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Abstract

The Hosoya polynomials of diameter 1 and diameter 2 graphs are known. We extend the concept of a vertex join of
a graph to a subdivided join. Then we give the formula of the Hosoya polynomial of a subdivided join of a complete
graph and the formula of the Hosoya polynomial of a subdivided join of diameter 2 graphs.
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1. Introduction

There is a well-developed relationship between
chemistry and graph theory, such that in chemical
graphs, the vertices of a graph correspond to the
atoms of the molecule, and the edges represent the
chemical bonds. We need the concept of distance in
graph theory to be able to define the Wiener index,
which is a tool for obtaining the boiling points of alkanes
(Wiener, 1947). Sagan et al. (1996) studied the Wiener
polynomial of a graph as a generating function in q and
revealed that the derivative of the Wiener polynomial was
the g-analog of the Wiener index of a graph. The Wiener
polynomial is a counting polynomial with applications
to mathematical and physical chemistry. The structure
of molecules and their branching patterns are studied
through their molecular graphs, which are simple
connected graphs. The Wiener index correlates
with chemical properties of organic compounds by
quantifying the branching pattern of a molecule through
its molecular graph.

Let G be a connected graph and let V(G)={u, u,, ..., u}
be the vertex set of G, the Wiener index of a graph G,
is given by:

w(G) = %Zn: Zn: d(ui,uj).

j=1i=1

6]
In addition, the hyper-Wiener index of a graph G is

Ww(G) =W (G) + %z Z d?(u;, u). ()
j=11i=1

Hosoya (1988) independently studied a generating
function regarding distance distributing, or the Hosoya
polynomial of a graph. This turned out to be equivalent
to the Wiener polynomial. Hence, in the literature, we
have two names for the same polynomial: Wiener and
Hosoya. In this paper, we use the Hosoya polynomial.
Since its inception, the study of Hosoya polynomials

has been adapted in a variety of ways by chemists and
mathematicians. One direction of study is finding explicit
expressions for the Hosoya polynomials of certain
classes of graphs (see Ali ef al., 2011; Caporossi ef al.,
1999; Deng, 2012; Deutsch, 2014; Gutman et al., 2001).
Another direction is to find the Hosoya polynomial of
certain graph operation (see Deutsch, 2013). A new
direction is solving for the roots of Hosoya polynomials,
as done by Kumar et al. (2016) and Reyhani et al. (2013).
Other investigators studied new topological indices, such
as the Randi¢ index (Ali et al., 2017), an augmented
Zagreb index (Ali et al., 2016), and the F-index (Abdo et
al., 2017). The diameter D of a graph G is given by D:=

maxyyey(y{d(u,  v)}The Hosoya polynomial is defined
for a connected graph G as

D
H(G,2) = z dG,w)z", 3)
w=1

where d(G,w)>1 is the number of vertex pairs at distance
w. The Hosoya polynomial has applications to two

important topological indices: the Wiener and
hyper-Wiener.

Thus, the Wiener index 1is given by the
first derivative of the Hosoya polynomial

H(G, z) shown in Equation 4 at z=/, That is

D
d
ZHG D =W(E) = Wzlwd(c, w). @)

Estrada et al. 1998 showed that the hyper-Wiener
index is given by half of the second derivative of
the Hosoya polynomial as zH(G, z) at z=I, that is

2

D
%ZH(G, 2)|,=1 = WW(G)=W(G) + Z w2d(G,w). (5)

It is of special interest to nou'fg1 that unlike many
graph polynomials, the Hosoya polynomials of



oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

even and odd cycles have different formulae.
Similarly, non-isomorphic trees of the same size
have different formulae of the Hosoya polynomial.

Theorem 1.1 (Sagan, 1996) The Hosoya polynomial of
(i) an even cycle C, is

n—-1
H(Cy) =2n ) z' +nz™ (6)
2
(ii) an odd cycle C, is
H(Cons) = @n+ 1) ) 2t %
(iiij) apath P_ is
HE) =) (n= 0z (8)

In this paper, we extend the concept of a vertex join
of a graph to a subdivided join. We give some properties
of subdivided join of a graph. Then we give a formula
for the Hosoya polynomial of a subdivided join of a
complete graph. Finally, the Hosoya polynomial of a
subdivided join of a graph with diameter 2 is obtained.

2. Subdivided join and diameter 2 graphs

In this section, we give a brief discussion on diameter
2 graphs and subdivided joins of these graphs. Let
d(u,v) denote the minimum distance between any two
vertices # and v in a graph G. A graph with maximum
distance equal to k between pairs of vertices is said
to be a diameter k& graph. In this paper we shall
consider graphs with diameter 1 and diameter 2.

Let G be a graph with vertex set V(G)={u , u,, ..., u },
edge set £(G) and let a vertex w be a vertex not in V(G). A
vertex join of a graph G, is the graph denoted by G with
vertex set V(G)={u1, u ,u fu{wt and edge set E(G )=
E(G)u {{u,w},{u,w}, ..., {u,w}}. To ease notation, an edge
ee {{u,whiu,w}, ..., {u,w}}is called a join edge and
vertex w is called a join vertex. If each join edge, {u,w}, of
a vertex join, G ,is replaced by a path P ) the resulting
graph is called a subdivided join of a graph G denoted
by Gq. A path P, in a subdivided join which replaced
a join edge of G is called a join path. We denote a join
path by p and to ease notation, we label P; as a join path
from vertex u, to vertex w. It is clear from definitions that,
for every pair of vertices u, and u, in G we have classes
of cycles consisting of the shortest path between u, and u,
and the two join paths P; and P;. We define a transversal
to be a set of cycles such that no cycles belong to the
same class. The element of the transversal are called the
join cycles of G,. We denote a join cycle with one edge
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of G by C1 and a join cycle w1th two edges of G by Cz.
We now state some properties of a subdivided
join which are useful in some proofs in this paper.
Lemma 2.1 Let G be a diameter 2 graph of order n
and size m. Let G be the subdivided join of G. Then

(i) the order of G is equal to gn+l.
(ii) the number of join paths in G is equal to n.
(ii1) the total number of join cycles Cl in G is m.

(iv) the total number of join cycles, Cz 1nG is (") —m.
(v) the total number of join cycles in G is equal to ( )
A vertex cycle cover of a graph G 1s a set of cycles
which are subgraphs of G and contain all vertices
of G. Since in this paper we are discussing vertex
pairs, we extend the vertex cycle cover terminology
to vertex pair cycle cover which is a set of cycles that
are subgraphs of G and contain all vertex pairs of G.
Lemma 2.2 Let G be a graph of order n and size m
with diameter at most 2. Let Gq be the subdivided join
of G. Then every vertex pair in G belong to some join
cycle in Gq that is Gq has a Vertex pair join cycle cover.
Proof. There are four cases to be considered:
Case 1. A pair of vertices v, v, € V(G) are either
at distance 1 or 2 from each other since G is a
diameter at most 2 graph. By definition, each
of these pairs of vertices belong to a join cycle.
Case 2. A pair of vertices v, V, € V( P ) such that
both vertices are in the same join path P and
v, € V(G) . By definition of a join cycle each
of these pairs of vertices belong to a join cycle.
Case 3. A pair of vertices v, ,v such thatv, € V(G),
v, € V( P;) and w # v, # v. By definition the
join path P ; joins vertex w and vertex v, V(G) in
the subdivided join. Thus v, € V( P; ). Butby
part (i) the pair v, , v, 1s on the join cycle Since
v, € V(P; ), then the pa1r v, ,v, is on this join cycle.
Case 4. A pair of vertices v, v, such that v ,v, is not in
VG), v, #w# v, v € V(P ) andv, € V(Pp;).
Let v, v, V(G), such that v, V(P; ) and v, V(P; ) If
dev, vi) 1 thenv,v, C1 ,whrlerfd(v v)=2, thenv C2
Thus every Vertex pair in Gq belong to some join cycle
in G q hence Gq has a vertex pair join cycle cover.
Lemma 2.3 Let G be a graph of order n and size m
with diameter at most 2. Let G, be the subdivided
join of G. Then_ the shortest path between any pair
of vertices in G4 lie on some join cycle of G,
Proof. There are four «cases of pairs of
vertices on a join cycle to be considered:

Case 1. Apair of vertices v, V€ V(G) .l1tis clear that the
construction of Gg does not affect the shortest path in G.
But v, ,v, are on the join cycle consisting of the
shortest path between v, and v, and join paths P,
and p ;-

Case 2. A pair of vertices v, v € V(P; ), thatis both v,
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v,are lying on the same join path? ;. Let the path from v to
v,onP ; be called P . Assume there is another path from v,
tov shorter thanP ,say path P, . Then it is clear thatP
uPSt isacycle. Byconstructlonof G theonlyposs1b1hty
isthat P U P is some cycle cons1st1ng of some join path,
say Py and some edges in G. Thus Py, is a path consisting
of join path P« and at least one more edge. Thus|E(P,,)|
> q+1. But EP,) < EP) where [EP )= q =
\E(P))|, therefore |E(P,)| < q. Hence P, is the shortest
path between v to v, and is on some join cycle.
Case 3. A pair of Vertlces v,v such thatv. € V(G) ,
v, V(P ) and w # v# v, It is clear by constmctlon
that the only paths from v, to v, are theAjoin path
cycle consisting of a path from v, to v, P and P
Hence the shortest path is on the same join cycle.
Case 4. A pair of vertices v, v, such that v,v, are not in
V(G), v, #w# v, v € V(P;) andv, €V(P; ) . Let vE
V(G), such that v, € V(P; ) and v, € V(P; ) . Let the join
cycle consisting of the shortest path from v, to v,
UP,;UP;be C, and let the shortest path from v _to v
on ¢ . be P,.. Assume there is another path in Gq not
on the join cycle ¢, which is shorter than P.., say
path P . Then B u P is a cycle consisting of the paths
Py and P; and some path from v, to v, say pathP
in G. But the path in G from v, to v, in the ]om cycle CX,
is the shortest path by definition of C, . Thus the cycle
P’ ., U P is longer than the join cycle ¢, . Hence P ;tls
the shortest path between v_and v, and is on a join cycle.
Corollary 2.4 Let G be a graph of order n and
size m with diameter at most 2. Let Gq be the
subdivided join of G. Then the sum of the Hosoya
polynomials of all the join cycles in G covers the
distance of any pair of vertices in G at least once.

3. The Hosoya polynomial of subdivided join

In this section, we give the Hosoya polynomial of the
subdivided join of a diameter 1 graph and a diameter 2
graph. Finally we state the Wienerindices ofthe subdivided
join of a diameter 1 graph and a diameter 2 graph.

Note that all diameter 1 graphs are complete
graphs, thus we find the Hosoya polynomial
of the subdivided join of a complete graph.
Lemma 3.1 Let K be a complete graph of order
n, and let Gq be the subdivided join of K . Then
there are () join cycles of the form ¢ in G
Theorem 3.2 Let K be a complete graph of
order n, and let G be the subdivided ]om of
K. Then the Hosoya polynomial of G is

H(G, z) = (721) H(C,z) —n(n—2)H(P,z). (9

Proof. By Lemma 2.2, we know that every vertex pair in
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G belong to some join cycle C1 .
By Corollary 2.4, the sum of the Hosoya polynomials of
all the join cycles in Gq covers the distance of any pair

of wvertices in Gq at least once. We use the
principle of inclusion-exclusion, Theorem
1.2. Thus the Hosoya polynomial of G, can be

found in terms of join cycles and join paths.

By Lemma 3.1 the number of join cycles of size
2g+1in By Lemma 3.1 the number of join cycles of size
2g+1 in G is (}). Therefore the sum of the Hosoya
polynormals of all the join cycles of G is ( )H(C1 z).
Since u, is paired with all the other (n 1) vertices, this
implies ‘that the join path P; will appear in (n-1) join
cycles. Thus the Hosoya polynomial of each join path? ;
is in the Hosoya polynomials of (r-1) join cycles. But we
need the Hosoya polynomial of P, to contribute once
in the total sum, thus we remove the (n-2) repetitions. We
do this to all the n join paths, to get the Hosoya
polynomial of G Jis (%) . Therefore the sum of the
Hosoya polynormals of all the join cycles of Gq is
(5) H(C,2. Since u, is paired with all the other
(n-1) vertices, this implies that the join path P; will
appear in (n-1) join cycles. Thus the Hosoya polynomial
of each join path P; is in the Hosoya polynomials
of (n-1) join cycles. But we need the Hosoya
polynomial of P ; to contribute once in the total sum,
thus we remove the (n-2) repetitions. We do this to all
the n join paths, to get the Hosoya polynomial of Gq,

H(G, 2) = (Z) H(C,, z)— n(n— 2)H(P,2). (10)

We now compute the Hosoya polynomials of
the subdivided join for a diameter 2 graph. The
Hosoya polynomial of any graph with diameter
2 is known in the literature, see Kumar, 2016.
Proposition 3.3 (Kumar, 2016). Let G be a diameter 2

graph of order n and size m.
Then the Hosoya polynomial of G is
H(G,z) =mz—[(721)—m]22. (11)

Lemma 3.4 Let G=P, be a path on three vertices and let
Gq be the subdivided join of P,
Then the Hosoya polynomial of Gq is

H(Gpz) = 2H(C2) + qulH(éz,z) “3H(P2). (12)
Proof. Let V(G)={u1, u,, u}} such that d(ul, u2)= d(uz,
u3)= [ and d(u], u3)= 2. It is clear that in Gq, there are three
join cycles. Thus the contribution of the three join
cycles to the Hosoya polynomial of G is less than
or equal to ZH(Cl,Z) + H(Cz,z) We now remove all
the repeated pairs of vertices in the three join cycles.
Each join path appears twice in the three join
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cycles, so we remove remove H(P, z) from
2H(C,z) and 2 H(P, z) from H(C,,z). The edge of
G {u , u,} appears in 2 join cycles and so is the edge
,» u,l. Hence we remove the term 2z from - H (C,2).
Con51der all the distances from u, to any vertex but w
in the two join paths P1, P; and in the join cycle C,.

These distances have been included already
in the 2 join cycles, hence we remove
the term  2Z22427+..4+2z¢9  from H(C,, 2).

We note that the shortest distance betweenu,and wis g,
that is via the join path P,. However in the join cycle Cz
the shortest distance between u, and w is q+1, which is
more than ¢, thus we must also remove z4 from
H (C’Z,z).

Recall that the Hosoya polynomial of an even cycle
H(Cy) = 2n Y11 28 + nz™
Now we note that

q i g+1 _ atl[ya i
i1 2zt + 2z = q+1[zi:1 2z1 +

79+ = ql:[ L.2(q+ 1)zt +

(q+ 1)za+1] = 122, (13)
Then substituting Equation 10 we obtain

H(C,z) —2H(P,z) — H(Cz,z) (14)

which simplifies to m H((fz, z) —2H(P, z).

We combine all the results as follows

A . N 1 . -
H(Gg z) =2H(Cy,z) —H(P,z) + mH(Cz,z) —-2H(P,z)

(15)

R 1 R _
=2H(C,,z) + mH(cz,z) - 3H(P,z).

Thus we get the required results.
Theorem 3.5 Let G be a diameter 2 graph of size m and
order n. Then the Hosoya polynomial of the subdivided
join, G is

H(G, z) =mH(Cy,z) —

L(®-

m) H(C, z) —n(n—2)H(P,z). (16)

Proof. By Lemma 2.2 , we know that every vertex
pair in Gq belong to some join cycle C; . By Corollary
2.4, the sum of the Hosoya polynomials of all the join
cyclﬁes in Gq covers the distance of any pair of vertices
in Gq at least once. We use the principle of inclusion-
exclusion, Theorem 1.2. Thus the Hosoya polynomial of
Gq can be found in terms of join cycles and join paths.
By Lemma 2.1 there are m join cyclesC; 1 and (G)-m
join cycles C, in G We have m join cycles of the

Eunice Mphako - Banda ,Thokozani Ncambalala 10
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form C1 in G Hence these join cycles contribute the
term mH( C1 z) to the Hosoya polynomial of G As in
the proof of Lemma 3.4 we need to remove the Hosoya
polynomials of some of the join paths P ; that are found
in more than 1 join cycle. Let V(G)={u,, u cut
be the vertex set of G and let the degree of vertex u, be
a>1 for I <i <n. Recall that the hand-shake lemma
states that the sum of all the degrees of vertices of a
graph are equal to twice the number of edges of a graph.
Therefore for graph G of size m we have }}7* ; a; = 2m.

Now we consider the degree of vertices of G in
order to count the number of repetitions of join paths.
It is clear by definition that each join path P; with
u, € V(G) is paired with a, join paths to form a, join
cycles of the form C; . Thus the Hosoya polynomials
of each join pathp; are repeated a-/ times in the
a, join cycles of the form C‘l We compute all the

repetitions of H( P, ,z) from mH( 61 ,z) , as follows
Z(ai—1)=2ai—n: 2m —n. (17)
i=1 i=1

Therefore the repeated number of H( p, ,z)

is [2m-n] H(P,z). Thus we exclude [2m-n]

H(P,z) from mH( 6'1 z) to get mH( C; .z)-[2m-n]
H(p z) In Gq we consider the sum of the Hosoya
polynomials of the (}) - m join cycles of the form

C, which is ()= m)H(C, 2). From
Lemma 34 we  know that there are
2H(P,z)+ —2H(C,z) |, repetitions  from  H( (,.2).

Thus from (()-m)H(Cz)  the term ((})-m)
(ZH(P,Z)+,“1H(CZ z)) is a repetition. Therefore we
exclude all repetitions from ((g)_m) H(C,z) to get

(()-m) (H((:‘z,z) —2H(P,2) -
qHH(Cz Z)) =(®)-m) (qHH(C2 z)— 2H(P, z)) (18)

We combine all the results
the Hosoya polynomials of Gq as follows

and  obtain

H(Gq,z) = mH(Cl'Z) —[2m — n]H(ﬁ,z)
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- (@2m-n)H(P,z)
- ((721) - m) 2H(B, z)

=mH(Cy,7) + ((721) -

m)q—ilH(CA‘z,z) - (@2m-n)H(P,z)

—(nn-1) — Zm)H(f’,z)

= mH(Cy2) + ()~ m) 25 H(Gy ) -

(n(n—1)-n)H(P,z)

=mH(Cy,z) + (('Z‘) - m)ﬁH(CAZ,z) -

n(n—2)H(P,z).
the Wiener indices
and paths are

1.1,
cycles

By applying Theorem
of even cycles, odd

W(Coguz) = CU2 W(Cqen) = 20+ (24 + D)/

8 and W(P,q41) = (?1?) respectively . Hence applying
Theorem 3.2 and Theorem 3.5 we get the following
corollaries.

Corollary 3.6 Let G’q be the subdiyided
join of K. Then the Wiener index of Gq is

A\ +1Y\ [(4nq—n-2q+5
W(Gq) = n("3) (H) (19)
Corollary 3.7 Let G, be the subdivided join
of a diameter 2 graph, where G has size m
and order n. Then the Wiener index of Gq is

w(G,) = (q;1) (n —1_q+§+2qn — m). (20)
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