the shortest path is on the same 

join cycle. 
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be the subdivided join of G. Then the 

shortest path between any pair of vertices 

in 𝐺𝐺im lie on some join cycle of 𝐺𝐺im. 

Proof. There are four cases of pairs of 

vertices on a join cycle to be considered: 

Case 1. A pair of vertices vq, vr ∈ V(G)	. It 

is clear that the construction of Ĝm does not 

affect the shortest path in G. But vq, vr are 

on the join cycle consisting of the shortest 

path between vq and vr and join paths 𝑃𝑃i	G 

and 𝑃𝑃i	H .  

Case 2. A pair of vertices vy, vu ∈	V(𝑃𝑃i	H ), 

that is both vy, vu are lying on the same 

join path 𝑃𝑃i	H. Let the path from vy to vu on 

𝑃𝑃i	H be called 𝑃𝑃z{. Assume there is another 

path from vy to vu shorter than 𝑃𝑃z{, say 

path 𝑃𝑃|z{ . Then it is clear that 𝑃𝑃z{ ∪ 𝑃𝑃|z{	is a 

cycle. By construction of Ĝm, the only 

possibility is that 𝑃𝑃z{ ∪ 𝑃𝑃|z{ is some cycle 

consisting of some join path, say 𝑃𝑃i	}  and 
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E(𝑃𝑃z{) ⊆ E(𝑃𝑃|H) where |E(𝑃𝑃i	})|= q = 

|E(𝑃𝑃|H)|, therefore |E(𝑃𝑃z{,)| ≤	q. Hence 𝑃𝑃z{ 

is the shortest path between vy to vu and is 

on some join cycle.  

Case 3. A pair of vertices vq, vu such that 

vq ∈ 	V(G)	, vu ∈	V(𝑃𝑃iH ) and w	 ≠ 	 vu ≠

	vr.	It is clear by construction that the only 

paths from vq to vu are the join path cycle 

consisting of a path from vq to vu, 𝑃𝑃i	G and 

𝑃𝑃i	H. Hence the shortest path is on the same 

join cycle. 
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2. Subdivided join and 

diameter 2 graphs 

In this section, we give a brief discussion 

on diameter 2 graphs and subdivided joins 

of these graphs. Let d(u,v) denote the 

minimum distance between any two 

vertices u and v in a graph G. A graph with 

maximum distance equal to k between 

pairs of vertices is said to be a diameter k 

graph. In this paper we shall consider 

graphs with diameter 1 and diameter 2. 

Let G be a graph with vertex set 

V(G)={𝑢𝑢:, 𝑢𝑢1, … , 𝑢𝑢<}, edge set E(G) and 

let a vertex w be a vertex not in V(G). A 

vertex join of a graph G, is the graph 

denoted by 𝐺𝐺i with vertex set V(𝐺𝐺i)={𝑢𝑢:, 

𝑢𝑢1, … , 𝑢𝑢<}	∪ {𝑤𝑤} and edge set E(𝐺𝐺i)= 

E(G) ∪{{𝑢𝑢:,w},{𝑢𝑢1,w}, … , {𝑢𝑢<,w}}. To 

ease notation, an edge e ∈ {{𝑢𝑢:,w},{𝑢𝑢1,w}, 

… , {𝑢𝑢<,w}} is called a join edge and 

vertex w is called a join vertex. If each join 

edge, {𝑢𝑢G,w}, of a vertex join, 𝐺𝐺i, is 

replaced by a path 𝑃𝑃md: the resulting graph 

is called a subdivided join of a graph G 

denoted by Ĝm. A path 𝑃𝑃md: in a 

subdivided join which replaced a join edge 

of 𝐺𝐺i is called a join path. We denote a join 

path by 𝑃𝑃i and to ease notation, we label 𝑃𝑃iG 

as a join path from vertex 𝑢𝑢G to vertex w. It 

is clear from definitions that, for every pair 

of vertices 𝑢𝑢G and 𝑢𝑢H in G we have classes 

of cycles consisting of the shortest path 

between 𝑢𝑢G and 𝑢𝑢H and the two join paths 

𝑃𝑃iG and 𝑃𝑃iH. We define a transversal to be a 

set of cycles such that no cycles belong to 

the same class. The element of the 

transversal are called the join cycles of Ĝm. 

We denote a join cycle with one edge of G 

by 𝐶𝐶o:	and a join cycle with two edges of G 

by 𝐶𝐶o1. 

We now state some properties of a 

subdivided join which are useful in some 

proofs in this paper.  

Lemma 2.1 Let G be a diameter 2 graph 

of order n and size m. Let Ĝm be the 

subdivided join of G. Then 
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Thus every vertex pair in 𝐺𝐺im belong to 

some join cycle in 𝐺𝐺im, hence 𝐺𝐺im has a 

vertex pair join cycle cover. 

Lemma 2.3 Let G be a graph of order n 

and size m with diameter at most 2. Let 𝐺𝐺im 

be the subdivided join of G. Then the 

shortest path between any pair of vertices 

in 𝐺𝐺im lie on some join cycle of 𝐺𝐺im. 

Proof. There are four cases of pairs of 

vertices on a join cycle to be considered: 
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path from vy to vu shorter than 𝑃𝑃z{, say 
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possibility is that 𝑃𝑃z{ ∪ 𝑃𝑃|z{ is some cycle 

consisting of some join path, say 𝑃𝑃i	}  and 
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consisting of join path 𝑃𝑃i	} and at least one 

more edge. Thus |E(𝑃𝑃|z{)| > q+1. But 

E(𝑃𝑃z{) ⊆ E(𝑃𝑃|H) where |E(𝑃𝑃i	})|= q = 

|E(𝑃𝑃|H)|, therefore |E(𝑃𝑃z{,)| ≤	q. Hence 𝑃𝑃z{ 

is the shortest path between vy to vu and is 

on some join cycle.  

Case 3. A pair of vertices vq, vu such that 

vq ∈ 	V(G)	, vu ∈	V(𝑃𝑃iH ) and w	 ≠ 	 vu ≠

	vr.	It is clear by construction that the only 

paths from vq to vu are the join path cycle 

consisting of a path from vq to vu, 𝑃𝑃i	G and 

𝑃𝑃i	H. Hence the shortest path is on the same 

join cycle. 
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edge, {𝑢𝑢G,w}, of a vertex join, 𝐺𝐺i, is 

replaced by a path 𝑃𝑃md: the resulting graph 

is called a subdivided join of a graph G 

denoted by Ĝm. A path 𝑃𝑃md: in a 

subdivided join which replaced a join edge 

of 𝐺𝐺i is called a join path. We denote a join 

path by 𝑃𝑃i and to ease notation, we label 𝑃𝑃iG 

as a join path from vertex 𝑢𝑢G to vertex w. It 

is clear from definitions that, for every pair 

of vertices 𝑢𝑢G and 𝑢𝑢H in G we have classes 

of cycles consisting of the shortest path 

between 𝑢𝑢G and 𝑢𝑢H and the two join paths 

𝑃𝑃iG and 𝑃𝑃iH. We define a transversal to be a 

set of cycles such that no cycles belong to 

the same class. The element of the 

transversal are called the join cycles of Ĝm. 

We denote a join cycle with one edge of G 

by 𝐶𝐶o:	and a join cycle with two edges of G 

by 𝐶𝐶o1. 

We now state some properties of a 

subdivided join which are useful in some 

proofs in this paper.  

Lemma 2.1 Let G be a diameter 2 graph 

of order n and size m. Let Ĝm be the 

subdivided join of G. Then 

 

 

Case 4. A pair of vertices vx, vu such that 

vx, vu is not in V(G), vu 	≠ 	w ≠ 	vx, vx ∈

	V(𝑃𝑃iG ) and vu ∈	V(𝑃𝑃iH ). Let vq, vr ∈ V(G), 

such that vq ∈	V(𝑃𝑃iG ) and vr ∈	V(𝑃𝑃iH ). If 

d(vq, vr)=1, then vx, vu ∈ 𝐶𝐶o:, while if 

d(vq, vr)=2, then vx, vu ∈ 𝐶𝐶o1.	 

Thus every vertex pair in 𝐺𝐺im belong to 

some join cycle in 𝐺𝐺im, hence 𝐺𝐺im has a 

vertex pair join cycle cover. 

Lemma 2.3 Let G be a graph of order n 

and size m with diameter at most 2. Let 𝐺𝐺im 

be the subdivided join of G. Then the 

shortest path between any pair of vertices 

in 𝐺𝐺im lie on some join cycle of 𝐺𝐺im. 

Proof. There are four cases of pairs of 

vertices on a join cycle to be considered: 

Case 1. A pair of vertices vq, vr ∈ V(G)	. It 

is clear that the construction of Ĝm does not 

affect the shortest path in G. But vq, vr are 

on the join cycle consisting of the shortest 

path between vq and vr and join paths 𝑃𝑃i	G 

and 𝑃𝑃i	H .  

Case 2. A pair of vertices vy, vu ∈	V(𝑃𝑃i	H ), 

that is both vy, vu are lying on the same 

join path 𝑃𝑃i	H. Let the path from vy to vu on 

𝑃𝑃i	H be called 𝑃𝑃z{. Assume there is another 

path from vy to vu shorter than 𝑃𝑃z{, say 

path 𝑃𝑃|z{ . Then it is clear that 𝑃𝑃z{ ∪ 𝑃𝑃|z{	is a 

cycle. By construction of Ĝm, the only 

possibility is that 𝑃𝑃z{ ∪ 𝑃𝑃|z{ is some cycle 

consisting of some join path, say 𝑃𝑃i	}  and 

some edges in G. Thus 𝑃𝑃|z{ is a path 

consisting of join path 𝑃𝑃i	} and at least one 

more edge. Thus |E(𝑃𝑃|z{)| > q+1. But 

E(𝑃𝑃z{) ⊆ E(𝑃𝑃|H) where |E(𝑃𝑃i	})|= q = 

|E(𝑃𝑃|H)|, therefore |E(𝑃𝑃z{,)| ≤	q. Hence 𝑃𝑃z{ 

is the shortest path between vy to vu and is 

on some join cycle.  

Case 3. A pair of vertices vq, vu such that 

vq ∈ 	V(G)	, vu ∈	V(𝑃𝑃iH ) and w	 ≠ 	 vu ≠

	vr.	It is clear by construction that the only 

paths from vq to vu are the join path cycle 

consisting of a path from vq to vu, 𝑃𝑃i	G and 

𝑃𝑃i	H. Hence the shortest path is on the same 

join cycle. 
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 vt are lying on the same join path Pj. Let the path from vs to 
vt on P j be called Pst. Assume there is another path from vs 
to vt shorter than Pst, say path P ́st . Then it is clear that Pst   
P ́_st  is a cycle. By construction of Ĝq, the only possibility 
is that Pst    P ́st is some cycle consisting of some join path, 
say Pk and some edges in G. Thus P st is a path consisting 
of join path Pk and at least one more edge. Thus|E(P śt)| 
> q+1. But  E(Pst)    E(P j́) where |E(〖P ̂  〖_k)|= q 
= |E(,  therefore |E(Pst ,)| ≤ q. Hence Pst is the shortest 
path between vs to vt and is on some join cycle. 

Case 3. A pair of vertices vi,vt such that vi      V(G)  , 
vt    V(P ̂_j ) and w ≠ vt≠ vj. It is clear by construction
that the only paths from vi to vt are the join path 
cycle consisting of a path from vi to vt, Pi and Pj. 
Hence the shortest path is on the same join cycle.

Case 4. A pair of vertices vr,vt such that vr,vt are not in 
V(G), vt  ≠ w≠ vr , vr     V(P i ) and vt 

 

 

Case 4. A pair of vertices vx, vu such that 

vx, vu is not in V(G), vu 	≠ 	w ≠ 	vx, vx ∈

	V(𝑃𝑃iG ) and vu ∈	V(𝑃𝑃iH ). Let vq, vr ∈ V(G), 

such that vq ∈	V(𝑃𝑃iG ) and vr ∈	V(𝑃𝑃iH ). If 

d(vq, vr)=1, then vx, vu ∈ 𝐶𝐶o:, while if 

d(vq, vr)=2, then vx, vu ∈ 𝐶𝐶o1.	 

Thus every vertex pair in 𝐺𝐺im belong to 

some join cycle in 𝐺𝐺im, hence 𝐺𝐺im has a 

vertex pair join cycle cover. 

Lemma 2.3 Let G be a graph of order n 

and size m with diameter at most 2. Let 𝐺𝐺im 

be the subdivided join of G. Then the 

shortest path between any pair of vertices 

in 𝐺𝐺im lie on some join cycle of 𝐺𝐺im. 

Proof. There are four cases of pairs of 

vertices on a join cycle to be considered: 

Case 1. A pair of vertices vq, vr ∈ V(G)	. It 

is clear that the construction of Ĝm does not 

affect the shortest path in G. But vq, vr are 

on the join cycle consisting of the shortest 

path between vq and vr and join paths 𝑃𝑃i	G 

and 𝑃𝑃i	H .  

Case 2. A pair of vertices vy, vu ∈	V(𝑃𝑃i	H ), 

that is both vy, vu are lying on the same 

join path 𝑃𝑃i	H. Let the path from vy to vu on 

𝑃𝑃i	H be called 𝑃𝑃z{. Assume there is another 

path from vy to vu shorter than 𝑃𝑃z{, say 

path 𝑃𝑃|z{ . Then it is clear that 𝑃𝑃z{ ∪ 𝑃𝑃|z{	is a 

cycle. By construction of Ĝm, the only 

possibility is that 𝑃𝑃z{ ∪ 𝑃𝑃|z{ is some cycle 

consisting of some join path, say 𝑃𝑃i	}  and 

some edges in G. Thus 𝑃𝑃|z{ is a path 

consisting of join path 𝑃𝑃i	} and at least one 

more edge. Thus |E(𝑃𝑃|z{)| > q+1. But 

E(𝑃𝑃z{) ⊆ E(𝑃𝑃|H) where |E(𝑃𝑃i	})|= q = 

|E(𝑃𝑃|H)|, therefore |E(𝑃𝑃z{,)| ≤	q. Hence 𝑃𝑃z{ 

is the shortest path between vy to vu and is 

on some join cycle.  

Case 3. A pair of vertices vq, vu such that 

vq ∈ 	V(G)	, vu ∈	V(𝑃𝑃iH ) and w	 ≠ 	 vu ≠

	vr.	It is clear by construction that the only 

paths from vq to vu are the join path cycle 

consisting of a path from vq to vu, 𝑃𝑃i	G and 

𝑃𝑃i	H. Hence the shortest path is on the same 

join cycle. 

. Let vi,vj 
V(G), such that vi      (P ̂_i ) and vj    V(P ̂_j ). Let the join
cycle consisting of the shortest path from vi to vj                           

         be Cx and let the shortest path from vr to vt 
on Cx be Prt. Assume there is another path in Ĝq not 
on the join cycle Cx which  is shorter  than Prt , say 
path Prt. Then Prt    Prt is a cycle consisting of the paths             

    and            and  some  path  from vi to vj say path P ́ij 
in G. But the path in G from vi to vj in the join cycle     ,  
 is the shortest path by definition of Cx . Thus the cycle 
P ŕt ∪ Prt is longer than the join cycle Cx . Hence P ŕt is 
the shortest path between vr and vt  and is on a join cycle.
Corollary 2.4 Let G be a graph of order n and 
size m with diameter at most 2. Let Ĝq be the 
subdivided join of G. Then the sum of the Hosoya 
polynomials of all the join cycles in Ĝq covers the 
distance of any pair of vertices in Ĝq at least once.

3. The Hosoya polynomial of subdivided join

In this section, we give the Hosoya polynomial of the 
subdivided join of a diameter 1 graph and a diameter 2 
graph. Finally we state the Wiener indices of the subdivided 
join of a diameter 1 graph and a diameter 2 graph.

Note that all diameter 1 graphs are complete 
graphs, thus we find the Hosoya polynomial 
of the subdivided join of a complete graph. 
Lemma 3.1 Let Kn  be a complete graph of order 
n, and let Ĝq be the subdivided join of Kn. Then 
there are    join cycles of the form C1 in Ĝq. 
Theorem 3.2 Let Kn be a complete graph of 
order n, and let Ĝq be the subdivided join of 
Kn. Then the Hosoya polynomial of Ĝq is 

Proof. By Lemma 2.2, we know that every vertex pair in 
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d(vq, vr)=1, then vx, vu ∈ 𝐶𝐶o:, while if 

d(vq, vr)=2, then vx, vu ∈ 𝐶𝐶o1.	 

Thus every vertex pair in 𝐺𝐺im belong to 

some join cycle in 𝐺𝐺im, hence 𝐺𝐺im has a 

vertex pair join cycle cover. 

Lemma 2.3 Let G be a graph of order n 

and size m with diameter at most 2. Let 𝐺𝐺im 

be the subdivided join of G. Then the 

shortest path between any pair of vertices 

in 𝐺𝐺im lie on some join cycle of 𝐺𝐺im. 

Proof. There are four cases of pairs of 

vertices on a join cycle to be considered: 

Case 1. A pair of vertices vq, vr ∈ V(G)	. It 

is clear that the construction of Ĝm does not 

affect the shortest path in G. But vq, vr are 

on the join cycle consisting of the shortest 

path between vq and vr and join paths 𝑃𝑃i	G 

and 𝑃𝑃i	H .  

Case 2. A pair of vertices vy, vu ∈	V(𝑃𝑃i	H ), 

that is both vy, vu are lying on the same 

join path 𝑃𝑃i	H. Let the path from vy to vu on 

𝑃𝑃i	H be called 𝑃𝑃z{. Assume there is another 

path from vy to vu shorter than 𝑃𝑃z{, say 

path 𝑃𝑃|z{ . Then it is clear that 𝑃𝑃z{ ∪ 𝑃𝑃|z{	is a 

cycle. By construction of Ĝm, the only 

possibility is that 𝑃𝑃z{ ∪ 𝑃𝑃|z{ is some cycle 

consisting of some join path, say 𝑃𝑃i	}  and 

some edges in G. Thus 𝑃𝑃|z{ is a path 

consisting of join path 𝑃𝑃i	} and at least one 

more edge. Thus |E(𝑃𝑃|z{)| > q+1. But 

E(𝑃𝑃z{) ⊆ E(𝑃𝑃|H) where |E(𝑃𝑃i	})|= q = 

|E(𝑃𝑃|H)|, therefore |E(𝑃𝑃z{,)| ≤	q. Hence 𝑃𝑃z{ 

is the shortest path between vy to vu and is 

on some join cycle.  

Case 3. A pair of vertices vq, vu such that 

vq ∈ 	V(G)	, vu ∈	V(𝑃𝑃iH ) and w	 ≠ 	 vu ≠

	vr.	It is clear by construction that the only 

paths from vq to vu are the join path cycle 

consisting of a path from vq to vu, 𝑃𝑃i	G and 

𝑃𝑃i	H. Hence the shortest path is on the same 

join cycle. 

 

 

Case 4. A pair of vertices vx, vu such that 

vx, vu is not in V(G), vu 	≠ 	w ≠ 	vx, vx ∈

	V(𝑃𝑃iG ) and vu ∈	V(𝑃𝑃iH ). Let vq, vr ∈ V(G), 

such that vq ∈	V(𝑃𝑃iG ) and vr ∈	V(𝑃𝑃iH ). If 

d(vq, vr)=1, then vx, vu ∈ 𝐶𝐶o:, while if 

d(vq, vr)=2, then vx, vu ∈ 𝐶𝐶o1.	 

Thus every vertex pair in 𝐺𝐺im belong to 

some join cycle in 𝐺𝐺im, hence 𝐺𝐺im has a 

vertex pair join cycle cover. 

Lemma 2.3 Let G be a graph of order n 

and size m with diameter at most 2. Let 𝐺𝐺im 

be the subdivided join of G. Then the 

shortest path between any pair of vertices 

in 𝐺𝐺im lie on some join cycle of 𝐺𝐺im. 

Proof. There are four cases of pairs of 

vertices on a join cycle to be considered: 

Case 1. A pair of vertices vq, vr ∈ V(G)	. It 

is clear that the construction of Ĝm does not 

affect the shortest path in G. But vq, vr are 

on the join cycle consisting of the shortest 

path between vq and vr and join paths 𝑃𝑃i	G 

and 𝑃𝑃i	H .  

Case 2. A pair of vertices vy, vu ∈	V(𝑃𝑃i	H ), 

that is both vy, vu are lying on the same 

join path 𝑃𝑃i	H. Let the path from vy to vu on 

𝑃𝑃i	H be called 𝑃𝑃z{. Assume there is another 

path from vy to vu shorter than 𝑃𝑃z{, say 

path 𝑃𝑃|z{ . Then it is clear that 𝑃𝑃z{ ∪ 𝑃𝑃|z{	is a 

cycle. By construction of Ĝm, the only 

possibility is that 𝑃𝑃z{ ∪ 𝑃𝑃|z{ is some cycle 

consisting of some join path, say 𝑃𝑃i	}  and 

some edges in G. Thus 𝑃𝑃|z{ is a path 

consisting of join path 𝑃𝑃i	} and at least one 

more edge. Thus |E(𝑃𝑃|z{)| > q+1. But 

E(𝑃𝑃z{) ⊆ E(𝑃𝑃|H) where |E(𝑃𝑃i	})|= q = 

|E(𝑃𝑃|H)|, therefore |E(𝑃𝑃z{,)| ≤	q. Hence 𝑃𝑃z{ 

is the shortest path between vy to vu and is 

on some join cycle.  

Case 3. A pair of vertices vq, vu such that 

vq ∈ 	V(G)	, vu ∈	V(𝑃𝑃iH ) and w	 ≠ 	 vu ≠

	vr.	It is clear by construction that the only 

paths from vq to vu are the join path cycle 

consisting of a path from vq to vu, 𝑃𝑃i	G and 

𝑃𝑃i	H. Hence the shortest path is on the same 

join cycle. 

 

 

Case 4. A pair of vertices vx, vu such that 

vx, vu is not in V(G), vu 	≠ 	w ≠ 	vx, vx ∈

	V(𝑃𝑃iG ) and vu ∈	V(𝑃𝑃iH ). Let vq, vr ∈ V(G), 

such that vq ∈	V(𝑃𝑃iG ) and vr ∈	V(𝑃𝑃iH ). If 

d(vq, vr)=1, then vx, vu ∈ 𝐶𝐶o:, while if 

d(vq, vr)=2, then vx, vu ∈ 𝐶𝐶o1.	 

Thus every vertex pair in 𝐺𝐺im belong to 

some join cycle in 𝐺𝐺im, hence 𝐺𝐺im has a 

vertex pair join cycle cover. 

Lemma 2.3 Let G be a graph of order n 

and size m with diameter at most 2. Let 𝐺𝐺im 

be the subdivided join of G. Then the 

shortest path between any pair of vertices 

in 𝐺𝐺im lie on some join cycle of 𝐺𝐺im. 

Proof. There are four cases of pairs of 

vertices on a join cycle to be considered: 

Case 1. A pair of vertices vq, vr ∈ V(G)	. It 

is clear that the construction of Ĝm does not 

affect the shortest path in G. But vq, vr are 

on the join cycle consisting of the shortest 

path between vq and vr and join paths 𝑃𝑃i	G 

and 𝑃𝑃i	H .  

Case 2. A pair of vertices vy, vu ∈	V(𝑃𝑃i	H ), 

that is both vy, vu are lying on the same 

join path 𝑃𝑃i	H. Let the path from vy to vu on 

𝑃𝑃i	H be called 𝑃𝑃z{. Assume there is another 

path from vy to vu shorter than 𝑃𝑃z{, say 

path 𝑃𝑃|z{ . Then it is clear that 𝑃𝑃z{ ∪ 𝑃𝑃|z{	is a 

cycle. By construction of Ĝm, the only 

possibility is that 𝑃𝑃z{ ∪ 𝑃𝑃|z{ is some cycle 

consisting of some join path, say 𝑃𝑃i	}  and 

some edges in G. Thus 𝑃𝑃|z{ is a path 

consisting of join path 𝑃𝑃i	} and at least one 

more edge. Thus |E(𝑃𝑃|z{)| > q+1. But 

E(𝑃𝑃z{) ⊆ E(𝑃𝑃|H) where |E(𝑃𝑃i	})|= q = 

|E(𝑃𝑃|H)|, therefore |E(𝑃𝑃z{,)| ≤	q. Hence 𝑃𝑃z{ 

is the shortest path between vy to vu and is 

on some join cycle.  

Case 3. A pair of vertices vq, vu such that 

vq ∈ 	V(G)	, vu ∈	V(𝑃𝑃iH ) and w	 ≠ 	 vu ≠

	vr.	It is clear by construction that the only 

paths from vq to vu are the join path cycle 

consisting of a path from vq to vu, 𝑃𝑃i	G and 

𝑃𝑃i	H. Hence the shortest path is on the same 

join cycle. 

 

 

Case 4. A pair of vertices vx, vu such that 

vx, vu is not in V(G), vu 	≠ 	w ≠ 	vx, vx ∈

	V(𝑃𝑃iG ) and vu ∈	V(𝑃𝑃iH ). Let vq, vr ∈ V(G), 

such that vq ∈	V(𝑃𝑃iG ) and vr ∈	V(𝑃𝑃iH ). If 

d(vq, vr)=1, then vx, vu ∈ 𝐶𝐶o:, while if 

d(vq, vr)=2, then vx, vu ∈ 𝐶𝐶o1.	 

Thus every vertex pair in 𝐺𝐺im belong to 

some join cycle in 𝐺𝐺im, hence 𝐺𝐺im has a 

vertex pair join cycle cover. 

Lemma 2.3 Let G be a graph of order n 

and size m with diameter at most 2. Let 𝐺𝐺im 

be the subdivided join of G. Then the 

shortest path between any pair of vertices 

in 𝐺𝐺im lie on some join cycle of 𝐺𝐺im. 

Proof. There are four cases of pairs of 

vertices on a join cycle to be considered: 

Case 1. A pair of vertices vq, vr ∈ V(G)	. It 

is clear that the construction of Ĝm does not 

affect the shortest path in G. But vq, vr are 

on the join cycle consisting of the shortest 

path between vq and vr and join paths 𝑃𝑃i	G 

and 𝑃𝑃i	H .  

Case 2. A pair of vertices vy, vu ∈	V(𝑃𝑃i	H ), 

that is both vy, vu are lying on the same 

join path 𝑃𝑃i	H. Let the path from vy to vu on 

𝑃𝑃i	H be called 𝑃𝑃z{. Assume there is another 

path from vy to vu shorter than 𝑃𝑃z{, say 

path 𝑃𝑃|z{ . Then it is clear that 𝑃𝑃z{ ∪ 𝑃𝑃|z{	is a 

cycle. By construction of Ĝm, the only 

possibility is that 𝑃𝑃z{ ∪ 𝑃𝑃|z{ is some cycle 

consisting of some join path, say 𝑃𝑃i	}  and 

some edges in G. Thus 𝑃𝑃|z{ is a path 

consisting of join path 𝑃𝑃i	} and at least one 

more edge. Thus |E(𝑃𝑃|z{)| > q+1. But 

E(𝑃𝑃z{) ⊆ E(𝑃𝑃|H) where |E(𝑃𝑃i	})|= q = 

|E(𝑃𝑃|H)|, therefore |E(𝑃𝑃z{,)| ≤	q. Hence 𝑃𝑃z{ 

is the shortest path between vy to vu and is 

on some join cycle.  

Case 3. A pair of vertices vq, vu such that 

vq ∈ 	V(G)	, vu ∈	V(𝑃𝑃iH ) and w	 ≠ 	 vu ≠

	vr.	It is clear by construction that the only 

paths from vq to vu are the join path cycle 

consisting of a path from vq to vu, 𝑃𝑃i	G and 

𝑃𝑃i	H. Hence the shortest path is on the same 

join cycle. 

 

 

Case 4. A pair of vertices vx, vu such that 

vx, vu is not in V(G), vu 	≠ 	w ≠ 	vx, vx ∈

	V(𝑃𝑃iG ) and vu ∈	V(𝑃𝑃iH ). Let vq, vr ∈ V(G), 

such that vq ∈	V(𝑃𝑃iG ) and vr ∈	V(𝑃𝑃iH ). If 

d(vq, vr)=1, then vx, vu ∈ 𝐶𝐶o:, while if 

d(vq, vr)=2, then vx, vu ∈ 𝐶𝐶o1.	 

Thus every vertex pair in 𝐺𝐺im belong to 

some join cycle in 𝐺𝐺im, hence 𝐺𝐺im has a 

vertex pair join cycle cover. 

Lemma 2.3 Let G be a graph of order n 

and size m with diameter at most 2. Let 𝐺𝐺im 

be the subdivided join of G. Then the 

shortest path between any pair of vertices 

in 𝐺𝐺im lie on some join cycle of 𝐺𝐺im. 

Proof. There are four cases of pairs of 

vertices on a join cycle to be considered: 

Case 1. A pair of vertices vq, vr ∈ V(G)	. It 

is clear that the construction of Ĝm does not 

affect the shortest path in G. But vq, vr are 

on the join cycle consisting of the shortest 

path between vq and vr and join paths 𝑃𝑃i	G 

and 𝑃𝑃i	H .  

Case 2. A pair of vertices vy, vu ∈	V(𝑃𝑃i	H ), 

that is both vy, vu are lying on the same 

join path 𝑃𝑃i	H. Let the path from vy to vu on 

𝑃𝑃i	H be called 𝑃𝑃z{. Assume there is another 

path from vy to vu shorter than 𝑃𝑃z{, say 

path 𝑃𝑃|z{ . Then it is clear that 𝑃𝑃z{ ∪ 𝑃𝑃|z{	is a 

cycle. By construction of Ĝm, the only 

possibility is that 𝑃𝑃z{ ∪ 𝑃𝑃|z{ is some cycle 

consisting of some join path, say 𝑃𝑃i	}  and 

some edges in G. Thus 𝑃𝑃|z{ is a path 

consisting of join path 𝑃𝑃i	} and at least one 

more edge. Thus |E(𝑃𝑃|z{)| > q+1. But 

E(𝑃𝑃z{) ⊆ E(𝑃𝑃|H) where |E(𝑃𝑃i	})|= q = 

|E(𝑃𝑃|H)|, therefore |E(𝑃𝑃z{,)| ≤	q. Hence 𝑃𝑃z{ 

is the shortest path between vy to vu and is 

on some join cycle.  

Case 3. A pair of vertices vq, vu such that 

vq ∈ 	V(G)	, vu ∈	V(𝑃𝑃iH ) and w	 ≠ 	 vu ≠

	vr.	It is clear by construction that the only 

paths from vq to vu are the join path cycle 

consisting of a path from vq to vu, 𝑃𝑃i	G and 

𝑃𝑃i	H. Hence the shortest path is on the same 

join cycle. 

 

 

Case 4. A pair of vertices vx, vu such that 

vx, vu is not in V(G), vu 	≠ 	w ≠ 	vx, vx ∈

	V(𝑃𝑃iG ) and vu ∈	V(𝑃𝑃iH ). Let vq, vr ∈ V(G), 

such that vq ∈	V(𝑃𝑃iG ) and vr ∈	V(𝑃𝑃iH ). If 

d(vq, vr)=1, then vx, vu ∈ 𝐶𝐶o:, while if 

d(vq, vr)=2, then vx, vu ∈ 𝐶𝐶o1.	 

Thus every vertex pair in 𝐺𝐺im belong to 

some join cycle in 𝐺𝐺im, hence 𝐺𝐺im has a 

vertex pair join cycle cover. 

Lemma 2.3 Let G be a graph of order n 

and size m with diameter at most 2. Let 𝐺𝐺im 

be the subdivided join of G. Then the 

shortest path between any pair of vertices 

in 𝐺𝐺im lie on some join cycle of 𝐺𝐺im. 

Proof. There are four cases of pairs of 

vertices on a join cycle to be considered: 

Case 1. A pair of vertices vq, vr ∈ V(G)	. It 

is clear that the construction of Ĝm does not 

affect the shortest path in G. But vq, vr are 

on the join cycle consisting of the shortest 

path between vq and vr and join paths 𝑃𝑃i	G 

and 𝑃𝑃i	H .  

Case 2. A pair of vertices vy, vu ∈	V(𝑃𝑃i	H ), 

that is both vy, vu are lying on the same 

join path 𝑃𝑃i	H. Let the path from vy to vu on 

𝑃𝑃i	H be called 𝑃𝑃z{. Assume there is another 

path from vy to vu shorter than 𝑃𝑃z{, say 

path 𝑃𝑃|z{ . Then it is clear that 𝑃𝑃z{ ∪ 𝑃𝑃|z{	is a 

cycle. By construction of Ĝm, the only 

possibility is that 𝑃𝑃z{ ∪ 𝑃𝑃|z{ is some cycle 

consisting of some join path, say 𝑃𝑃i	}  and 

some edges in G. Thus 𝑃𝑃|z{ is a path 

consisting of join path 𝑃𝑃i	} and at least one 

more edge. Thus |E(𝑃𝑃|z{)| > q+1. But 

E(𝑃𝑃z{) ⊆ E(𝑃𝑃|H) where |E(𝑃𝑃i	})|= q = 

|E(𝑃𝑃|H)|, therefore |E(𝑃𝑃z{,)| ≤	q. Hence 𝑃𝑃z{ 

is the shortest path between vy to vu and is 

on some join cycle.  

Case 3. A pair of vertices vq, vu such that 

vq ∈ 	V(G)	, vu ∈	V(𝑃𝑃iH ) and w	 ≠ 	 vu ≠

	vr.	It is clear by construction that the only 

paths from vq to vu are the join path cycle 

consisting of a path from vq to vu, 𝑃𝑃i	G and 

𝑃𝑃i	H. Hence the shortest path is on the same 

join cycle. 

 

 

Case 4. A pair of vertices vx, vu such that 

vx, vu is not in V(G), vu 	≠ 	w ≠ 	vx, vx ∈

	V(𝑃𝑃iG ) and vu ∈	V(𝑃𝑃iH ). Let vq, vr ∈ V(G), 

such that vq ∈	V(𝑃𝑃iG ) and vr ∈	V(𝑃𝑃iH ). If 

d(vq, vr)=1, then vx, vu ∈ 𝐶𝐶o:, while if 

d(vq, vr)=2, then vx, vu ∈ 𝐶𝐶o1.	 

Thus every vertex pair in 𝐺𝐺im belong to 

some join cycle in 𝐺𝐺im, hence 𝐺𝐺im has a 

vertex pair join cycle cover. 

Lemma 2.3 Let G be a graph of order n 

and size m with diameter at most 2. Let 𝐺𝐺im 

be the subdivided join of G. Then the 

shortest path between any pair of vertices 

in 𝐺𝐺im lie on some join cycle of 𝐺𝐺im. 

Proof. There are four cases of pairs of 

vertices on a join cycle to be considered: 

Case 1. A pair of vertices vq, vr ∈ V(G)	. It 

is clear that the construction of Ĝm does not 

affect the shortest path in G. But vq, vr are 

on the join cycle consisting of the shortest 

path between vq and vr and join paths 𝑃𝑃i	G 

and 𝑃𝑃i	H .  

Case 2. A pair of vertices vy, vu ∈	V(𝑃𝑃i	H ), 

that is both vy, vu are lying on the same 

join path 𝑃𝑃i	H. Let the path from vy to vu on 

𝑃𝑃i	H be called 𝑃𝑃z{. Assume there is another 

path from vy to vu shorter than 𝑃𝑃z{, say 

path 𝑃𝑃|z{ . Then it is clear that 𝑃𝑃z{ ∪ 𝑃𝑃|z{	is a 

cycle. By construction of Ĝm, the only 

possibility is that 𝑃𝑃z{ ∪ 𝑃𝑃|z{ is some cycle 

consisting of some join path, say 𝑃𝑃i	}  and 

some edges in G. Thus 𝑃𝑃|z{ is a path 

consisting of join path 𝑃𝑃i	} and at least one 

more edge. Thus |E(𝑃𝑃|z{)| > q+1. But 

E(𝑃𝑃z{) ⊆ E(𝑃𝑃|H) where |E(𝑃𝑃i	})|= q = 

|E(𝑃𝑃|H)|, therefore |E(𝑃𝑃z{,)| ≤	q. Hence 𝑃𝑃z{ 

is the shortest path between vy to vu and is 

on some join cycle.  

Case 3. A pair of vertices vq, vu such that 

vq ∈ 	V(G)	, vu ∈	V(𝑃𝑃iH ) and w	 ≠ 	 vu ≠

	vr.	It is clear by construction that the only 

paths from vq to vu are the join path cycle 

consisting of a path from vq to vu, 𝑃𝑃i	G and 

𝑃𝑃i	H. Hence the shortest path is on the same 

join cycle. 

 

 

Case 4. A pair of vertices vx, vu such that 

vx, vu is not in V(G), vu 	≠ 	w ≠ 	vx, vx ∈

	V(𝑃𝑃iG ) and vu ∈	V(𝑃𝑃iH ). Let vq, vr ∈ V(G), 

such that vq ∈	V(𝑃𝑃iG ) and vr ∈	V(𝑃𝑃iH ). If 

d(vq, vr)=1, then vx, vu ∈ 𝐶𝐶o:, while if 

d(vq, vr)=2, then vx, vu ∈ 𝐶𝐶o1.	 

Thus every vertex pair in 𝐺𝐺im belong to 

some join cycle in 𝐺𝐺im, hence 𝐺𝐺im has a 

vertex pair join cycle cover. 

Lemma 2.3 Let G be a graph of order n 

and size m with diameter at most 2. Let 𝐺𝐺im 

be the subdivided join of G. Then the 

shortest path between any pair of vertices 

in 𝐺𝐺im lie on some join cycle of 𝐺𝐺im. 

Proof. There are four cases of pairs of 

vertices on a join cycle to be considered: 

Case 1. A pair of vertices vq, vr ∈ V(G)	. It 

is clear that the construction of Ĝm does not 

affect the shortest path in G. But vq, vr are 

on the join cycle consisting of the shortest 

path between vq and vr and join paths 𝑃𝑃i	G 

and 𝑃𝑃i	H .  

Case 2. A pair of vertices vy, vu ∈	V(𝑃𝑃i	H ), 

that is both vy, vu are lying on the same 

join path 𝑃𝑃i	H. Let the path from vy to vu on 

𝑃𝑃i	H be called 𝑃𝑃z{. Assume there is another 

path from vy to vu shorter than 𝑃𝑃z{, say 

path 𝑃𝑃|z{ . Then it is clear that 𝑃𝑃z{ ∪ 𝑃𝑃|z{	is a 

cycle. By construction of Ĝm, the only 

possibility is that 𝑃𝑃z{ ∪ 𝑃𝑃|z{ is some cycle 

consisting of some join path, say 𝑃𝑃i	}  and 

some edges in G. Thus 𝑃𝑃|z{ is a path 

consisting of join path 𝑃𝑃i	} and at least one 

more edge. Thus |E(𝑃𝑃|z{)| > q+1. But 

E(𝑃𝑃z{) ⊆ E(𝑃𝑃|H) where |E(𝑃𝑃i	})|= q = 

|E(𝑃𝑃|H)|, therefore |E(𝑃𝑃z{,)| ≤	q. Hence 𝑃𝑃z{ 

is the shortest path between vy to vu and is 

on some join cycle.  

Case 3. A pair of vertices vq, vu such that 

vq ∈ 	V(G)	, vu ∈	V(𝑃𝑃iH ) and w	 ≠ 	 vu ≠

	vr.	It is clear by construction that the only 

paths from vq to vu are the join path cycle 

consisting of a path from vq to vu, 𝑃𝑃i	G and 

𝑃𝑃i	H. Hence the shortest path is on the same 

join cycle. 

 

 

Case 4. A pair of vertices vx, vu such that 

vx, vu is not in V(G), vu 	≠ 	w ≠ 	vx, vx ∈

	V(𝑃𝑃iG ) and vu ∈	V(𝑃𝑃iH ). Let vq, vr ∈ V(G), 

such that vq ∈	V(𝑃𝑃iG ) and vr ∈	V(𝑃𝑃iH ). If 

d(vq, vr)=1, then vx, vu ∈ 𝐶𝐶o:, while if 

d(vq, vr)=2, then vx, vu ∈ 𝐶𝐶o1.	 

Thus every vertex pair in 𝐺𝐺im belong to 

some join cycle in 𝐺𝐺im, hence 𝐺𝐺im has a 

vertex pair join cycle cover. 

Lemma 2.3 Let G be a graph of order n 

and size m with diameter at most 2. Let 𝐺𝐺im 

be the subdivided join of G. Then the 

shortest path between any pair of vertices 

in 𝐺𝐺im lie on some join cycle of 𝐺𝐺im. 

Proof. There are four cases of pairs of 

vertices on a join cycle to be considered: 

Case 1. A pair of vertices vq, vr ∈ V(G)	. It 

is clear that the construction of Ĝm does not 

affect the shortest path in G. But vq, vr are 

on the join cycle consisting of the shortest 

path between vq and vr and join paths 𝑃𝑃i	G 

and 𝑃𝑃i	H .  

Case 2. A pair of vertices vy, vu ∈	V(𝑃𝑃i	H ), 

that is both vy, vu are lying on the same 

join path 𝑃𝑃i	H. Let the path from vy to vu on 

𝑃𝑃i	H be called 𝑃𝑃z{. Assume there is another 

path from vy to vu shorter than 𝑃𝑃z{, say 

path 𝑃𝑃|z{ . Then it is clear that 𝑃𝑃z{ ∪ 𝑃𝑃|z{	is a 

cycle. By construction of Ĝm, the only 

possibility is that 𝑃𝑃z{ ∪ 𝑃𝑃|z{ is some cycle 

consisting of some join path, say 𝑃𝑃i	}  and 

some edges in G. Thus 𝑃𝑃|z{ is a path 

consisting of join path 𝑃𝑃i	} and at least one 

more edge. Thus |E(𝑃𝑃|z{)| > q+1. But 

E(𝑃𝑃z{) ⊆ E(𝑃𝑃|H) where |E(𝑃𝑃i	})|= q = 

|E(𝑃𝑃|H)|, therefore |E(𝑃𝑃z{,)| ≤	q. Hence 𝑃𝑃z{ 

is the shortest path between vy to vu and is 

on some join cycle.  

Case 3. A pair of vertices vq, vu such that 

vq ∈ 	V(G)	, vu ∈	V(𝑃𝑃iH ) and w	 ≠ 	 vu ≠

	vr.	It is clear by construction that the only 

paths from vq to vu are the join path cycle 

consisting of a path from vq to vu, 𝑃𝑃i	G and 

𝑃𝑃i	H. Hence the shortest path is on the same 

join cycle. 

 

 

Case 4. A pair of vertices vx, vu such that 

vx, vu is not in V(G), vu 	≠ 	w ≠ 	vx, vx ∈

	V(𝑃𝑃iG ) and vu ∈	V(𝑃𝑃iH ). Let vq, vr ∈ V(G), 

such that vq ∈	V(𝑃𝑃iG ) and vr ∈	V(𝑃𝑃iH ). If 

d(vq, vr)=1, then vx, vu ∈ 𝐶𝐶o:, while if 

d(vq, vr)=2, then vx, vu ∈ 𝐶𝐶o1.	 

Thus every vertex pair in 𝐺𝐺im belong to 

some join cycle in 𝐺𝐺im, hence 𝐺𝐺im has a 

vertex pair join cycle cover. 

Lemma 2.3 Let G be a graph of order n 

and size m with diameter at most 2. Let 𝐺𝐺im 

be the subdivided join of G. Then the 

shortest path between any pair of vertices 

in 𝐺𝐺im lie on some join cycle of 𝐺𝐺im. 

Proof. There are four cases of pairs of 

vertices on a join cycle to be considered: 

Case 1. A pair of vertices vq, vr ∈ V(G)	. It 

is clear that the construction of Ĝm does not 

affect the shortest path in G. But vq, vr are 

on the join cycle consisting of the shortest 

path between vq and vr and join paths 𝑃𝑃i	G 

and 𝑃𝑃i	H .  

Case 2. A pair of vertices vy, vu ∈	V(𝑃𝑃i	H ), 

that is both vy, vu are lying on the same 

join path 𝑃𝑃i	H. Let the path from vy to vu on 

𝑃𝑃i	H be called 𝑃𝑃z{. Assume there is another 

path from vy to vu shorter than 𝑃𝑃z{, say 

path 𝑃𝑃|z{ . Then it is clear that 𝑃𝑃z{ ∪ 𝑃𝑃|z{	is a 

cycle. By construction of Ĝm, the only 

possibility is that 𝑃𝑃z{ ∪ 𝑃𝑃|z{ is some cycle 

consisting of some join path, say 𝑃𝑃i	}  and 

some edges in G. Thus 𝑃𝑃|z{ is a path 

consisting of join path 𝑃𝑃i	} and at least one 

more edge. Thus |E(𝑃𝑃|z{)| > q+1. But 

E(𝑃𝑃z{) ⊆ E(𝑃𝑃|H) where |E(𝑃𝑃i	})|= q = 

|E(𝑃𝑃|H)|, therefore |E(𝑃𝑃z{,)| ≤	q. Hence 𝑃𝑃z{ 

is the shortest path between vy to vu and is 

on some join cycle.  

Case 3. A pair of vertices vq, vu such that 

vq ∈ 	V(G)	, vu ∈	V(𝑃𝑃iH ) and w	 ≠ 	 vu ≠

	vr.	It is clear by construction that the only 

paths from vq to vu are the join path cycle 

consisting of a path from vq to vu, 𝑃𝑃i	G and 

𝑃𝑃i	H. Hence the shortest path is on the same 

join cycle. 

 

 

Case 4. A pair of vertices vx, vu such that 

vx, vu is not in V(G), vu 	≠ 	w ≠ 	vx, vx ∈

	V(𝑃𝑃iG ) and vu ∈	V(𝑃𝑃iH ). Let vq, vr ∈ V(G), 

such that vq ∈	V(𝑃𝑃iG ) and vr ∈	V(𝑃𝑃iH ). If 

d(vq, vr)=1, then vx, vu ∈ 𝐶𝐶o:, while if 

d(vq, vr)=2, then vx, vu ∈ 𝐶𝐶o1.	 

Thus every vertex pair in 𝐺𝐺im belong to 

some join cycle in 𝐺𝐺im, hence 𝐺𝐺im has a 

vertex pair join cycle cover. 

Lemma 2.3 Let G be a graph of order n 

and size m with diameter at most 2. Let 𝐺𝐺im 

be the subdivided join of G. Then the 

shortest path between any pair of vertices 

in 𝐺𝐺im lie on some join cycle of 𝐺𝐺im. 

Proof. There are four cases of pairs of 

vertices on a join cycle to be considered: 

Case 1. A pair of vertices vq, vr ∈ V(G)	. It 

is clear that the construction of Ĝm does not 

affect the shortest path in G. But vq, vr are 

on the join cycle consisting of the shortest 

path between vq and vr and join paths 𝑃𝑃i	G 

and 𝑃𝑃i	H .  

Case 2. A pair of vertices vy, vu ∈	V(𝑃𝑃i	H ), 

that is both vy, vu are lying on the same 

join path 𝑃𝑃i	H. Let the path from vy to vu on 

𝑃𝑃i	H be called 𝑃𝑃z{. Assume there is another 

path from vy to vu shorter than 𝑃𝑃z{, say 

path 𝑃𝑃|z{ . Then it is clear that 𝑃𝑃z{ ∪ 𝑃𝑃|z{	is a 

cycle. By construction of Ĝm, the only 

possibility is that 𝑃𝑃z{ ∪ 𝑃𝑃|z{ is some cycle 

consisting of some join path, say 𝑃𝑃i	}  and 

some edges in G. Thus 𝑃𝑃|z{ is a path 

consisting of join path 𝑃𝑃i	} and at least one 

more edge. Thus |E(𝑃𝑃|z{)| > q+1. But 

E(𝑃𝑃z{) ⊆ E(𝑃𝑃|H) where |E(𝑃𝑃i	})|= q = 

|E(𝑃𝑃|H)|, therefore |E(𝑃𝑃z{,)| ≤	q. Hence 𝑃𝑃z{ 

is the shortest path between vy to vu and is 

on some join cycle.  

Case 3. A pair of vertices vq, vu such that 

vq ∈ 	V(G)	, vu ∈	V(𝑃𝑃iH ) and w	 ≠ 	 vu ≠

	vr.	It is clear by construction that the only 

paths from vq to vu are the join path cycle 

consisting of a path from vq to vu, 𝑃𝑃i	G and 

𝑃𝑃i	H. Hence the shortest path is on the same 

join cycle. 

 

 

Case 4. A pair of vertices vx, vu such that 

vx, vu is not in V(G), vu 	≠ 	w ≠ 	vx, vx ∈

	V(𝑃𝑃iG ) and vu ∈	V(𝑃𝑃iH ). Let vq, vr ∈ V(G), 

such that vq ∈	V(𝑃𝑃iG ) and vr ∈	V(𝑃𝑃iH ). If 

d(vq, vr)=1, then vx, vu ∈ 𝐶𝐶o:, while if 

d(vq, vr)=2, then vx, vu ∈ 𝐶𝐶o1.	 

Thus every vertex pair in 𝐺𝐺im belong to 

some join cycle in 𝐺𝐺im, hence 𝐺𝐺im has a 

vertex pair join cycle cover. 

Lemma 2.3 Let G be a graph of order n 

and size m with diameter at most 2. Let 𝐺𝐺im 

be the subdivided join of G. Then the 

shortest path between any pair of vertices 

in 𝐺𝐺im lie on some join cycle of 𝐺𝐺im. 

Proof. There are four cases of pairs of 

vertices on a join cycle to be considered: 

Case 1. A pair of vertices vq, vr ∈ V(G)	. It 

is clear that the construction of Ĝm does not 

affect the shortest path in G. But vq, vr are 

on the join cycle consisting of the shortest 

path between vq and vr and join paths 𝑃𝑃i	G 

and 𝑃𝑃i	H .  

Case 2. A pair of vertices vy, vu ∈	V(𝑃𝑃i	H ), 

that is both vy, vu are lying on the same 

join path 𝑃𝑃i	H. Let the path from vy to vu on 

𝑃𝑃i	H be called 𝑃𝑃z{. Assume there is another 

path from vy to vu shorter than 𝑃𝑃z{, say 

path 𝑃𝑃|z{ . Then it is clear that 𝑃𝑃z{ ∪ 𝑃𝑃|z{	is a 

cycle. By construction of Ĝm, the only 

possibility is that 𝑃𝑃z{ ∪ 𝑃𝑃|z{ is some cycle 

consisting of some join path, say 𝑃𝑃i	}  and 

some edges in G. Thus 𝑃𝑃|z{ is a path 

consisting of join path 𝑃𝑃i	} and at least one 

more edge. Thus |E(𝑃𝑃|z{)| > q+1. But 

E(𝑃𝑃z{) ⊆ E(𝑃𝑃|H) where |E(𝑃𝑃i	})|= q = 

|E(𝑃𝑃|H)|, therefore |E(𝑃𝑃z{,)| ≤	q. Hence 𝑃𝑃z{ 

is the shortest path between vy to vu and is 

on some join cycle.  

Case 3. A pair of vertices vq, vu such that 

vq ∈ 	V(G)	, vu ∈	V(𝑃𝑃iH ) and w	 ≠ 	 vu ≠

	vr.	It is clear by construction that the only 

paths from vq to vu are the join path cycle 

consisting of a path from vq to vu, 𝑃𝑃i	G and 

𝑃𝑃i	H. Hence the shortest path is on the same 

join cycle. 

 

 

Case 4. A pair of vertices vx, vu such that 

vx, vu is not in V(G), vu 	≠ 	w ≠ 	vx, vx ∈

	V(𝑃𝑃iG ) and vu ∈	V(𝑃𝑃iH ). Let vq, vr ∈ V(G), 

such that vq ∈	V(𝑃𝑃iG ) and vr ∈	V(𝑃𝑃iH ). If 

d(vq, vr)=1, then vx, vu ∈ 𝐶𝐶o:, while if 

d(vq, vr)=2, then vx, vu ∈ 𝐶𝐶o1.	 

Thus every vertex pair in 𝐺𝐺im belong to 

some join cycle in 𝐺𝐺im, hence 𝐺𝐺im has a 

vertex pair join cycle cover. 

Lemma 2.3 Let G be a graph of order n 

and size m with diameter at most 2. Let 𝐺𝐺im 

be the subdivided join of G. Then the 

shortest path between any pair of vertices 

in 𝐺𝐺im lie on some join cycle of 𝐺𝐺im. 

Proof. There are four cases of pairs of 

vertices on a join cycle to be considered: 

Case 1. A pair of vertices vq, vr ∈ V(G)	. It 

is clear that the construction of Ĝm does not 

affect the shortest path in G. But vq, vr are 

on the join cycle consisting of the shortest 

path between vq and vr and join paths 𝑃𝑃i	G 

and 𝑃𝑃i	H .  

Case 2. A pair of vertices vy, vu ∈	V(𝑃𝑃i	H ), 

that is both vy, vu are lying on the same 

join path 𝑃𝑃i	H. Let the path from vy to vu on 

𝑃𝑃i	H be called 𝑃𝑃z{. Assume there is another 

path from vy to vu shorter than 𝑃𝑃z{, say 

path 𝑃𝑃|z{ . Then it is clear that 𝑃𝑃z{ ∪ 𝑃𝑃|z{	is a 

cycle. By construction of Ĝm, the only 

possibility is that 𝑃𝑃z{ ∪ 𝑃𝑃|z{ is some cycle 

consisting of some join path, say 𝑃𝑃i	}  and 

some edges in G. Thus 𝑃𝑃|z{ is a path 

consisting of join path 𝑃𝑃i	} and at least one 

more edge. Thus |E(𝑃𝑃|z{)| > q+1. But 

E(𝑃𝑃z{) ⊆ E(𝑃𝑃|H) where |E(𝑃𝑃i	})|= q = 

|E(𝑃𝑃|H)|, therefore |E(𝑃𝑃z{,)| ≤	q. Hence 𝑃𝑃z{ 

is the shortest path between vy to vu and is 

on some join cycle.  

Case 3. A pair of vertices vq, vu such that 

vq ∈ 	V(G)	, vu ∈	V(𝑃𝑃iH ) and w	 ≠ 	 vu ≠

	vr.	It is clear by construction that the only 

paths from vq to vu are the join path cycle 

consisting of a path from vq to vu, 𝑃𝑃i	G and 

𝑃𝑃i	H. Hence the shortest path is on the same 

join cycle. 

 

 

Case 4. A pair of vertices vx, vu such that 

vx, vu is not in V(G), vu 	≠ 	w ≠ 	vx, vx ∈

	V(𝑃𝑃iG ) and vu ∈	V(𝑃𝑃iH ). Let vq, vr ∈ V(G), 

such that vq ∈	V(𝑃𝑃iG ) and vr ∈	V(𝑃𝑃iH ). If 

d(vq, vr)=1, then vx, vu ∈ 𝐶𝐶o:, while if 

d(vq, vr)=2, then vx, vu ∈ 𝐶𝐶o1.	 

Thus every vertex pair in 𝐺𝐺im belong to 

some join cycle in 𝐺𝐺im, hence 𝐺𝐺im has a 

vertex pair join cycle cover. 

Lemma 2.3 Let G be a graph of order n 

and size m with diameter at most 2. Let 𝐺𝐺im 

be the subdivided join of G. Then the 

shortest path between any pair of vertices 

in 𝐺𝐺im lie on some join cycle of 𝐺𝐺im. 

Proof. There are four cases of pairs of 

vertices on a join cycle to be considered: 

Case 1. A pair of vertices vq, vr ∈ V(G)	. It 

is clear that the construction of Ĝm does not 

affect the shortest path in G. But vq, vr are 

on the join cycle consisting of the shortest 

path between vq and vr and join paths 𝑃𝑃i	G 

and 𝑃𝑃i	H .  

Case 2. A pair of vertices vy, vu ∈	V(𝑃𝑃i	H ), 

that is both vy, vu are lying on the same 

join path 𝑃𝑃i	H. Let the path from vy to vu on 

𝑃𝑃i	H be called 𝑃𝑃z{. Assume there is another 

path from vy to vu shorter than 𝑃𝑃z{, say 

path 𝑃𝑃|z{ . Then it is clear that 𝑃𝑃z{ ∪ 𝑃𝑃|z{	is a 

cycle. By construction of Ĝm, the only 

possibility is that 𝑃𝑃z{ ∪ 𝑃𝑃|z{ is some cycle 

consisting of some join path, say 𝑃𝑃i	}  and 

some edges in G. Thus 𝑃𝑃|z{ is a path 

consisting of join path 𝑃𝑃i	} and at least one 

more edge. Thus |E(𝑃𝑃|z{)| > q+1. But 

E(𝑃𝑃z{) ⊆ E(𝑃𝑃|H) where |E(𝑃𝑃i	})|= q = 

|E(𝑃𝑃|H)|, therefore |E(𝑃𝑃z{,)| ≤	q. Hence 𝑃𝑃z{ 

is the shortest path between vy to vu and is 

on some join cycle.  

Case 3. A pair of vertices vq, vu such that 

vq ∈ 	V(G)	, vu ∈	V(𝑃𝑃iH ) and w	 ≠ 	 vu ≠

	vr.	It is clear by construction that the only 

paths from vq to vu are the join path cycle 

consisting of a path from vq to vu, 𝑃𝑃i	G and 

𝑃𝑃i	H. Hence the shortest path is on the same 

join cycle. 

 

 

Case 4. A pair of vertices vx, vu such that 

vx, vu is not in V(G), vu 	≠ 	w ≠ 	vx, vx ∈

	V(𝑃𝑃iG ) and vu ∈	V(𝑃𝑃iH ). Let vq, vr ∈ V(G), 

such that vq ∈	V(𝑃𝑃iG ) and vr ∈	V(𝑃𝑃iH ). If 

d(vq, vr)=1, then vx, vu ∈ 𝐶𝐶o:, while if 

d(vq, vr)=2, then vx, vu ∈ 𝐶𝐶o1.	 

Thus every vertex pair in 𝐺𝐺im belong to 

some join cycle in 𝐺𝐺im, hence 𝐺𝐺im has a 

vertex pair join cycle cover. 

Lemma 2.3 Let G be a graph of order n 

and size m with diameter at most 2. Let 𝐺𝐺im 

be the subdivided join of G. Then the 

shortest path between any pair of vertices 

in 𝐺𝐺im lie on some join cycle of 𝐺𝐺im. 

Proof. There are four cases of pairs of 

vertices on a join cycle to be considered: 

Case 1. A pair of vertices vq, vr ∈ V(G)	. It 

is clear that the construction of Ĝm does not 

affect the shortest path in G. But vq, vr are 

on the join cycle consisting of the shortest 

path between vq and vr and join paths 𝑃𝑃i	G 

and 𝑃𝑃i	H .  

Case 2. A pair of vertices vy, vu ∈	V(𝑃𝑃i	H ), 

that is both vy, vu are lying on the same 

join path 𝑃𝑃i	H. Let the path from vy to vu on 

𝑃𝑃i	H be called 𝑃𝑃z{. Assume there is another 

path from vy to vu shorter than 𝑃𝑃z{, say 

path 𝑃𝑃|z{ . Then it is clear that 𝑃𝑃z{ ∪ 𝑃𝑃|z{	is a 

cycle. By construction of Ĝm, the only 

possibility is that 𝑃𝑃z{ ∪ 𝑃𝑃|z{ is some cycle 

consisting of some join path, say 𝑃𝑃i	}  and 

some edges in G. Thus 𝑃𝑃|z{ is a path 

consisting of join path 𝑃𝑃i	} and at least one 

more edge. Thus |E(𝑃𝑃|z{)| > q+1. But 

E(𝑃𝑃z{) ⊆ E(𝑃𝑃|H) where |E(𝑃𝑃i	})|= q = 

|E(𝑃𝑃|H)|, therefore |E(𝑃𝑃z{,)| ≤	q. Hence 𝑃𝑃z{ 

is the shortest path between vy to vu and is 

on some join cycle.  

Case 3. A pair of vertices vq, vu such that 

vq ∈ 	V(G)	, vu ∈	V(𝑃𝑃iH ) and w	 ≠ 	 vu ≠

	vr.	It is clear by construction that the only 

paths from vq to vu are the join path cycle 

consisting of a path from vq to vu, 𝑃𝑃i	G and 

𝑃𝑃i	H. Hence the shortest path is on the same 

join cycle. 

 

 

Case 4. A pair of vertices vx, vu such that 

vx, vu is not in V(G), vu 	≠ 	w ≠ 	vx, vx ∈

	V(𝑃𝑃iG ) and vu ∈	V(𝑃𝑃iH ). Let vq, vr ∈ V(G), 

such that vq ∈	V(𝑃𝑃iG ) and vr ∈	V(𝑃𝑃iH ). If 

d(vq, vr)=1, then vx, vu ∈ 𝐶𝐶o:, while if 

d(vq, vr)=2, then vx, vu ∈ 𝐶𝐶o1.	 

Thus every vertex pair in 𝐺𝐺im belong to 

some join cycle in 𝐺𝐺im, hence 𝐺𝐺im has a 

vertex pair join cycle cover. 

Lemma 2.3 Let G be a graph of order n 

and size m with diameter at most 2. Let 𝐺𝐺im 

be the subdivided join of G. Then the 

shortest path between any pair of vertices 

in 𝐺𝐺im lie on some join cycle of 𝐺𝐺im. 

Proof. There are four cases of pairs of 

vertices on a join cycle to be considered: 

Case 1. A pair of vertices vq, vr ∈ V(G)	. It 

is clear that the construction of Ĝm does not 

affect the shortest path in G. But vq, vr are 

on the join cycle consisting of the shortest 

path between vq and vr and join paths 𝑃𝑃i	G 

and 𝑃𝑃i	H .  

Case 2. A pair of vertices vy, vu ∈	V(𝑃𝑃i	H ), 

that is both vy, vu are lying on the same 

join path 𝑃𝑃i	H. Let the path from vy to vu on 

𝑃𝑃i	H be called 𝑃𝑃z{. Assume there is another 

path from vy to vu shorter than 𝑃𝑃z{, say 

path 𝑃𝑃|z{ . Then it is clear that 𝑃𝑃z{ ∪ 𝑃𝑃|z{	is a 

cycle. By construction of Ĝm, the only 

possibility is that 𝑃𝑃z{ ∪ 𝑃𝑃|z{ is some cycle 

consisting of some join path, say 𝑃𝑃i	}  and 

some edges in G. Thus 𝑃𝑃|z{ is a path 

consisting of join path 𝑃𝑃i	} and at least one 

more edge. Thus |E(𝑃𝑃|z{)| > q+1. But 

E(𝑃𝑃z{) ⊆ E(𝑃𝑃|H) where |E(𝑃𝑃i	})|= q = 

|E(𝑃𝑃|H)|, therefore |E(𝑃𝑃z{,)| ≤	q. Hence 𝑃𝑃z{ 

is the shortest path between vy to vu and is 

on some join cycle.  

Case 3. A pair of vertices vq, vu such that 

vq ∈ 	V(G)	, vu ∈	V(𝑃𝑃iH ) and w	 ≠ 	 vu ≠

	vr.	It is clear by construction that the only 

paths from vq to vu are the join path cycle 

consisting of a path from vq to vu, 𝑃𝑃i	G and 

𝑃𝑃i	H. Hence the shortest path is on the same 

join cycle. 

 

 

Case 4. A pair of vertices vx, vu such that 

vx, vu is not in V(G), vu 	≠ 	w ≠ 	vx, vx ∈

	V(𝑃𝑃iG ) and vu ∈	V(𝑃𝑃iH ). Let vq, vr ∈ V(G), 

such that vq ∈	V(𝑃𝑃iG ) and vr ∈	V(𝑃𝑃iH ). If 

d(vq, vr)=1, then vx, vu ∈ 𝐶𝐶o:, while if 

d(vq, vr)=2, then vx, vu ∈ 𝐶𝐶o1.	 

Thus every vertex pair in 𝐺𝐺im belong to 

some join cycle in 𝐺𝐺im, hence 𝐺𝐺im has a 

vertex pair join cycle cover. 

Lemma 2.3 Let G be a graph of order n 

and size m with diameter at most 2. Let 𝐺𝐺im 

be the subdivided join of G. Then the 

shortest path between any pair of vertices 

in 𝐺𝐺im lie on some join cycle of 𝐺𝐺im. 

Proof. There are four cases of pairs of 

vertices on a join cycle to be considered: 

Case 1. A pair of vertices vq, vr ∈ V(G)	. It 

is clear that the construction of Ĝm does not 

affect the shortest path in G. But vq, vr are 

on the join cycle consisting of the shortest 

path between vq and vr and join paths 𝑃𝑃i	G 

and 𝑃𝑃i	H .  

Case 2. A pair of vertices vy, vu ∈	V(𝑃𝑃i	H ), 

that is both vy, vu are lying on the same 

join path 𝑃𝑃i	H. Let the path from vy to vu on 

𝑃𝑃i	H be called 𝑃𝑃z{. Assume there is another 

path from vy to vu shorter than 𝑃𝑃z{, say 

path 𝑃𝑃|z{ . Then it is clear that 𝑃𝑃z{ ∪ 𝑃𝑃|z{	is a 

cycle. By construction of Ĝm, the only 

possibility is that 𝑃𝑃z{ ∪ 𝑃𝑃|z{ is some cycle 

consisting of some join path, say 𝑃𝑃i	}  and 

some edges in G. Thus 𝑃𝑃|z{ is a path 

consisting of join path 𝑃𝑃i	} and at least one 

more edge. Thus |E(𝑃𝑃|z{)| > q+1. But 

E(𝑃𝑃z{) ⊆ E(𝑃𝑃|H) where |E(𝑃𝑃i	})|= q = 

|E(𝑃𝑃|H)|, therefore |E(𝑃𝑃z{,)| ≤	q. Hence 𝑃𝑃z{ 
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vx, vu are not in V(G), vu 	≠ 	w ≠ 	vx, vx ∈

	V(𝑃𝑃iG ) and vu ∈	V(𝑃𝑃iH ). Let vq, vr ∈ V(G), 

such that vq ∈	V(𝑃𝑃iG ) and vr ∈	V(𝑃𝑃iH ). Let 

the join cycle consisting of the shortest 

path from vq to vr ∪ 𝑃𝑃i	G ∪ 𝑃𝑃i	H be 𝐶𝐶oÄ and let 
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𝑃𝑃|Å{. Assume there is another path in Ĝm not 

on the join cycle 𝐶𝐶oÄ which is shorter than 
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of 𝐶𝐶oÄ . Thus the cycle 𝑃𝑃|Å{ ∪ 𝑃𝑃Å{ is longer 

than the join cycle 𝐶𝐶oÄ . Hence 𝑃𝑃|Å{ is the 

shortest path between vx and vu	and is on a 

join cycle. 

Corollary 2.4 Let G be a graph of order n 

and size m with diameter at most 2. Let Ĝm 

be the subdivided join of G. Then the sum 

of the Hosoya polynomials of all the join 

cycles in Ĝm covers the distance of any 

pair of vertices in Ĝm at least once. 

3. The Hosoya polynomial of 

subdivided join 

In this section, we give the Hosoya 

polynomial of the subdivided join of a 

diameter 1 graph and a diameter 2 graph. 

Finally we state the Wiener indices of the 

subdivided join of a diameter 1 graph and 

a diameter 2 graph. 

 Note that all diameter 1 graphs are 

complete graphs, thus we find the Hosoya 

polynomial of the subdivided join of a 

complete graph.  

Lemma 3.1 Let 𝐾𝐾<	be a complete graph of 

order n, and let 𝐺𝐺im  be the subdivided join 

of 𝐾𝐾<. Then there are F<1I join cycles of the 
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of order n, and let 𝐺𝐺im be the subdivided 

join of 𝐾𝐾<	. Then the Hosoya polynomial of 

𝐺𝐺im is  

𝐻𝐻F𝐺𝐺im, 𝑧𝑧I = É
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𝑃𝑃i	H. Hence the shortest path is on the same 
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Case 4. A pair of vertices vx, vu such that 

vx, vu is not in V(G), vu 	≠ 	w ≠ 	vx, vx ∈

	V(𝑃𝑃iG ) and vu ∈	V(𝑃𝑃iH ). Let vq, vr ∈ V(G), 

such that vq ∈	V(𝑃𝑃iG ) and vr ∈	V(𝑃𝑃iH ). If 

d(vq, vr)=1, then vx, vu ∈ 𝐶𝐶o:, while if 

d(vq, vr)=2, then vx, vu ∈ 𝐶𝐶o1.	 

Thus every vertex pair in 𝐺𝐺im belong to 

some join cycle in 𝐺𝐺im, hence 𝐺𝐺im has a 

vertex pair join cycle cover. 

Lemma 2.3 Let G be a graph of order n 

and size m with diameter at most 2. Let 𝐺𝐺im 

be the subdivided join of G. Then the 

shortest path between any pair of vertices 

in 𝐺𝐺im lie on some join cycle of 𝐺𝐺im. 

Proof. There are four cases of pairs of 

vertices on a join cycle to be considered: 

Case 1. A pair of vertices vq, vr ∈ V(G)	. It 

is clear that the construction of Ĝm does not 

affect the shortest path in G. But vq, vr are 

on the join cycle consisting of the shortest 

path between vq and vr and join paths 𝑃𝑃i	G 

and 𝑃𝑃i	H .  

Case 2. A pair of vertices vy, vu ∈	V(𝑃𝑃i	H ), 

that is both vy, vu are lying on the same 

join path 𝑃𝑃i	H. Let the path from vy to vu on 

𝑃𝑃i	H be called 𝑃𝑃z{. Assume there is another 

path from vy to vu shorter than 𝑃𝑃z{, say 

path 𝑃𝑃|z{ . Then it is clear that 𝑃𝑃z{ ∪ 𝑃𝑃|z{	is a 

cycle. By construction of Ĝm, the only 

possibility is that 𝑃𝑃z{ ∪ 𝑃𝑃|z{ is some cycle 

consisting of some join path, say 𝑃𝑃i	}  and 

some edges in G. Thus 𝑃𝑃|z{ is a path 

consisting of join path 𝑃𝑃i	} and at least one 

more edge. Thus |E(𝑃𝑃|z{)| > q+1. But 

E(𝑃𝑃z{) ⊆ E(𝑃𝑃|H) where |E(𝑃𝑃i	})|= q = 

|E(𝑃𝑃|H)|, therefore |E(𝑃𝑃z{,)| ≤	q. Hence 𝑃𝑃z{ 

is the shortest path between vy to vu and is 

on some join cycle.  

Case 3. A pair of vertices vq, vu such that 

vq ∈ 	V(G)	, vu ∈	V(𝑃𝑃iH ) and w	 ≠ 	 vu ≠

	vr.	It is clear by construction that the only 

paths from vq to vu are the join path cycle 

consisting of a path from vq to vu, 𝑃𝑃i	G and 

𝑃𝑃i	H. Hence the shortest path is on the same 

join cycle. 
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of the subdivided join for a diameter 2 
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Proposition 3.3 (Kumar, 2016). Let G be 

a diameter 2 graph of order n and size m. 

Then the Hosoya polynomial of G is 

𝐻𝐻(𝐺𝐺, 𝑧𝑧) = 𝑚𝑚𝑧𝑧 − áÉ
𝑛𝑛
2Ñ − 𝑚𝑚à 𝑧𝑧1. (11) 

Lemma 3.4 Let G=𝑃𝑃â	be a path on three 

vertices and let 𝐺𝐺im be the subdivided join 

of 𝑃𝑃â. Then the Hosoya polynomial of 𝐺𝐺im  is  

𝐻𝐻F𝐺𝐺im, 𝑧𝑧I = 2𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I +
1

𝑞𝑞 + 1𝐻𝐻
F𝐶𝐶o1, 𝑧𝑧I

− 3𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. (12) 

Proof. Let V(G)={𝑢𝑢:, 𝑢𝑢1, 𝑢𝑢â} such that 
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join cycles to the Hosoya polynomial of 𝐺𝐺im 

 

 

Proof. By Lemma 2.2, we know that every 

vertex pair in 𝐺𝐺im belong to some join cycle 

𝐶𝐶o:. By Corollary 2.4, the sum of the 

Hosoya polynomials of all the join cycles 

in 𝐺𝐺im covers the distance of any pair of 

vertices in 𝐺𝐺im at least once. We use the 

principle of inclusion-exclusion, Theorem 

1.2. Thus the Hosoya polynomial of 𝐺𝐺im 

can be found in terms of join cycles and 

join paths.  

By Lemma 3.1 the number of join cycles 

of size 2q+1 in 𝐺𝐺im is F<1I. Therefore the 

sum of the Hosoya polynomials of all the 

join cycles of 𝐺𝐺im	is F<1IH(𝐶𝐶o:,z). Since 𝑢𝑢G is 

paired with all the other (n-1) vertices, this 

implies that the join path 𝑃𝑃iG will appear in 

(n-1) join cycles. Thus the Hosoya 

polynomial of each join path 𝑃𝑃iG is in the 

Hosoya polynomials of (n-1) join cycles. 

But we need the Hosoya polynomial of 𝑃𝑃iG 

to contribute once in the total sum, thus we 

remove the (n-2) repetitions. We do this to 

all the n join paths, to get the Hosoya 

polynomial of 𝐺𝐺im, 

𝐻𝐻F𝐺𝐺im, 𝑧𝑧I = É
𝑛𝑛
2Ñ𝐻𝐻
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1
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It is clear that in 𝐺𝐺im, there are three join 

cycles. Thus the contribution of the three 

join cycles to the Hosoya polynomial of 𝐺𝐺im 

 

 

Case 4. A pair of vertices vx, vu such that 
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in 𝐺𝐺im lie on some join cycle of 𝐺𝐺im. 

Proof. There are four cases of pairs of 

vertices on a join cycle to be considered: 
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is clear that the construction of Ĝm does not 

affect the shortest path in G. But vq, vr are 

on the join cycle consisting of the shortest 

path between vq and vr and join paths 𝑃𝑃i	G 

and 𝑃𝑃i	H .  

Case 2. A pair of vertices vy, vu ∈	V(𝑃𝑃i	H ), 

that is both vy, vu are lying on the same 

join path 𝑃𝑃i	H. Let the path from vy to vu on 

𝑃𝑃i	H be called 𝑃𝑃z{. Assume there is another 

path from vy to vu shorter than 𝑃𝑃z{, say 

path 𝑃𝑃|z{ . Then it is clear that 𝑃𝑃z{ ∪ 𝑃𝑃|z{	is a 
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possibility is that 𝑃𝑃z{ ∪ 𝑃𝑃|z{ is some cycle 
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E(𝑃𝑃z{) ⊆ E(𝑃𝑃|H) where |E(𝑃𝑃i	})|= q = 

|E(𝑃𝑃|H)|, therefore |E(𝑃𝑃z{,)| ≤	q. Hence 𝑃𝑃z{ 

is the shortest path between vy to vu and is 

on some join cycle.  

Case 3. A pair of vertices vq, vu such that 

vq ∈ 	V(G)	, vu ∈	V(𝑃𝑃iH ) and w	 ≠ 	 vu ≠

	vr.	It is clear by construction that the only 

paths from vq to vu are the join path cycle 

consisting of a path from vq to vu, 𝑃𝑃i	G and 

𝑃𝑃i	H. Hence the shortest path is on the same 

join cycle. 
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Proof. By Lemma 2.2, we know that every 

vertex pair in 𝐺𝐺im belong to some join cycle 

𝐶𝐶o:. By Corollary 2.4, the sum of the 

Hosoya polynomials of all the join cycles 

in 𝐺𝐺im covers the distance of any pair of 

vertices in 𝐺𝐺im at least once. We use the 

principle of inclusion-exclusion, Theorem 

1.2. Thus the Hosoya polynomial of 𝐺𝐺im 

can be found in terms of join cycles and 

join paths.  

By Lemma 3.1 the number of join cycles 

of size 2q+1 in 𝐺𝐺im is F<1I. Therefore the 

sum of the Hosoya polynomials of all the 

join cycles of 𝐺𝐺im	is F<1IH(𝐶𝐶o:,z). Since 𝑢𝑢G is 

paired with all the other (n-1) vertices, this 

implies that the join path 𝑃𝑃iG will appear in 

(n-1) join cycles. Thus the Hosoya 

polynomial of each join path 𝑃𝑃iG is in the 

Hosoya polynomials of (n-1) join cycles. 

But we need the Hosoya polynomial of 𝑃𝑃iG 

to contribute once in the total sum, thus we 

remove the (n-2) repetitions. We do this to 

all the n join paths, to get the Hosoya 

polynomial of 𝐺𝐺im, 

𝐻𝐻F𝐺𝐺im, 𝑧𝑧I = É
𝑛𝑛
2Ñ𝐻𝐻

F𝐶𝐶o:, 𝑧𝑧I

− 𝑛𝑛(𝑛𝑛 − 2)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. (10) 

We now compute the Hosoya polynomials 

of the subdivided join for a diameter 2 

graph. The Hosoya polynomial of any 

graph with diameter 2 is known in the 

literature, see Kumar, 2016. 

Proposition 3.3 (Kumar, 2016). Let G be 
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vertex pair in 𝐺𝐺im belong to some join cycle 
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Lemma 3.4 Let G=𝑃𝑃â	be a path on three 

vertices and let 𝐺𝐺im be the subdivided join 

of 𝑃𝑃â. Then the Hosoya polynomial of 𝐺𝐺im  is  

𝐻𝐻F𝐺𝐺im, 𝑧𝑧I = 2𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I +
1

𝑞𝑞 + 1𝐻𝐻
F𝐶𝐶o1, 𝑧𝑧I

− 3𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. (12) 

Proof. Let V(G)={𝑢𝑢:, 𝑢𝑢1, 𝑢𝑢â} such that 
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(12)
Proof. Let V(G)={u1 , u2 , u3} such that d(u1 , u2)= d(u2 , 
u3)= 1 and d(u1 , u3)= 2. It is clear that in Ĝq, there are three 
join cycles. Thus the contribution of the three join 
cycles to the Hosoya polynomial of Ĝq is less than 
or equal to 2H(C ̂_1,z)+H(C ̂_2,z) We now remove all 
the repeated pairs of vertices in the three join cycles.
Each join path appears twice in the three join 

 

 

is less than or equal to 2𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I +

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I. We now remove all the repeated 

pairs of vertices in the three join cycles.  

Each join path appears twice in the three 

join cycles, so we remove H(𝑃𝑃i, z) from 

2	𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I and 2 H(𝑃𝑃i, z) from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I. 

The edge of G {𝑢𝑢:, 𝑢𝑢1} appears in 2 join 

cycles and so is the edge {𝑢𝑢1, 𝑢𝑢â}. Hence 

we remove the term 2z from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

Consider all the distances from 𝑢𝑢1 to any 

vertex but w in the two join paths 𝑃𝑃i:	, 𝑃𝑃iâ 

and in the join cycle 𝐶𝐶o1. These distances 

have been included already in the 2 join 

cycles, hence we remove the term 2z1 +

2zâ + ⋯+ 2zå from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

We note that the shortest distance between 

𝑢𝑢1 and w is q, that is via the join path 𝑃𝑃i1. 

However in the join cycle 𝐶𝐶o1 the shortest 

distance between 𝑢𝑢1 and w is q+1, which 

is more than q, thus we must also remove 

zåd:	from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

Recall that the Hosoya polynomial of an 

even cycle 𝐻𝐻(𝐶𝐶1<) = 2𝑛𝑛∑ 𝑧𝑧G<b:
GJ: + 𝑛𝑛𝑧𝑧<. 

Now we note that  

∑ 2𝑧𝑧G + 𝑧𝑧md: = md:
md:

é∑ 2𝑧𝑧G +m
GJ:

m
GJ:

𝑧𝑧md:è = :
md:

é∑ 2(𝑞𝑞 + 1)𝑧𝑧G +m
GJ:

(𝑞𝑞 + 1)𝑧𝑧md:è = ê(ëoí,])
md:

. (13) 

Then substituting Equation 10 we obtain  

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I − :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I		(14)  

which simplifies to :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. 

 We combine all the results as follows  

𝐻𝐻F𝐺𝐺im, 𝑧𝑧I = 2𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I − 𝐻𝐻F𝑃𝑃i, 𝑧𝑧I

+
1

𝑞𝑞 + 1
𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

						= 2𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I +
1

𝑞𝑞 + 1
𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I

− 3𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. (15) 

Thus we get the required results. 

Theorem 3.5 Let G be a diameter 2 graph 

of size m and order n. Then the Hosoya 

polynomial of the subdivided join, 𝐺𝐺im is 
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vertex but w in the two join paths 𝑃𝑃i:	, 𝑃𝑃iâ 

and in the join cycle 𝐶𝐶o1. These distances 

have been included already in the 2 join 

cycles, hence we remove the term 2z1 +

2zâ + ⋯+ 2zå from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

We note that the shortest distance between 

𝑢𝑢1 and w is q, that is via the join path 𝑃𝑃i1. 

However in the join cycle 𝐶𝐶o1 the shortest 

distance between 𝑢𝑢1 and w is q+1, which 

is more than q, thus we must also remove 

zåd:	from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

Recall that the Hosoya polynomial of an 

even cycle 𝐻𝐻(𝐶𝐶1<) = 2𝑛𝑛∑ 𝑧𝑧G<b:
GJ: + 𝑛𝑛𝑧𝑧<. 

Now we note that  

∑ 2𝑧𝑧G + 𝑧𝑧md: = md:
md:

é∑ 2𝑧𝑧G +m
GJ:

m
GJ:

𝑧𝑧md:è = :
md:

é∑ 2(𝑞𝑞 + 1)𝑧𝑧G +m
GJ:

(𝑞𝑞 + 1)𝑧𝑧md:è = ê(ëoí,])
md:

. (13) 

Then substituting Equation 10 we obtain  

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I − :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I		(14)  

which simplifies to :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. 

 We combine all the results as follows  

𝐻𝐻F𝐺𝐺im, 𝑧𝑧I = 2𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I − 𝐻𝐻F𝑃𝑃i, 𝑧𝑧I

+
1

𝑞𝑞 + 1
𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

						= 2𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I +
1

𝑞𝑞 + 1
𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I

− 3𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. (15) 

Thus we get the required results. 

Theorem 3.5 Let G be a diameter 2 graph 

of size m and order n. Then the Hosoya 

polynomial of the subdivided join, 𝐺𝐺im is 

 

 

is less than or equal to 2𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I +

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I. We now remove all the repeated 

pairs of vertices in the three join cycles.  

Each join path appears twice in the three 

join cycles, so we remove H(𝑃𝑃i, z) from 

2	𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I and 2 H(𝑃𝑃i, z) from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I. 

The edge of G {𝑢𝑢:, 𝑢𝑢1} appears in 2 join 

cycles and so is the edge {𝑢𝑢1, 𝑢𝑢â}. Hence 

we remove the term 2z from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

Consider all the distances from 𝑢𝑢1 to any 

vertex but w in the two join paths 𝑃𝑃i:	, 𝑃𝑃iâ 

and in the join cycle 𝐶𝐶o1. These distances 

have been included already in the 2 join 

cycles, hence we remove the term 2z1 +

2zâ + ⋯+ 2zå from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

We note that the shortest distance between 

𝑢𝑢1 and w is q, that is via the join path 𝑃𝑃i1. 

However in the join cycle 𝐶𝐶o1 the shortest 

distance between 𝑢𝑢1 and w is q+1, which 

is more than q, thus we must also remove 

zåd:	from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

Recall that the Hosoya polynomial of an 

even cycle 𝐻𝐻(𝐶𝐶1<) = 2𝑛𝑛∑ 𝑧𝑧G<b:
GJ: + 𝑛𝑛𝑧𝑧<. 

Now we note that  

∑ 2𝑧𝑧G + 𝑧𝑧md: = md:
md:

é∑ 2𝑧𝑧G +m
GJ:

m
GJ:

𝑧𝑧md:è = :
md:

é∑ 2(𝑞𝑞 + 1)𝑧𝑧G +m
GJ:

(𝑞𝑞 + 1)𝑧𝑧md:è = ê(ëoí,])
md:

. (13) 

Then substituting Equation 10 we obtain  

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I − :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I		(14)  

which simplifies to :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. 

 We combine all the results as follows  

𝐻𝐻F𝐺𝐺im, 𝑧𝑧I = 2𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I − 𝐻𝐻F𝑃𝑃i, 𝑧𝑧I

+
1

𝑞𝑞 + 1
𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

						= 2𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I +
1

𝑞𝑞 + 1
𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I

− 3𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. (15) 

Thus we get the required results. 

Theorem 3.5 Let G be a diameter 2 graph 

of size m and order n. Then the Hosoya 

polynomial of the subdivided join, 𝐺𝐺im is 

 

 

is less than or equal to 2𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I +

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I. We now remove all the repeated 

pairs of vertices in the three join cycles.  

Each join path appears twice in the three 

join cycles, so we remove H(𝑃𝑃i, z) from 

2	𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I and 2 H(𝑃𝑃i, z) from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I. 

The edge of G {𝑢𝑢:, 𝑢𝑢1} appears in 2 join 

cycles and so is the edge {𝑢𝑢1, 𝑢𝑢â}. Hence 

we remove the term 2z from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

Consider all the distances from 𝑢𝑢1 to any 

vertex but w in the two join paths 𝑃𝑃i:	, 𝑃𝑃iâ 

and in the join cycle 𝐶𝐶o1. These distances 

have been included already in the 2 join 

cycles, hence we remove the term 2z1 +

2zâ + ⋯+ 2zå from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

We note that the shortest distance between 

𝑢𝑢1 and w is q, that is via the join path 𝑃𝑃i1. 

However in the join cycle 𝐶𝐶o1 the shortest 

distance between 𝑢𝑢1 and w is q+1, which 

is more than q, thus we must also remove 

zåd:	from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

Recall that the Hosoya polynomial of an 

even cycle 𝐻𝐻(𝐶𝐶1<) = 2𝑛𝑛∑ 𝑧𝑧G<b:
GJ: + 𝑛𝑛𝑧𝑧<. 

Now we note that  

∑ 2𝑧𝑧G + 𝑧𝑧md: = md:
md:

é∑ 2𝑧𝑧G +m
GJ:

m
GJ:

𝑧𝑧md:è = :
md:

é∑ 2(𝑞𝑞 + 1)𝑧𝑧G +m
GJ:

(𝑞𝑞 + 1)𝑧𝑧md:è = ê(ëoí,])
md:

. (13) 

Then substituting Equation 10 we obtain  

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I − :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I		(14)  

which simplifies to :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. 

 We combine all the results as follows  

𝐻𝐻F𝐺𝐺im, 𝑧𝑧I = 2𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I − 𝐻𝐻F𝑃𝑃i, 𝑧𝑧I

+
1

𝑞𝑞 + 1
𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

						= 2𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I +
1

𝑞𝑞 + 1
𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I

− 3𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. (15) 

Thus we get the required results. 

Theorem 3.5 Let G be a diameter 2 graph 

of size m and order n. Then the Hosoya 

polynomial of the subdivided join, 𝐺𝐺im is 

(13)

Then substituting Equation 10 we obtain

 

 

is less than or equal to 2𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I +

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I. We now remove all the repeated 

pairs of vertices in the three join cycles.  

Each join path appears twice in the three 

join cycles, so we remove H(𝑃𝑃i, z) from 

2	𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I and 2 H(𝑃𝑃i, z) from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I. 

The edge of G {𝑢𝑢:, 𝑢𝑢1} appears in 2 join 

cycles and so is the edge {𝑢𝑢1, 𝑢𝑢â}. Hence 

we remove the term 2z from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

Consider all the distances from 𝑢𝑢1 to any 

vertex but w in the two join paths 𝑃𝑃i:	, 𝑃𝑃iâ 

and in the join cycle 𝐶𝐶o1. These distances 

have been included already in the 2 join 

cycles, hence we remove the term 2z1 +

2zâ + ⋯+ 2zå from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

We note that the shortest distance between 

𝑢𝑢1 and w is q, that is via the join path 𝑃𝑃i1. 

However in the join cycle 𝐶𝐶o1 the shortest 

distance between 𝑢𝑢1 and w is q+1, which 

is more than q, thus we must also remove 

zåd:	from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

Recall that the Hosoya polynomial of an 

even cycle 𝐻𝐻(𝐶𝐶1<) = 2𝑛𝑛∑ 𝑧𝑧G<b:
GJ: + 𝑛𝑛𝑧𝑧<. 

Now we note that  

∑ 2𝑧𝑧G + 𝑧𝑧md: = md:
md:

é∑ 2𝑧𝑧G +m
GJ:

m
GJ:

𝑧𝑧md:è = :
md:

é∑ 2(𝑞𝑞 + 1)𝑧𝑧G +m
GJ:

(𝑞𝑞 + 1)𝑧𝑧md:è = ê(ëoí,])
md:

. (13) 

Then substituting Equation 10 we obtain  

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I − :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I		(14)  

which simplifies to :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. 

 We combine all the results as follows  

𝐻𝐻F𝐺𝐺im, 𝑧𝑧I = 2𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I − 𝐻𝐻F𝑃𝑃i, 𝑧𝑧I

+
1

𝑞𝑞 + 1
𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

						= 2𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I +
1

𝑞𝑞 + 1
𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I

− 3𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. (15) 

Thus we get the required results. 

Theorem 3.5 Let G be a diameter 2 graph 

of size m and order n. Then the Hosoya 

polynomial of the subdivided join, 𝐺𝐺im is 

(14)

 

 

is less than or equal to 2𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I +

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I. We now remove all the repeated 

pairs of vertices in the three join cycles.  

Each join path appears twice in the three 

join cycles, so we remove H(𝑃𝑃i, z) from 

2	𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I and 2 H(𝑃𝑃i, z) from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I. 

The edge of G {𝑢𝑢:, 𝑢𝑢1} appears in 2 join 

cycles and so is the edge {𝑢𝑢1, 𝑢𝑢â}. Hence 

we remove the term 2z from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

Consider all the distances from 𝑢𝑢1 to any 

vertex but w in the two join paths 𝑃𝑃i:	, 𝑃𝑃iâ 

and in the join cycle 𝐶𝐶o1. These distances 

have been included already in the 2 join 

cycles, hence we remove the term 2z1 +

2zâ + ⋯+ 2zå from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

We note that the shortest distance between 

𝑢𝑢1 and w is q, that is via the join path 𝑃𝑃i1. 

However in the join cycle 𝐶𝐶o1 the shortest 

distance between 𝑢𝑢1 and w is q+1, which 

is more than q, thus we must also remove 

zåd:	from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

Recall that the Hosoya polynomial of an 

even cycle 𝐻𝐻(𝐶𝐶1<) = 2𝑛𝑛∑ 𝑧𝑧G<b:
GJ: + 𝑛𝑛𝑧𝑧<. 

Now we note that  

∑ 2𝑧𝑧G + 𝑧𝑧md: = md:
md:

é∑ 2𝑧𝑧G +m
GJ:

m
GJ:

𝑧𝑧md:è = :
md:

é∑ 2(𝑞𝑞 + 1)𝑧𝑧G +m
GJ:

(𝑞𝑞 + 1)𝑧𝑧md:è = ê(ëoí,])
md:

. (13) 

Then substituting Equation 10 we obtain  

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I − :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I		(14)  

which simplifies to :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. 

 We combine all the results as follows  

𝐻𝐻F𝐺𝐺im, 𝑧𝑧I = 2𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I − 𝐻𝐻F𝑃𝑃i, 𝑧𝑧I

+
1

𝑞𝑞 + 1
𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

						= 2𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I +
1

𝑞𝑞 + 1
𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I

− 3𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. (15) 

Thus we get the required results. 

Theorem 3.5 Let G be a diameter 2 graph 

of size m and order n. Then the Hosoya 

polynomial of the subdivided join, 𝐺𝐺im is 

which simplifies to

We combine all the results as follows

 

 

is less than or equal to 2𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I +

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I. We now remove all the repeated 

pairs of vertices in the three join cycles.  

Each join path appears twice in the three 

join cycles, so we remove H(𝑃𝑃i, z) from 

2	𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I and 2 H(𝑃𝑃i, z) from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I. 

The edge of G {𝑢𝑢:, 𝑢𝑢1} appears in 2 join 

cycles and so is the edge {𝑢𝑢1, 𝑢𝑢â}. Hence 

we remove the term 2z from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

Consider all the distances from 𝑢𝑢1 to any 

vertex but w in the two join paths 𝑃𝑃i:	, 𝑃𝑃iâ 

and in the join cycle 𝐶𝐶o1. These distances 

have been included already in the 2 join 

cycles, hence we remove the term 2z1 +

2zâ + ⋯+ 2zå from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

We note that the shortest distance between 

𝑢𝑢1 and w is q, that is via the join path 𝑃𝑃i1. 

However in the join cycle 𝐶𝐶o1 the shortest 

distance between 𝑢𝑢1 and w is q+1, which 

is more than q, thus we must also remove 

zåd:	from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

Recall that the Hosoya polynomial of an 

even cycle 𝐻𝐻(𝐶𝐶1<) = 2𝑛𝑛∑ 𝑧𝑧G<b:
GJ: + 𝑛𝑛𝑧𝑧<. 

Now we note that  

∑ 2𝑧𝑧G + 𝑧𝑧md: = md:
md:

é∑ 2𝑧𝑧G +m
GJ:

m
GJ:

𝑧𝑧md:è = :
md:

é∑ 2(𝑞𝑞 + 1)𝑧𝑧G +m
GJ:

(𝑞𝑞 + 1)𝑧𝑧md:è = ê(ëoí,])
md:

. (13) 

Then substituting Equation 10 we obtain  

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I − :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I		(14)  

which simplifies to :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. 

 We combine all the results as follows  

𝐻𝐻F𝐺𝐺im, 𝑧𝑧I = 2𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I − 𝐻𝐻F𝑃𝑃i, 𝑧𝑧I

+
1

𝑞𝑞 + 1
𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

						= 2𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I +
1

𝑞𝑞 + 1
𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I

− 3𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. (15) 

Thus we get the required results. 

Theorem 3.5 Let G be a diameter 2 graph 

of size m and order n. Then the Hosoya 

polynomial of the subdivided join, 𝐺𝐺im is 

 

 

is less than or equal to 2𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I +
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vertex but w in the two join paths 𝑃𝑃i:	, 𝑃𝑃iâ 

and in the join cycle 𝐶𝐶o1. These distances 

have been included already in the 2 join 

cycles, hence we remove the term 2z1 +

2zâ + ⋯+ 2zå from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

We note that the shortest distance between 

𝑢𝑢1 and w is q, that is via the join path 𝑃𝑃i1. 

However in the join cycle 𝐶𝐶o1 the shortest 

distance between 𝑢𝑢1 and w is q+1, which 

is more than q, thus we must also remove 

zåd:	from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

Recall that the Hosoya polynomial of an 

even cycle 𝐻𝐻(𝐶𝐶1<) = 2𝑛𝑛∑ 𝑧𝑧G<b:
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md:
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GJ:
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GJ:

𝑧𝑧md:è = :
md:

é∑ 2(𝑞𝑞 + 1)𝑧𝑧G +m
GJ:

(𝑞𝑞 + 1)𝑧𝑧md:è = ê(ëoí,])
md:
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Thus we get the required results.
Theorem 3.5 Let G be a diameter 2 graph of size m and 
order n. Then the Hosoya polynomial of the subdivided 
join, Ĝq is 

 

 

𝐻𝐻F𝐺𝐺im, 𝑧𝑧I = 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I −
m

md:
ÉF<1I −

𝑚𝑚Ñ𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 𝑛𝑛(𝑛𝑛 − 2)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I.	(16) 

Proof. By Lemma 2.2 , we know that 

every vertex pair in 𝐺𝐺im  belong to some join 

cycle 𝐶𝐶o:. By Corollary 2.4, the sum of the 

Hosoya polynomials of all the join cycles 

in Ĝå covers the distance of any pair of 

vertices in Ĝå at least once. We use the 

principle of inclusion-exclusion, Theorem 

1.2. Thus the Hosoya polynomial of 𝐺𝐺im 

can be found in terms of join cycles and 

join paths. 

By Lemma 2.1 there are m join cycles 𝐶𝐶o: 

and F<1I − 𝑚𝑚 join cycles 𝐶𝐶o1 in	𝐺𝐺im . We have 

m join cycles of the form 𝐶𝐶o: in 𝐺𝐺im. Hence 

these join cycles contribute the term 

𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I to the Hosoya polynomial of 

𝐺𝐺im. As in the proof of Lemma 3.4 we need 

to remove the Hosoya polynomials of 

some of the join paths 𝑃𝑃iG that are found in 

more than 1 join cycle. Let V(G)={𝑢𝑢:, 𝑢𝑢1, 

… , 𝑢𝑢<} be the vertex set of G and let the 

degree of vertex 𝑢𝑢G be 𝑎𝑎G ≥ 	1	for 1	 ≤

	i	 ≤ 	n.		Recall that the hand-shake lemma 

states that the sum of all the degrees of 

vertices of a graph are equal to twice the 

number of edges of a graph. Therefore for 

graph G of size m we have ∑ 𝑎𝑎G = 2𝑚𝑚.<
GJ:  

Now we consider the degree of vertices of 

G in order to count the number of 

repetitions of join paths. It is clear by 

definition that each join path 𝑃𝑃iG with 𝑢𝑢G 	∈

𝑉𝑉(𝐺𝐺) is paired with 𝑎𝑎G join paths to form 

𝑎𝑎G join cycles of the form 𝐶𝐶o:. Thus the 

Hosoya polynomials of each join path 𝑃𝑃iG 

are repeated 𝑎𝑎G − 1 times in the 𝑎𝑎G	join 

cycles of the form 𝐶𝐶o:. We compute all the 

repetitions of 𝐻𝐻F𝑃𝑃i:, 𝑧𝑧I	from 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I	,	as 

follows 

D(𝑎𝑎G − 1)
<

GJ:

=D𝑎𝑎G − 𝑛𝑛
<

GJ:

= 	2𝑚𝑚 − 𝑛𝑛.	(17) 

Therefore the repeated number of 

𝐻𝐻F𝑃𝑃i:, 𝑧𝑧I	is [2𝑚𝑚 − 𝑛𝑛]	𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. Thus we 

exclude [2𝑚𝑚 − 𝑛𝑛]	𝐻𝐻F𝑃𝑃i, 𝑧𝑧I from 

𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I	to get 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I − [2𝑚𝑚 −
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are repeated 𝑎𝑎G − 1 times in the 𝑎𝑎G	join 
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<

GJ:

=D𝑎𝑎G − 𝑛𝑛
<
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= 	2𝑚𝑚 − 𝑛𝑛.	(17) 
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(16)

Proof. By Lemma 2.2 , we know that every vertex 
pair in Ĝq belong to some join cycle     . By Corollary 
2.4, the sum of the Hosoya polynomials of all the join 
cycles in Ĝq covers the distance of any pair of vertices 
in Ĝq at least once. We use the principle of inclusion-
exclusion, Theorem 1.2. Thus the Hosoya polynomial of 
Ĝq can be found in terms of join cycles and join paths.
By Lemma 2.1 there are m join cycles  C 1  and    -m 
join cycles C2 in Ĝq. We have m join cycles of the

 

 

Case 4. A pair of vertices vx, vu such that 

vx, vu are not in V(G), vu 	≠ 	w ≠ 	vx, vx ∈

	V(𝑃𝑃iG ) and vu ∈	V(𝑃𝑃iH ). Let vq, vr ∈ V(G), 

such that vq ∈	V(𝑃𝑃iG ) and vr ∈	V(𝑃𝑃iH ). Let 

the join cycle consisting of the shortest 

path from vq to vr ∪ 𝑃𝑃i	G ∪ 𝑃𝑃i	H be 𝐶𝐶oÄ and let 

the shortest path from vx to vu on 𝐶𝐶oÄ be 

𝑃𝑃|Å{. Assume there is another path in Ĝm not 

on the join cycle 𝐶𝐶oÄ which is shorter than 

𝑃𝑃|Å{ , say path 𝑃𝑃Å{. Then 𝑃𝑃|Å{ ∪ 𝑃𝑃Å{ is a cycle 

consisting of the paths 𝑃𝑃i	G and 𝑃𝑃i	H and 

some path from vq to vr say path 𝑃𝑃|GH in G. 

But the path in G from vq to vr in the join 

cycle 𝐶𝐶oÄ , is the shortest path by definition 

of 𝐶𝐶oÄ . Thus the cycle 𝑃𝑃|Å{ ∪ 𝑃𝑃Å{ is longer 

than the join cycle 𝐶𝐶oÄ . Hence 𝑃𝑃|Å{ is the 

shortest path between vx and vu	and is on a 

join cycle. 

Corollary 2.4 Let G be a graph of order n 

and size m with diameter at most 2. Let Ĝm 

be the subdivided join of G. Then the sum 

of the Hosoya polynomials of all the join 

cycles in Ĝm covers the distance of any 

pair of vertices in Ĝm at least once. 

3. The Hosoya polynomial of 

subdivided join 

In this section, we give the Hosoya 

polynomial of the subdivided join of a 

diameter 1 graph and a diameter 2 graph. 

Finally we state the Wiener indices of the 

subdivided join of a diameter 1 graph and 

a diameter 2 graph. 

 Note that all diameter 1 graphs are 

complete graphs, thus we find the Hosoya 

polynomial of the subdivided join of a 

complete graph.  

Lemma 3.1 Let 𝐾𝐾<	be a complete graph of 

order n, and let 𝐺𝐺im  be the subdivided join 
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form 𝐶𝐶o: in 𝐺𝐺im.  

Theorem 3.2 Let 𝐾𝐾< be a complete graph 
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be the subdivided join of G. Then the sum 

of the Hosoya polynomials of all the join 

cycles in Ĝm covers the distance of any 

pair of vertices in Ĝm at least once. 

3. The Hosoya polynomial of 

subdivided join 

In this section, we give the Hosoya 

polynomial of the subdivided join of a 

diameter 1 graph and a diameter 2 graph. 

Finally we state the Wiener indices of the 

subdivided join of a diameter 1 graph and 

a diameter 2 graph. 

 Note that all diameter 1 graphs are 

complete graphs, thus we find the Hosoya 

polynomial of the subdivided join of a 

complete graph.  

Lemma 3.1 Let 𝐾𝐾<	be a complete graph of 

order n, and let 𝐺𝐺im  be the subdivided join 

of 𝐾𝐾<. Then there are F<1I join cycles of the 

form 𝐶𝐶o: in 𝐺𝐺im.  

Theorem 3.2 Let 𝐾𝐾< be a complete graph 

of order n, and let 𝐺𝐺im be the subdivided 

join of 𝐾𝐾<	. Then the Hosoya polynomial of 

𝐺𝐺im is  

𝐻𝐻F𝐺𝐺im, 𝑧𝑧I = É
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is less than or equal to 2𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I +
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pairs of vertices in the three join cycles.  
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2	𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I and 2 H(𝑃𝑃i, z) from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I. 
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even cycle 𝐻𝐻(𝐶𝐶1<) = 2𝑛𝑛∑ 𝑧𝑧G<b:
GJ: + 𝑛𝑛𝑧𝑧<. 

Now we note that  

∑ 2𝑧𝑧G + 𝑧𝑧md: = md:
md:

é∑ 2𝑧𝑧G +m
GJ:

m
GJ:

𝑧𝑧md:è = :
md:

é∑ 2(𝑞𝑞 + 1)𝑧𝑧G +m
GJ:

(𝑞𝑞 + 1)𝑧𝑧md:è = ê(ëoí,])
md:

. (13) 

Then substituting Equation 10 we obtain  
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md:
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md:
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+
1

𝑞𝑞 + 1
𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

						= 2𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I +
1

𝑞𝑞 + 1
𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I

− 3𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. (15) 

Thus we get the required results. 

Theorem 3.5 Let G be a diameter 2 graph 

of size m and order n. Then the Hosoya 

polynomial of the subdivided join, 𝐺𝐺im is 
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the shortest path from vx to vu on 𝐶𝐶oÄ be 

𝑃𝑃|Å{. Assume there is another path in Ĝm not 

on the join cycle 𝐶𝐶oÄ which is shorter than 

𝑃𝑃|Å{ , say path 𝑃𝑃Å{. Then 𝑃𝑃|Å{ ∪ 𝑃𝑃Å{ is a cycle 

consisting of the paths 𝑃𝑃i	G and 𝑃𝑃i	H and 

some path from vq to vr say path 𝑃𝑃|GH in G. 

But the path in G from vq to vr in the join 

cycle 𝐶𝐶oÄ , is the shortest path by definition 

of 𝐶𝐶oÄ . Thus the cycle 𝑃𝑃|Å{ ∪ 𝑃𝑃Å{ is longer 

than the join cycle 𝐶𝐶oÄ . Hence 𝑃𝑃|Å{ is the 

shortest path between vx and vu	and is on a 

join cycle. 
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be the subdivided join of G. Then the sum 

of the Hosoya polynomials of all the join 

cycles in Ĝm covers the distance of any 

pair of vertices in Ĝm at least once. 

3. The Hosoya polynomial of 

subdivided join 

In this section, we give the Hosoya 

polynomial of the subdivided join of a 

diameter 1 graph and a diameter 2 graph. 

Finally we state the Wiener indices of the 

subdivided join of a diameter 1 graph and 

a diameter 2 graph. 

 Note that all diameter 1 graphs are 

complete graphs, thus we find the Hosoya 

polynomial of the subdivided join of a 

complete graph.  

Lemma 3.1 Let 𝐾𝐾<	be a complete graph of 

order n, and let 𝐺𝐺im  be the subdivided join 

of 𝐾𝐾<. Then there are F<1I join cycles of the 

form 𝐶𝐶o: in 𝐺𝐺im.  
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𝐺𝐺im is  

𝐻𝐻F𝐺𝐺im, 𝑧𝑧I = É
𝑛𝑛
2
Ñ𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I 													

− 𝑛𝑛(𝑛𝑛 − 2)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. (9) 

 

 

Case 4. A pair of vertices vx, vu such that 

vx, vu are not in V(G), vu 	≠ 	w ≠ 	vx, vx ∈

	V(𝑃𝑃iG ) and vu ∈	V(𝑃𝑃iH ). Let vq, vr ∈ V(G), 

such that vq ∈	V(𝑃𝑃iG ) and vr ∈	V(𝑃𝑃iH ). Let 

the join cycle consisting of the shortest 

path from vq to vr ∪ 𝑃𝑃i	G ∪ 𝑃𝑃i	H be 𝐶𝐶oÄ and let 

the shortest path from vx to vu on 𝐶𝐶oÄ be 

𝑃𝑃|Å{. Assume there is another path in Ĝm not 

on the join cycle 𝐶𝐶oÄ which is shorter than 

𝑃𝑃|Å{ , say path 𝑃𝑃Å{. Then 𝑃𝑃|Å{ ∪ 𝑃𝑃Å{ is a cycle 
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But the path in G from vq to vr in the join 
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of 𝐶𝐶oÄ . Thus the cycle 𝑃𝑃|Å{ ∪ 𝑃𝑃Å{ is longer 

than the join cycle 𝐶𝐶oÄ . Hence 𝑃𝑃|Å{ is the 

shortest path between vx and vu	and is on a 

join cycle. 

Corollary 2.4 Let G be a graph of order n 

and size m with diameter at most 2. Let Ĝm 

be the subdivided join of G. Then the sum 

of the Hosoya polynomials of all the join 

cycles in Ĝm covers the distance of any 

pair of vertices in Ĝm at least once. 

3. The Hosoya polynomial of 

subdivided join 

In this section, we give the Hosoya 

polynomial of the subdivided join of a 

diameter 1 graph and a diameter 2 graph. 

Finally we state the Wiener indices of the 

subdivided join of a diameter 1 graph and 

a diameter 2 graph. 

 Note that all diameter 1 graphs are 

complete graphs, thus we find the Hosoya 

polynomial of the subdivided join of a 

complete graph.  

Lemma 3.1 Let 𝐾𝐾<	be a complete graph of 

order n, and let 𝐺𝐺im  be the subdivided join 

of 𝐾𝐾<. Then there are F<1I join cycles of the 

form 𝐶𝐶o: in 𝐺𝐺im.  

Theorem 3.2 Let 𝐾𝐾< be a complete graph 

of order n, and let 𝐺𝐺im be the subdivided 

join of 𝐾𝐾<	. Then the Hosoya polynomial of 

𝐺𝐺im is  

𝐻𝐻F𝐺𝐺im, 𝑧𝑧I = É
𝑛𝑛
2
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Case 4. A pair of vertices vx, vu such that 

vx, vu is not in V(G), vu 	≠ 	w ≠ 	vx, vx ∈

	V(𝑃𝑃iG ) and vu ∈	V(𝑃𝑃iH ). Let vq, vr ∈ V(G), 

such that vq ∈	V(𝑃𝑃iG ) and vr ∈	V(𝑃𝑃iH ). If 

d(vq, vr)=1, then vx, vu ∈ 𝐶𝐶o:, while if 

d(vq, vr)=2, then vx, vu ∈ 𝐶𝐶o1.	 

Thus every vertex pair in 𝐺𝐺im belong to 

some join cycle in 𝐺𝐺im, hence 𝐺𝐺im has a 

vertex pair join cycle cover. 

Lemma 2.3 Let G be a graph of order n 

and size m with diameter at most 2. Let 𝐺𝐺im 

be the subdivided join of G. Then the 

shortest path between any pair of vertices 

in 𝐺𝐺im lie on some join cycle of 𝐺𝐺im. 

Proof. There are four cases of pairs of 

vertices on a join cycle to be considered: 

Case 1. A pair of vertices vq, vr ∈ V(G)	. It 

is clear that the construction of Ĝm does not 

affect the shortest path in G. But vq, vr are 

on the join cycle consisting of the shortest 

path between vq and vr and join paths 𝑃𝑃i	G 

and 𝑃𝑃i	H .  

Case 2. A pair of vertices vy, vu ∈	V(𝑃𝑃i	H ), 

that is both vy, vu are lying on the same 

join path 𝑃𝑃i	H. Let the path from vy to vu on 

𝑃𝑃i	H be called 𝑃𝑃z{. Assume there is another 

path from vy to vu shorter than 𝑃𝑃z{, say 

path 𝑃𝑃|z{ . Then it is clear that 𝑃𝑃z{ ∪ 𝑃𝑃|z{	is a 

cycle. By construction of Ĝm, the only 

possibility is that 𝑃𝑃z{ ∪ 𝑃𝑃|z{ is some cycle 

consisting of some join path, say 𝑃𝑃i	}  and 

some edges in G. Thus 𝑃𝑃|z{ is a path 

consisting of join path 𝑃𝑃i	} and at least one 

more edge. Thus |E(𝑃𝑃|z{)| > q+1. But 

E(𝑃𝑃z{) ⊆ E(𝑃𝑃|H) where |E(𝑃𝑃i	})|= q = 

|E(𝑃𝑃|H)|, therefore |E(𝑃𝑃z{,)| ≤	q. Hence 𝑃𝑃z{ 

is the shortest path between vy to vu and is 

on some join cycle.  

Case 3. A pair of vertices vq, vu such that 

vq ∈ 	V(G)	, vu ∈	V(𝑃𝑃iH ) and w	 ≠ 	 vu ≠

	vr.	It is clear by construction that the only 

paths from vq to vu are the join path cycle 

consisting of a path from vq to vu, 𝑃𝑃i	G and 

𝑃𝑃i	H. Hence the shortest path is on the same 

join cycle. 
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some path from vq to vr say path 𝑃𝑃|GH in G. 

But the path in G from vq to vr in the join 
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of the Hosoya polynomials of all the join 
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In this section, we give the Hosoya 
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Finally we state the Wiener indices of the 

subdivided join of a diameter 1 graph and 
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 Note that all diameter 1 graphs are 

complete graphs, thus we find the Hosoya 
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complete graph.  

Lemma 3.1 Let 𝐾𝐾<	be a complete graph of 
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𝐻𝐻F𝐺𝐺im, 𝑧𝑧I = 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I −
m

md:
ÉF<1I −

𝑚𝑚Ñ𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 𝑛𝑛(𝑛𝑛 − 2)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I.	(16) 

Proof. By Lemma 2.2 , we know that 

every vertex pair in 𝐺𝐺im  belong to some join 

cycle 𝐶𝐶o:. By Corollary 2.4, the sum of the 

Hosoya polynomials of all the join cycles 

in Ĝå covers the distance of any pair of 

vertices in Ĝå at least once. We use the 

principle of inclusion-exclusion, Theorem 

1.2. Thus the Hosoya polynomial of 𝐺𝐺im 

can be found in terms of join cycles and 

join paths. 

By Lemma 2.1 there are m join cycles 𝐶𝐶o: 

and F<1I − 𝑚𝑚 join cycles 𝐶𝐶o1 in	𝐺𝐺im . We have 

m join cycles of the form 𝐶𝐶o: in 𝐺𝐺im. Hence 

these join cycles contribute the term 

𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I to the Hosoya polynomial of 

𝐺𝐺im. As in the proof of Lemma 3.4 we need 

to remove the Hosoya polynomials of 

some of the join paths 𝑃𝑃iG that are found in 

more than 1 join cycle. Let V(G)={𝑢𝑢:, 𝑢𝑢1, 

… , 𝑢𝑢<} be the vertex set of G and let the 

degree of vertex 𝑢𝑢G be 𝑎𝑎G ≥ 	1	for 1	 ≤

	i	 ≤ 	n.		Recall that the hand-shake lemma 

states that the sum of all the degrees of 

vertices of a graph are equal to twice the 

number of edges of a graph. Therefore for 

graph G of size m we have ∑ 𝑎𝑎G = 2𝑚𝑚.<
GJ:  

Now we consider the degree of vertices of 

G in order to count the number of 

repetitions of join paths. It is clear by 

definition that each join path 𝑃𝑃iG with 𝑢𝑢G 	∈

𝑉𝑉(𝐺𝐺) is paired with 𝑎𝑎G join paths to form 

𝑎𝑎G join cycles of the form 𝐶𝐶o:. Thus the 

Hosoya polynomials of each join path 𝑃𝑃iG 

are repeated 𝑎𝑎G − 1 times in the 𝑎𝑎G	join 

cycles of the form 𝐶𝐶o:. We compute all the 

repetitions of 𝐻𝐻F𝑃𝑃i:, 𝑧𝑧I	from 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I	,	as 

follows 

D(𝑎𝑎G − 1)
<

GJ:

=D𝑎𝑎G − 𝑛𝑛
<

GJ:

= 	2𝑚𝑚 − 𝑛𝑛.	(17) 

Therefore the repeated number of 

𝐻𝐻F𝑃𝑃i:, 𝑧𝑧I	is [2𝑚𝑚 − 𝑛𝑛]	𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. Thus we 

exclude [2𝑚𝑚 − 𝑛𝑛]	𝐻𝐻F𝑃𝑃i, 𝑧𝑧I from 

𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I	to get 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I − [2𝑚𝑚 −
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principle of inclusion-exclusion, Theorem 

1.2. Thus the Hosoya polynomial of 𝐺𝐺im 

can be found in terms of join cycles and 

join paths. 

By Lemma 2.1 there are m join cycles 𝐶𝐶o: 

and F<1I − 𝑚𝑚 join cycles 𝐶𝐶o1 in	𝐺𝐺im . We have 

m join cycles of the form 𝐶𝐶o: in 𝐺𝐺im. Hence 

these join cycles contribute the term 

𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I to the Hosoya polynomial of 

𝐺𝐺im. As in the proof of Lemma 3.4 we need 

to remove the Hosoya polynomials of 

some of the join paths 𝑃𝑃iG that are found in 

more than 1 join cycle. Let V(G)={𝑢𝑢:, 𝑢𝑢1, 

… , 𝑢𝑢<} be the vertex set of G and let the 

degree of vertex 𝑢𝑢G be 𝑎𝑎G ≥ 	1	for 1	 ≤

	i	 ≤ 	n.		Recall that the hand-shake lemma 

states that the sum of all the degrees of 

vertices of a graph are equal to twice the 

number of edges of a graph. Therefore for 

graph G of size m we have ∑ 𝑎𝑎G = 2𝑚𝑚.<
GJ:  

Now we consider the degree of vertices of 

G in order to count the number of 

repetitions of join paths. It is clear by 

definition that each join path 𝑃𝑃iG with 𝑢𝑢G 	∈

𝑉𝑉(𝐺𝐺) is paired with 𝑎𝑎G join paths to form 

𝑎𝑎G join cycles of the form 𝐶𝐶o:. Thus the 

Hosoya polynomials of each join path 𝑃𝑃iG 

are repeated 𝑎𝑎G − 1 times in the 𝑎𝑎G	join 

cycles of the form 𝐶𝐶o:. We compute all the 

repetitions of 𝐻𝐻F𝑃𝑃i:, 𝑧𝑧I	from 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I	,	as 

follows 

D(𝑎𝑎G − 1)
<

GJ:

=D𝑎𝑎G − 𝑛𝑛
<

GJ:

= 	2𝑚𝑚 − 𝑛𝑛.	(17) 

Therefore the repeated number of 

𝐻𝐻F𝑃𝑃i:, 𝑧𝑧I	is [2𝑚𝑚 − 𝑛𝑛]	𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. Thus we 
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𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I	to get 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I − [2𝑚𝑚 −
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(17)

Therefore the repeated number of H( P1 ,z)                                               
is [2m-n] H(P,z). Thus we exclude [2m-n] 
H( P z from mH( C1 ,z)  to get mH( C1 ,z)-[2m-n] 
H(P ,z . In Ĝq we consider the sum of the Hosoya 
polynomials of the (n¦ - m join cycles of the form 
C2 which is ( )-m)H(C2,z). From 
Lemma 3.4 we know that there are 
2H( P ̂  , repetitions from H( ,z).

Thus from ((n¦2)-m)    the term n¦2)-m)
(2H(P ̂,z)+1/(q+ is a repetition. Therefore we 
exclude all repetitions from (n¦2)-m     to get

 

 

Case 4. A pair of vertices vx, vu such that 

vx, vu is not in V(G), vu 	≠ 	w ≠ 	vx, vx ∈

	V(𝑃𝑃iG ) and vu ∈	V(𝑃𝑃iH ). Let vq, vr ∈ V(G), 

such that vq ∈	V(𝑃𝑃iG ) and vr ∈	V(𝑃𝑃iH ). If 

d(vq, vr)=1, then vx, vu ∈ 𝐶𝐶o:, while if 

d(vq, vr)=2, then vx, vu ∈ 𝐶𝐶o1.	 

Thus every vertex pair in 𝐺𝐺im belong to 

some join cycle in 𝐺𝐺im, hence 𝐺𝐺im has a 

vertex pair join cycle cover. 

Lemma 2.3 Let G be a graph of order n 

and size m with diameter at most 2. Let 𝐺𝐺im 

be the subdivided join of G. Then the 

shortest path between any pair of vertices 

in 𝐺𝐺im lie on some join cycle of 𝐺𝐺im. 

Proof. There are four cases of pairs of 

vertices on a join cycle to be considered: 

Case 1. A pair of vertices vq, vr ∈ V(G)	. It 

is clear that the construction of Ĝm does not 

affect the shortest path in G. But vq, vr are 

on the join cycle consisting of the shortest 

path between vq and vr and join paths 𝑃𝑃i	G 

and 𝑃𝑃i	H .  

Case 2. A pair of vertices vy, vu ∈	V(𝑃𝑃i	H ), 

that is both vy, vu are lying on the same 

join path 𝑃𝑃i	H. Let the path from vy to vu on 

𝑃𝑃i	H be called 𝑃𝑃z{. Assume there is another 

path from vy to vu shorter than 𝑃𝑃z{, say 

path 𝑃𝑃|z{ . Then it is clear that 𝑃𝑃z{ ∪ 𝑃𝑃|z{	is a 

cycle. By construction of Ĝm, the only 

possibility is that 𝑃𝑃z{ ∪ 𝑃𝑃|z{ is some cycle 

consisting of some join path, say 𝑃𝑃i	}  and 

some edges in G. Thus 𝑃𝑃|z{ is a path 

consisting of join path 𝑃𝑃i	} and at least one 

more edge. Thus |E(𝑃𝑃|z{)| > q+1. But 

E(𝑃𝑃z{) ⊆ E(𝑃𝑃|H) where |E(𝑃𝑃i	})|= q = 

|E(𝑃𝑃|H)|, therefore |E(𝑃𝑃z{,)| ≤	q. Hence 𝑃𝑃z{ 

is the shortest path between vy to vu and is 

on some join cycle.  

Case 3. A pair of vertices vq, vu such that 

vq ∈ 	V(G)	, vu ∈	V(𝑃𝑃iH ) and w	 ≠ 	 vu ≠

	vr.	It is clear by construction that the only 

paths from vq to vu are the join path cycle 

consisting of a path from vq to vu, 𝑃𝑃i	G and 

𝑃𝑃i	H. Hence the shortest path is on the same 

join cycle. 

 

 

is less than or equal to 2𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I +

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I. We now remove all the repeated 

pairs of vertices in the three join cycles.  

Each join path appears twice in the three 

join cycles, so we remove H(𝑃𝑃i, z) from 

2	𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I and 2 H(𝑃𝑃i, z) from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I. 

The edge of G {𝑢𝑢:, 𝑢𝑢1} appears in 2 join 

cycles and so is the edge {𝑢𝑢1, 𝑢𝑢â}. Hence 

we remove the term 2z from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

Consider all the distances from 𝑢𝑢1 to any 

vertex but w in the two join paths 𝑃𝑃i:	, 𝑃𝑃iâ 

and in the join cycle 𝐶𝐶o1. These distances 

have been included already in the 2 join 

cycles, hence we remove the term 2z1 +

2zâ + ⋯+ 2zå from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

We note that the shortest distance between 

𝑢𝑢1 and w is q, that is via the join path 𝑃𝑃i1. 

However in the join cycle 𝐶𝐶o1 the shortest 

distance between 𝑢𝑢1 and w is q+1, which 

is more than q, thus we must also remove 

zåd:	from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

Recall that the Hosoya polynomial of an 

even cycle 𝐻𝐻(𝐶𝐶1<) = 2𝑛𝑛∑ 𝑧𝑧G<b:
GJ: + 𝑛𝑛𝑧𝑧<. 

Now we note that  

∑ 2𝑧𝑧G + 𝑧𝑧md: = md:
md:

é∑ 2𝑧𝑧G +m
GJ:

m
GJ:

𝑧𝑧md:è = :
md:

é∑ 2(𝑞𝑞 + 1)𝑧𝑧G +m
GJ:

(𝑞𝑞 + 1)𝑧𝑧md:è = ê(ëoí,])
md:

. (13) 

Then substituting Equation 10 we obtain  

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I − :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I		(14)  

which simplifies to :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. 

 We combine all the results as follows  

𝐻𝐻F𝐺𝐺im, 𝑧𝑧I = 2𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I − 𝐻𝐻F𝑃𝑃i, 𝑧𝑧I

+
1

𝑞𝑞 + 1
𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

						= 2𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I +
1

𝑞𝑞 + 1
𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I

− 3𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. (15) 

Thus we get the required results. 

Theorem 3.5 Let G be a diameter 2 graph 

of size m and order n. Then the Hosoya 

polynomial of the subdivided join, 𝐺𝐺im is 
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Thus we get the required results. 

Theorem 3.5 Let G be a diameter 2 graph 

of size m and order n. Then the Hosoya 
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𝐻𝐻F𝐺𝐺im, 𝑧𝑧I = 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I −
m

md:
ÉF<1I −

𝑚𝑚Ñ𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 𝑛𝑛(𝑛𝑛 − 2)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I.	(16) 

Proof. By Lemma 2.2 , we know that 

every vertex pair in 𝐺𝐺im  belong to some join 

cycle 𝐶𝐶o:. By Corollary 2.4, the sum of the 

Hosoya polynomials of all the join cycles 

in Ĝå covers the distance of any pair of 

vertices in Ĝå at least once. We use the 

principle of inclusion-exclusion, Theorem 

1.2. Thus the Hosoya polynomial of 𝐺𝐺im 

can be found in terms of join cycles and 

join paths. 

By Lemma 2.1 there are m join cycles 𝐶𝐶o: 

and F<1I − 𝑚𝑚 join cycles 𝐶𝐶o1 in	𝐺𝐺im . We have 

m join cycles of the form 𝐶𝐶o: in 𝐺𝐺im. Hence 

these join cycles contribute the term 

𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I to the Hosoya polynomial of 

𝐺𝐺im. As in the proof of Lemma 3.4 we need 

to remove the Hosoya polynomials of 

some of the join paths 𝑃𝑃iG that are found in 

more than 1 join cycle. Let V(G)={𝑢𝑢:, 𝑢𝑢1, 

… , 𝑢𝑢<} be the vertex set of G and let the 

degree of vertex 𝑢𝑢G be 𝑎𝑎G ≥ 	1	for 1	 ≤

	i	 ≤ 	n.		Recall that the hand-shake lemma 

states that the sum of all the degrees of 

vertices of a graph are equal to twice the 

number of edges of a graph. Therefore for 

graph G of size m we have ∑ 𝑎𝑎G = 2𝑚𝑚.<
GJ:  

Now we consider the degree of vertices of 

G in order to count the number of 

repetitions of join paths. It is clear by 

definition that each join path 𝑃𝑃iG with 𝑢𝑢G 	∈

𝑉𝑉(𝐺𝐺) is paired with 𝑎𝑎G join paths to form 

𝑎𝑎G join cycles of the form 𝐶𝐶o:. Thus the 

Hosoya polynomials of each join path 𝑃𝑃iG 

are repeated 𝑎𝑎G − 1 times in the 𝑎𝑎G	join 

cycles of the form 𝐶𝐶o:. We compute all the 

repetitions of 𝐻𝐻F𝑃𝑃i:, 𝑧𝑧I	from 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I	,	as 

follows 
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<

GJ:

= 	2𝑚𝑚 − 𝑛𝑛.	(17) 

Therefore the repeated number of 
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Proof. By Lemma 2.2 , we know that 

every vertex pair in 𝐺𝐺im  belong to some join 

cycle 𝐶𝐶o:. By Corollary 2.4, the sum of the 

Hosoya polynomials of all the join cycles 

in Ĝå covers the distance of any pair of 

vertices in Ĝå at least once. We use the 

principle of inclusion-exclusion, Theorem 

1.2. Thus the Hosoya polynomial of 𝐺𝐺im 

can be found in terms of join cycles and 

join paths. 

By Lemma 2.1 there are m join cycles 𝐶𝐶o: 

and F<1I − 𝑚𝑚 join cycles 𝐶𝐶o1 in	𝐺𝐺im . We have 

m join cycles of the form 𝐶𝐶o: in 𝐺𝐺im. Hence 

these join cycles contribute the term 

𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I to the Hosoya polynomial of 

𝐺𝐺im. As in the proof of Lemma 3.4 we need 

to remove the Hosoya polynomials of 

some of the join paths 𝑃𝑃iG that are found in 

more than 1 join cycle. Let V(G)={𝑢𝑢:, 𝑢𝑢1, 

… , 𝑢𝑢<} be the vertex set of G and let the 

degree of vertex 𝑢𝑢G be 𝑎𝑎G ≥ 	1	for 1	 ≤

	i	 ≤ 	n.		Recall that the hand-shake lemma 

states that the sum of all the degrees of 

vertices of a graph are equal to twice the 

number of edges of a graph. Therefore for 

graph G of size m we have ∑ 𝑎𝑎G = 2𝑚𝑚.<
GJ:  

Now we consider the degree of vertices of 

G in order to count the number of 

repetitions of join paths. It is clear by 

definition that each join path 𝑃𝑃iG with 𝑢𝑢G 	∈

𝑉𝑉(𝐺𝐺) is paired with 𝑎𝑎G join paths to form 

𝑎𝑎G join cycles of the form 𝐶𝐶o:. Thus the 

Hosoya polynomials of each join path 𝑃𝑃iG 

are repeated 𝑎𝑎G − 1 times in the 𝑎𝑎G	join 

cycles of the form 𝐶𝐶o:. We compute all the 

repetitions of 𝐻𝐻F𝑃𝑃i:, 𝑧𝑧I	from 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I	,	as 

follows 

D(𝑎𝑎G − 1)
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GJ:

=D𝑎𝑎G − 𝑛𝑛
<

GJ:

= 	2𝑚𝑚 − 𝑛𝑛.	(17) 

Therefore the repeated number of 

𝐻𝐻F𝑃𝑃i:, 𝑧𝑧I	is [2𝑚𝑚 − 𝑛𝑛]	𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. Thus we 
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Case 4. A pair of vertices vx, vu such that 

vx, vu are not in V(G), vu 	≠ 	w ≠ 	vx, vx ∈

	V(𝑃𝑃iG ) and vu ∈	V(𝑃𝑃iH ). Let vq, vr ∈ V(G), 

such that vq ∈	V(𝑃𝑃iG ) and vr ∈	V(𝑃𝑃iH ). Let 

the join cycle consisting of the shortest 

path from vq to vr ∪ 𝑃𝑃i	G ∪ 𝑃𝑃i	H be 𝐶𝐶oÄ and let 

the shortest path from vx to vu on 𝐶𝐶oÄ be 

𝑃𝑃|Å{. Assume there is another path in Ĝm not 

on the join cycle 𝐶𝐶oÄ which is shorter than 

𝑃𝑃|Å{ , say path 𝑃𝑃Å{. Then 𝑃𝑃|Å{ ∪ 𝑃𝑃Å{ is a cycle 

consisting of the paths 𝑃𝑃i	G and 𝑃𝑃i	H and 

some path from vq to vr say path 𝑃𝑃|GH in G. 

But the path in G from vq to vr in the join 

cycle 𝐶𝐶oÄ , is the shortest path by definition 

of 𝐶𝐶oÄ . Thus the cycle 𝑃𝑃|Å{ ∪ 𝑃𝑃Å{ is longer 

than the join cycle 𝐶𝐶oÄ . Hence 𝑃𝑃|Å{ is the 

shortest path between vx and vu	and is on a 

join cycle. 

Corollary 2.4 Let G be a graph of order n 

and size m with diameter at most 2. Let Ĝm 

be the subdivided join of G. Then the sum 

of the Hosoya polynomials of all the join 

cycles in Ĝm covers the distance of any 

pair of vertices in Ĝm at least once. 

3. The Hosoya polynomial of 

subdivided join 

In this section, we give the Hosoya 

polynomial of the subdivided join of a 

diameter 1 graph and a diameter 2 graph. 

Finally we state the Wiener indices of the 

subdivided join of a diameter 1 graph and 

a diameter 2 graph. 

 Note that all diameter 1 graphs are 

complete graphs, thus we find the Hosoya 

polynomial of the subdivided join of a 

complete graph.  

Lemma 3.1 Let 𝐾𝐾<	be a complete graph of 

order n, and let 𝐺𝐺im  be the subdivided join 

of 𝐾𝐾<. Then there are F<1I join cycles of the 

form 𝐶𝐶o: in 𝐺𝐺im.  

Theorem 3.2 Let 𝐾𝐾< be a complete graph 

of order n, and let 𝐺𝐺im be the subdivided 

join of 𝐾𝐾<	. Then the Hosoya polynomial of 

𝐺𝐺im is  

𝐻𝐻F𝐺𝐺im, 𝑧𝑧I = É
𝑛𝑛
2
Ñ𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I 													

− 𝑛𝑛(𝑛𝑛 − 2)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. (9) 

 

 

Case 4. A pair of vertices vx, vu such that 

vx, vu are not in V(G), vu 	≠ 	w ≠ 	vx, vx ∈

	V(𝑃𝑃iG ) and vu ∈	V(𝑃𝑃iH ). Let vq, vr ∈ V(G), 

such that vq ∈	V(𝑃𝑃iG ) and vr ∈	V(𝑃𝑃iH ). Let 

the join cycle consisting of the shortest 

path from vq to vr ∪ 𝑃𝑃i	G ∪ 𝑃𝑃i	H be 𝐶𝐶oÄ and let 

the shortest path from vx to vu on 𝐶𝐶oÄ be 

𝑃𝑃|Å{. Assume there is another path in Ĝm not 

on the join cycle 𝐶𝐶oÄ which is shorter than 

𝑃𝑃|Å{ , say path 𝑃𝑃Å{. Then 𝑃𝑃|Å{ ∪ 𝑃𝑃Å{ is a cycle 

consisting of the paths 𝑃𝑃i	G and 𝑃𝑃i	H and 

some path from vq to vr say path 𝑃𝑃|GH in G. 

But the path in G from vq to vr in the join 

cycle 𝐶𝐶oÄ , is the shortest path by definition 

of 𝐶𝐶oÄ . Thus the cycle 𝑃𝑃|Å{ ∪ 𝑃𝑃Å{ is longer 

than the join cycle 𝐶𝐶oÄ . Hence 𝑃𝑃|Å{ is the 

shortest path between vx and vu	and is on a 

join cycle. 

Corollary 2.4 Let G be a graph of order n 

and size m with diameter at most 2. Let Ĝm 

be the subdivided join of G. Then the sum 

of the Hosoya polynomials of all the join 

cycles in Ĝm covers the distance of any 

pair of vertices in Ĝm at least once. 

3. The Hosoya polynomial of 

subdivided join 

In this section, we give the Hosoya 

polynomial of the subdivided join of a 

diameter 1 graph and a diameter 2 graph. 

Finally we state the Wiener indices of the 

subdivided join of a diameter 1 graph and 

a diameter 2 graph. 

 Note that all diameter 1 graphs are 

complete graphs, thus we find the Hosoya 

polynomial of the subdivided join of a 

complete graph.  

Lemma 3.1 Let 𝐾𝐾<	be a complete graph of 

order n, and let 𝐺𝐺im  be the subdivided join 

of 𝐾𝐾<. Then there are F<1I join cycles of the 

form 𝐶𝐶o: in 𝐺𝐺im.  

Theorem 3.2 Let 𝐾𝐾< be a complete graph 

of order n, and let 𝐺𝐺im be the subdivided 

join of 𝐾𝐾<	. Then the Hosoya polynomial of 

𝐺𝐺im is  

𝐻𝐻F𝐺𝐺im, 𝑧𝑧I = É
𝑛𝑛
2
Ñ𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I 													

− 𝑛𝑛(𝑛𝑛 − 2)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. (9) 

 

 

Case 4. A pair of vertices vx, vu such that 

vx, vu are not in V(G), vu 	≠ 	w ≠ 	vx, vx ∈

	V(𝑃𝑃iG ) and vu ∈	V(𝑃𝑃iH ). Let vq, vr ∈ V(G), 

such that vq ∈	V(𝑃𝑃iG ) and vr ∈	V(𝑃𝑃iH ). Let 

the join cycle consisting of the shortest 

path from vq to vr ∪ 𝑃𝑃i	G ∪ 𝑃𝑃i	H be 𝐶𝐶oÄ and let 

the shortest path from vx to vu on 𝐶𝐶oÄ be 

𝑃𝑃|Å{. Assume there is another path in Ĝm not 

on the join cycle 𝐶𝐶oÄ which is shorter than 

𝑃𝑃|Å{ , say path 𝑃𝑃Å{. Then 𝑃𝑃|Å{ ∪ 𝑃𝑃Å{ is a cycle 

consisting of the paths 𝑃𝑃i	G and 𝑃𝑃i	H and 

some path from vq to vr say path 𝑃𝑃|GH in G. 

But the path in G from vq to vr in the join 

cycle 𝐶𝐶oÄ , is the shortest path by definition 

of 𝐶𝐶oÄ . Thus the cycle 𝑃𝑃|Å{ ∪ 𝑃𝑃Å{ is longer 

than the join cycle 𝐶𝐶oÄ . Hence 𝑃𝑃|Å{ is the 

shortest path between vx and vu	and is on a 

join cycle. 

Corollary 2.4 Let G be a graph of order n 

and size m with diameter at most 2. Let Ĝm 

be the subdivided join of G. Then the sum 

of the Hosoya polynomials of all the join 

cycles in Ĝm covers the distance of any 

pair of vertices in Ĝm at least once. 

3. The Hosoya polynomial of 

subdivided join 

In this section, we give the Hosoya 

polynomial of the subdivided join of a 

diameter 1 graph and a diameter 2 graph. 

Finally we state the Wiener indices of the 

subdivided join of a diameter 1 graph and 

a diameter 2 graph. 

 Note that all diameter 1 graphs are 

complete graphs, thus we find the Hosoya 

polynomial of the subdivided join of a 

complete graph.  

Lemma 3.1 Let 𝐾𝐾<	be a complete graph of 

order n, and let 𝐺𝐺im  be the subdivided join 

of 𝐾𝐾<. Then there are F<1I join cycles of the 

form 𝐶𝐶o: in 𝐺𝐺im.  

Theorem 3.2 Let 𝐾𝐾< be a complete graph 

of order n, and let 𝐺𝐺im be the subdivided 

join of 𝐾𝐾<	. Then the Hosoya polynomial of 

𝐺𝐺im is  

𝐻𝐻F𝐺𝐺im, 𝑧𝑧I = É
𝑛𝑛
2
Ñ𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I 													

− 𝑛𝑛(𝑛𝑛 − 2)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. (9) 

 

 

𝑛𝑛]	𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. In 𝐺𝐺im we consider the sum of 

the Hosoya polynomials of the F<1I −𝑚𝑚 

join cycles of the form 𝐶𝐶o1 which is 

ÉF<1I − 𝑚𝑚Ñ𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I. From Lemma 3.4 we 

know that there are 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I +

:
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I repetitions from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

Thus from ÉF<1I − 𝑚𝑚Ñ 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I the term 

ÉF<1I − 𝑚𝑚Ññ2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I + :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧Ió is a 

repetition. Therefore we exclude all 

repetitions from ÉF<1I − 𝑚𝑚Ñ 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I to 

get	

ÉF<1I −𝑚𝑚Ññ𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I −

:
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧Ió = ÉF<1I −𝑚𝑚Ññ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I −

2𝐻𝐻F𝑃𝑃i, 𝑧𝑧Ió . (18) 

We combine all the results and obtain the 

Hosoya polynomials of 𝐺𝐺im as follows 

𝐻𝐻F𝐺𝐺im, 𝑧𝑧I = 	𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I − [2𝑚𝑚 − 𝑛𝑛]𝐻𝐻F𝑃𝑃i, 𝑧𝑧I

+ ñÉ
𝑛𝑛
2
Ñ

− 𝑚𝑚óò
1

𝑞𝑞 + 1
𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I

− 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧Iô 

															= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I

+ ñÉ
𝑛𝑛
2
Ñ − 𝑚𝑚ó

1
𝑞𝑞 + 1

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I

− (2𝑚𝑚 − 𝑛𝑛)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I

− ñÉ
𝑛𝑛
2
Ñ − 𝑚𝑚ó2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

											= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I + ÉF<1I −

𝑚𝑚Ñ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − (2𝑚𝑚 − 𝑛𝑛)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

−(𝑛𝑛(𝑛𝑛 − 1) − 2𝑚𝑚)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I + ÉF<1I −𝑚𝑚Ñ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I −

(𝑛𝑛(𝑛𝑛 − 1) − 𝑛𝑛)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I  

= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I + ÉF<1I −𝑚𝑚Ñ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I −

𝑛𝑛	(𝑛𝑛 − 2)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I.  

The proof is complete. 

By applying Theorem 1.1, the Wiener 

indices of even cycles, odd cycles and 

paths are	𝑊𝑊F𝐶𝐶1md1I =
(1md1)ö

õ
, 
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We combine all the results and obtain the 

Hosoya polynomials of 𝐺𝐺im as follows 

𝐻𝐻F𝐺𝐺im, 𝑧𝑧I = 	𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I − [2𝑚𝑚 − 𝑛𝑛]𝐻𝐻F𝑃𝑃i, 𝑧𝑧I

+ ñÉ
𝑛𝑛
2
Ñ

− 𝑚𝑚óò
1

𝑞𝑞 + 1
𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I

− 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧Iô 

															= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I

+ ñÉ
𝑛𝑛
2
Ñ − 𝑚𝑚ó

1
𝑞𝑞 + 1

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I

− (2𝑚𝑚 − 𝑛𝑛)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I

− ñÉ
𝑛𝑛
2
Ñ − 𝑚𝑚ó2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

											= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I + ÉF<1I −

𝑚𝑚Ñ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − (2𝑚𝑚 − 𝑛𝑛)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

−(𝑛𝑛(𝑛𝑛 − 1) − 2𝑚𝑚)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I + ÉF<1I −𝑚𝑚Ñ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I −

(𝑛𝑛(𝑛𝑛 − 1) − 𝑛𝑛)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I  

= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I + ÉF<1I −𝑚𝑚Ñ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I −

𝑛𝑛	(𝑛𝑛 − 2)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I.  

The proof is complete. 

By applying Theorem 1.1, the Wiener 

indices of even cycles, odd cycles and 

paths are	𝑊𝑊F𝐶𝐶1md1I =
(1md1)ö

õ
, 

 

 

𝑛𝑛]	𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. In 𝐺𝐺im we consider the sum of 

the Hosoya polynomials of the F<1I −𝑚𝑚 

join cycles of the form 𝐶𝐶o1 which is 

ÉF<1I − 𝑚𝑚Ñ𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I. From Lemma 3.4 we 

know that there are 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I +

:
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I repetitions from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

Thus from ÉF<1I − 𝑚𝑚Ñ 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I the term 

ÉF<1I − 𝑚𝑚Ññ2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I + :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧Ió is a 

repetition. Therefore we exclude all 

repetitions from ÉF<1I − 𝑚𝑚Ñ 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I to 

get	

ÉF<1I −𝑚𝑚Ññ𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I −

:
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧Ió = ÉF<1I −𝑚𝑚Ññ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I −

2𝐻𝐻F𝑃𝑃i, 𝑧𝑧Ió . (18) 

We combine all the results and obtain the 

Hosoya polynomials of 𝐺𝐺im as follows 

𝐻𝐻F𝐺𝐺im, 𝑧𝑧I = 	𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I − [2𝑚𝑚 − 𝑛𝑛]𝐻𝐻F𝑃𝑃i, 𝑧𝑧I

+ ñÉ
𝑛𝑛
2
Ñ

− 𝑚𝑚óò
1

𝑞𝑞 + 1
𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I

− 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧Iô 

															= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I

+ ñÉ
𝑛𝑛
2
Ñ − 𝑚𝑚ó

1
𝑞𝑞 + 1

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I

− (2𝑚𝑚 − 𝑛𝑛)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I

− ñÉ
𝑛𝑛
2
Ñ − 𝑚𝑚ó2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

											= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I + ÉF<1I −

𝑚𝑚Ñ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − (2𝑚𝑚 − 𝑛𝑛)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

−(𝑛𝑛(𝑛𝑛 − 1) − 2𝑚𝑚)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I + ÉF<1I −𝑚𝑚Ñ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I −

(𝑛𝑛(𝑛𝑛 − 1) − 𝑛𝑛)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I  

= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I + ÉF<1I −𝑚𝑚Ñ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I −

𝑛𝑛	(𝑛𝑛 − 2)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I.  

The proof is complete. 

By applying Theorem 1.1, the Wiener 

indices of even cycles, odd cycles and 

paths are	𝑊𝑊F𝐶𝐶1md1I =
(1md1)ö

õ
, 

 

 

𝑛𝑛]	𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. In 𝐺𝐺im we consider the sum of 

the Hosoya polynomials of the F<1I −𝑚𝑚 

join cycles of the form 𝐶𝐶o1 which is 

ÉF<1I − 𝑚𝑚Ñ𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I. From Lemma 3.4 we 

know that there are 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I +

:
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I repetitions from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

Thus from ÉF<1I − 𝑚𝑚Ñ 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I the term 

ÉF<1I − 𝑚𝑚Ññ2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I + :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧Ió is a 

repetition. Therefore we exclude all 

repetitions from ÉF<1I − 𝑚𝑚Ñ 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I to 

get	

ÉF<1I −𝑚𝑚Ññ𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I −

:
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧Ió = ÉF<1I −𝑚𝑚Ññ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I −

2𝐻𝐻F𝑃𝑃i, 𝑧𝑧Ió . (18) 

We combine all the results and obtain the 

Hosoya polynomials of 𝐺𝐺im as follows 

𝐻𝐻F𝐺𝐺im, 𝑧𝑧I = 	𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I − [2𝑚𝑚 − 𝑛𝑛]𝐻𝐻F𝑃𝑃i, 𝑧𝑧I

+ ñÉ
𝑛𝑛
2
Ñ

− 𝑚𝑚óò
1

𝑞𝑞 + 1
𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I

− 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧Iô 

															= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I

+ ñÉ
𝑛𝑛
2
Ñ − 𝑚𝑚ó

1
𝑞𝑞 + 1

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I

− (2𝑚𝑚 − 𝑛𝑛)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I

− ñÉ
𝑛𝑛
2
Ñ − 𝑚𝑚ó2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

											= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I + ÉF<1I −

𝑚𝑚Ñ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − (2𝑚𝑚 − 𝑛𝑛)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

−(𝑛𝑛(𝑛𝑛 − 1) − 2𝑚𝑚)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I + ÉF<1I −𝑚𝑚Ñ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I −

(𝑛𝑛(𝑛𝑛 − 1) − 𝑛𝑛)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I  

= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I + ÉF<1I −𝑚𝑚Ñ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I −

𝑛𝑛	(𝑛𝑛 − 2)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I.  

The proof is complete. 

By applying Theorem 1.1, the Wiener 

indices of even cycles, odd cycles and 

paths are	𝑊𝑊F𝐶𝐶1md1I =
(1md1)ö

õ
, 

 

 

𝑛𝑛]	𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. In 𝐺𝐺im we consider the sum of 

the Hosoya polynomials of the F<1I −𝑚𝑚 

join cycles of the form 𝐶𝐶o1 which is 

ÉF<1I − 𝑚𝑚Ñ𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I. From Lemma 3.4 we 

know that there are 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I +

:
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I repetitions from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

Thus from ÉF<1I − 𝑚𝑚Ñ 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I the term 

ÉF<1I − 𝑚𝑚Ññ2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I + :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧Ió is a 

repetition. Therefore we exclude all 

repetitions from ÉF<1I − 𝑚𝑚Ñ 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I to 

get	

ÉF<1I −𝑚𝑚Ññ𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I −

:
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧Ió = ÉF<1I −𝑚𝑚Ññ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I −

2𝐻𝐻F𝑃𝑃i, 𝑧𝑧Ió . (18) 

We combine all the results and obtain the 

Hosoya polynomials of 𝐺𝐺im as follows 

𝐻𝐻F𝐺𝐺im, 𝑧𝑧I = 	𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I − [2𝑚𝑚 − 𝑛𝑛]𝐻𝐻F𝑃𝑃i, 𝑧𝑧I

+ ñÉ
𝑛𝑛
2
Ñ

− 𝑚𝑚óò
1

𝑞𝑞 + 1
𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I

− 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧Iô 

															= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I

+ ñÉ
𝑛𝑛
2
Ñ − 𝑚𝑚ó

1
𝑞𝑞 + 1

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I

− (2𝑚𝑚 − 𝑛𝑛)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I

− ñÉ
𝑛𝑛
2
Ñ − 𝑚𝑚ó2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

											= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I + ÉF<1I −

𝑚𝑚Ñ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − (2𝑚𝑚 − 𝑛𝑛)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

−(𝑛𝑛(𝑛𝑛 − 1) − 2𝑚𝑚)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I + ÉF<1I −𝑚𝑚Ñ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I −

(𝑛𝑛(𝑛𝑛 − 1) − 𝑛𝑛)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I  

= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I + ÉF<1I −𝑚𝑚Ñ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I −

𝑛𝑛	(𝑛𝑛 − 2)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I.  

The proof is complete. 

By applying Theorem 1.1, the Wiener 

indices of even cycles, odd cycles and 

paths are	𝑊𝑊F𝐶𝐶1md1I =
(1md1)ö

õ
, 

 

 

𝑛𝑛]	𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. In 𝐺𝐺im we consider the sum of 

the Hosoya polynomials of the F<1I −𝑚𝑚 

join cycles of the form 𝐶𝐶o1 which is 

ÉF<1I − 𝑚𝑚Ñ𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I. From Lemma 3.4 we 

know that there are 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I +

:
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I repetitions from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

Thus from ÉF<1I − 𝑚𝑚Ñ 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I the term 

ÉF<1I − 𝑚𝑚Ññ2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I + :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧Ió is a 

repetition. Therefore we exclude all 

repetitions from ÉF<1I − 𝑚𝑚Ñ 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I to 

get	

ÉF<1I −𝑚𝑚Ññ𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I −

:
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧Ió = ÉF<1I −𝑚𝑚Ññ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I −

2𝐻𝐻F𝑃𝑃i, 𝑧𝑧Ió . (18) 

We combine all the results and obtain the 

Hosoya polynomials of 𝐺𝐺im as follows 

𝐻𝐻F𝐺𝐺im, 𝑧𝑧I = 	𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I − [2𝑚𝑚 − 𝑛𝑛]𝐻𝐻F𝑃𝑃i, 𝑧𝑧I

+ ñÉ
𝑛𝑛
2
Ñ

− 𝑚𝑚óò
1

𝑞𝑞 + 1
𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I

− 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧Iô 

															= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I

+ ñÉ
𝑛𝑛
2
Ñ − 𝑚𝑚ó

1
𝑞𝑞 + 1

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I

− (2𝑚𝑚 − 𝑛𝑛)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I

− ñÉ
𝑛𝑛
2
Ñ − 𝑚𝑚ó2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

											= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I + ÉF<1I −

𝑚𝑚Ñ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − (2𝑚𝑚 − 𝑛𝑛)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

−(𝑛𝑛(𝑛𝑛 − 1) − 2𝑚𝑚)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I + ÉF<1I −𝑚𝑚Ñ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I −

(𝑛𝑛(𝑛𝑛 − 1) − 𝑛𝑛)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I  

= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I + ÉF<1I −𝑚𝑚Ñ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I −

𝑛𝑛	(𝑛𝑛 − 2)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I.  

The proof is complete. 

By applying Theorem 1.1, the Wiener 

indices of even cycles, odd cycles and 

paths are	𝑊𝑊F𝐶𝐶1md1I =
(1md1)ö

õ
, 

 

 

𝑛𝑛]	𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. In 𝐺𝐺im we consider the sum of 

the Hosoya polynomials of the F<1I −𝑚𝑚 

join cycles of the form 𝐶𝐶o1 which is 

ÉF<1I − 𝑚𝑚Ñ𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I. From Lemma 3.4 we 

know that there are 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I +

:
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I repetitions from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

Thus from ÉF<1I − 𝑚𝑚Ñ 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I the term 

ÉF<1I − 𝑚𝑚Ññ2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I + :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧Ió is a 

repetition. Therefore we exclude all 

repetitions from ÉF<1I − 𝑚𝑚Ñ 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I to 

get	

ÉF<1I −𝑚𝑚Ññ𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I −

:
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧Ió = ÉF<1I −𝑚𝑚Ññ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I −

2𝐻𝐻F𝑃𝑃i, 𝑧𝑧Ió . (18) 

We combine all the results and obtain the 

Hosoya polynomials of 𝐺𝐺im as follows 

𝐻𝐻F𝐺𝐺im, 𝑧𝑧I = 	𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I − [2𝑚𝑚 − 𝑛𝑛]𝐻𝐻F𝑃𝑃i, 𝑧𝑧I

+ ñÉ
𝑛𝑛
2
Ñ

− 𝑚𝑚óò
1

𝑞𝑞 + 1
𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I

− 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧Iô 

															= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I

+ ñÉ
𝑛𝑛
2
Ñ − 𝑚𝑚ó

1
𝑞𝑞 + 1

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I

− (2𝑚𝑚 − 𝑛𝑛)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I

− ñÉ
𝑛𝑛
2
Ñ − 𝑚𝑚ó2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

											= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I + ÉF<1I −

𝑚𝑚Ñ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − (2𝑚𝑚 − 𝑛𝑛)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

−(𝑛𝑛(𝑛𝑛 − 1) − 2𝑚𝑚)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I + ÉF<1I −𝑚𝑚Ñ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I −

(𝑛𝑛(𝑛𝑛 − 1) − 𝑛𝑛)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I  

= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I + ÉF<1I −𝑚𝑚Ñ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I −

𝑛𝑛	(𝑛𝑛 − 2)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I.  

The proof is complete. 

By applying Theorem 1.1, the Wiener 

indices of even cycles, odd cycles and 

paths are	𝑊𝑊F𝐶𝐶1md1I =
(1md1)ö

õ
, 

 

 

𝑛𝑛]	𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. In 𝐺𝐺im we consider the sum of 

the Hosoya polynomials of the F<1I −𝑚𝑚 

join cycles of the form 𝐶𝐶o1 which is 

ÉF<1I − 𝑚𝑚Ñ𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I. From Lemma 3.4 we 

know that there are 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I +

:
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I repetitions from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

Thus from ÉF<1I − 𝑚𝑚Ñ 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I the term 

ÉF<1I − 𝑚𝑚Ññ2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I + :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧Ió is a 

repetition. Therefore we exclude all 

repetitions from ÉF<1I − 𝑚𝑚Ñ 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I to 

get	

ÉF<1I −𝑚𝑚Ññ𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I −

:
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧Ió = ÉF<1I −𝑚𝑚Ññ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I −

2𝐻𝐻F𝑃𝑃i, 𝑧𝑧Ió . (18) 

We combine all the results and obtain the 

Hosoya polynomials of 𝐺𝐺im as follows 

𝐻𝐻F𝐺𝐺im, 𝑧𝑧I = 	𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I − [2𝑚𝑚 − 𝑛𝑛]𝐻𝐻F𝑃𝑃i, 𝑧𝑧I

+ ñÉ
𝑛𝑛
2
Ñ

− 𝑚𝑚óò
1

𝑞𝑞 + 1
𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I

− 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧Iô 

															= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I

+ ñÉ
𝑛𝑛
2
Ñ − 𝑚𝑚ó

1
𝑞𝑞 + 1

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I

− (2𝑚𝑚 − 𝑛𝑛)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I

− ñÉ
𝑛𝑛
2
Ñ − 𝑚𝑚ó2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

											= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I + ÉF<1I −

𝑚𝑚Ñ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − (2𝑚𝑚 − 𝑛𝑛)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

−(𝑛𝑛(𝑛𝑛 − 1) − 2𝑚𝑚)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I + ÉF<1I −𝑚𝑚Ñ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I −

(𝑛𝑛(𝑛𝑛 − 1) − 𝑛𝑛)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I  

= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I + ÉF<1I −𝑚𝑚Ñ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I −

𝑛𝑛	(𝑛𝑛 − 2)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I.  

The proof is complete. 

By applying Theorem 1.1, the Wiener 

indices of even cycles, odd cycles and 

paths are	𝑊𝑊F𝐶𝐶1md1I =
(1md1)ö

õ
, 

 

 

𝑛𝑛]	𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. In 𝐺𝐺im we consider the sum of 

the Hosoya polynomials of the F<1I −𝑚𝑚 

join cycles of the form 𝐶𝐶o1 which is 

ÉF<1I − 𝑚𝑚Ñ𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I. From Lemma 3.4 we 

know that there are 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I +

:
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I repetitions from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

Thus from ÉF<1I − 𝑚𝑚Ñ 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I the term 

ÉF<1I − 𝑚𝑚Ññ2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I + :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧Ió is a 

repetition. Therefore we exclude all 

repetitions from ÉF<1I − 𝑚𝑚Ñ 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I to 

get	

ÉF<1I −𝑚𝑚Ññ𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I −

:
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧Ió = ÉF<1I −𝑚𝑚Ññ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I −

2𝐻𝐻F𝑃𝑃i, 𝑧𝑧Ió . (18) 

We combine all the results and obtain the 

Hosoya polynomials of 𝐺𝐺im as follows 

𝐻𝐻F𝐺𝐺im, 𝑧𝑧I = 	𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I − [2𝑚𝑚 − 𝑛𝑛]𝐻𝐻F𝑃𝑃i, 𝑧𝑧I

+ ñÉ
𝑛𝑛
2
Ñ

− 𝑚𝑚óò
1

𝑞𝑞 + 1
𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I

− 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧Iô 

															= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I

+ ñÉ
𝑛𝑛
2
Ñ − 𝑚𝑚ó

1
𝑞𝑞 + 1

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I

− (2𝑚𝑚 − 𝑛𝑛)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I

− ñÉ
𝑛𝑛
2
Ñ − 𝑚𝑚ó2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

											= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I + ÉF<1I −

𝑚𝑚Ñ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − (2𝑚𝑚 − 𝑛𝑛)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

−(𝑛𝑛(𝑛𝑛 − 1) − 2𝑚𝑚)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I + ÉF<1I −𝑚𝑚Ñ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I −

(𝑛𝑛(𝑛𝑛 − 1) − 𝑛𝑛)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I  

= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I + ÉF<1I −𝑚𝑚Ñ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I −

𝑛𝑛	(𝑛𝑛 − 2)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I.  

The proof is complete. 

By applying Theorem 1.1, the Wiener 

indices of even cycles, odd cycles and 

paths are	𝑊𝑊F𝐶𝐶1md1I =
(1md1)ö

õ
, 

(18)

We combine all the results and obtain 
the Hosoya polynomials of Ĝq as follows 

 

𝑛𝑛]	𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. In 𝐺𝐺im we consider the sum of 

the Hosoya polynomials of the F<1I −𝑚𝑚 

join cycles of the form 𝐶𝐶o1 which is 

ÉF<1I − 𝑚𝑚Ñ𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I. From Lemma 3.4 we 

know that there are 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I +

:
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I repetitions from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

Thus from ÉF<1I − 𝑚𝑚Ñ 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I the term 

ÉF<1I − 𝑚𝑚Ññ2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I + :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧Ió is a 

repetition. Therefore we exclude all 

repetitions from ÉF<1I − 𝑚𝑚Ñ 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I to 

get	

ÉF<1I −𝑚𝑚Ññ𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I −

:
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧Ió = ÉF<1I −𝑚𝑚Ññ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I −

2𝐻𝐻F𝑃𝑃i, 𝑧𝑧Ió . (18) 

We combine all the results and obtain the 

Hosoya polynomials of 𝐺𝐺im as follows 

𝐻𝐻F𝐺𝐺im, 𝑧𝑧I = 	𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I − [2𝑚𝑚 − 𝑛𝑛]𝐻𝐻F𝑃𝑃i, 𝑧𝑧I

+ ñÉ
𝑛𝑛
2
Ñ

− 𝑚𝑚óò
1

𝑞𝑞 + 1
𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I

− 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧Iô 

															= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I

+ ñÉ
𝑛𝑛
2
Ñ − 𝑚𝑚ó

1
𝑞𝑞 + 1

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I

− (2𝑚𝑚 − 𝑛𝑛)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I

− ñÉ
𝑛𝑛
2
Ñ − 𝑚𝑚ó2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

											= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I + ÉF<1I −

𝑚𝑚Ñ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I − (2𝑚𝑚 − 𝑛𝑛)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

−(𝑛𝑛(𝑛𝑛 − 1) − 2𝑚𝑚)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I 

= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I + ÉF<1I −𝑚𝑚Ñ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I −

(𝑛𝑛(𝑛𝑛 − 1) − 𝑛𝑛)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I  

= 𝑚𝑚𝐻𝐻F𝐶𝐶o:, 𝑧𝑧I + ÉF<1I −𝑚𝑚Ñ :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I −

𝑛𝑛	(𝑛𝑛 − 2)𝐻𝐻F𝑃𝑃i, 𝑧𝑧I.  

The proof is complete. 

By applying Theorem 1.1, the Wiener 

indices of even cycles, odd cycles and 

paths are	𝑊𝑊F𝐶𝐶1md1I =
(1md1)ö

õ
, 
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By applying Theorem 1.1, the Wiener indices 
of even cycles, odd cycles and paths are

8 and                                respectively .  Hence  applying 
Theorem 3.2 and Theorem 3.5 we get the following 
corollaries.
Corollary 3.6 Let  Ĝq be the subdivided 
join of Kn. Then the Wiener index of  Ĝq is

 

 

𝑛𝑛]	𝐻𝐻F𝑃𝑃i, 𝑧𝑧I. In 𝐺𝐺im we consider the sum of 

the Hosoya polynomials of the F<1I −𝑚𝑚 

join cycles of the form 𝐶𝐶o1 which is 

ÉF<1I − 𝑚𝑚Ñ𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I. From Lemma 3.4 we 

know that there are 2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I +

:
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I repetitions from 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I.  

Thus from ÉF<1I − 𝑚𝑚Ñ 𝐻𝐻F𝐶𝐶o1, 𝑧𝑧I the term 

ÉF<1I − 𝑚𝑚Ññ2𝐻𝐻F𝑃𝑃i, 𝑧𝑧I + :
md:

𝐻𝐻F𝐶𝐶o1, 𝑧𝑧Ió is a 

repetition. Therefore we exclude all 
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𝑊𝑊(𝐶𝐶1md:) = (2𝑞𝑞 + 2)(2𝑞𝑞 + 1)(2𝑞𝑞)/

8	and 𝑊𝑊(𝑃𝑃1md:) = Fmd1â I respectively. 

Hence applying Theorem 3.2 and Theorem 

3.5 we get the following corollaries. 

Corollary 3.6 Let 𝐺𝐺im be the subdivided 

join of 𝐾𝐾<. Then the Wiener index of 𝐺𝐺im is  

𝑊𝑊F𝐺𝐺imI = 𝑛𝑛Fmd:1 I Éù<mb<b1mdû
ü

Ñ. (19) 

Corollary 3.7 Let 𝐺𝐺im be the subdivided 

join of a diameter 2 graph, where G has 

size m and order n. Then the Wiener index 

of 𝐺𝐺im is 

𝑊𝑊F𝐺𝐺imI = Fmd:1 I É𝑛𝑛 :bmd<d1m<
â

−𝑚𝑚Ñ. (20) 
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كثيرات حدود هوسويا للاتصال المجزأ

ثوكوزاني نكامبالالا، يونيس مففاكو – باندا
كلية الرياضيات، جامعة ويتواترسراند، بي باج 3، ويتس، 2050، أر اس ايه

الملخص

كثيــرات حــدود هوســويا للقطــر 1 والقطــر 2 معروفــة وشــائعة. لقــد قمنــا بتوســعة مفهــوم اتصــال الــرأس لرســم بيانــي إلــى اتصــال مجــزأ. ثم قدمنــا صيغة 
لكثيــرات حــدود هوســويا لاتصــال مجــزأ لرســم بيانــي كامــل وكذلــك صيغــة كثيــرات حــدود هوســويا للاتصــال المجــزأ للقطــر 2 مــن الرســم البيانــي.

Eunice Mphako - Banda ,Thokozani Ncambalala   12


