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Abstract

This study investigated the removal of amoxicillin (AMO) antibiotic and chemical oxygen demand (COD) by 
Fenton (Fe2+/H2O2) and photocatalytic (UV-A/TiO2) oxidation processes in aqueous solutions. In experiments, pH, 
antibiotic, Fe2+, H2O2, TiO2 concentrations and reaction time parameters were examined. In the Fenton process, 
the removal efficiencies of initial AMO and COD concentrations were 83% and 66%, respectively. The Fe2+/H2O2 
molar ratio was determined as 1/15. In the photocatalytic process, AMO and COD removal efficiencies were 62% 
and 52%, respectively. The results indicate that these two processes may enhance the rate of AMO removal in 
polluted water and could be used as a preliminary treatment or as an alternative to existing treatment systems.

Keywords: Amoxicillin; antibiotic removal; chemical oxygen demand (COD); Fenton oxidation; 
photocatalytic oxidation.

1. Introduction 

The most common usage of antibiotics is to treat 
bacterial infections in humans and animals. Other uses 
are in hospitals, food and pharmaceutical industries, 
aquaculture cultivation, and in scientific research (Savcı, 
2016). Antibiotics are complex and hardy biodegradable 
organic compounds, having been a cause for concern due 
to their toxic effects on the human body and natural life 
(Kummerer, 2009b; Luo et al., 2014). By oral application 
of antibiotics, only 10-20% is metabolized, while the 
remaining 80-90% is expelled from the body directly and 
indirectly into the ecosystem (Hernando et al., 2006). 

The presence of antibiotics and their residues 
in various water sources can lead to the occurrence 
of antibiotic-resistant bacteria. These compounds 
damage or destroy natural aquatic micro-organisms 
required for biological wastewater treatment. Existing 
conventional biological wastewater treatment plants 
are not efficient enough to remove pharmaceuticals 
(Rizzo et al., 2013; Matongo et al., 2015). 

Advanced oxidation processes (AOPs) are an 
efficient and environmentally-friendly method 
which are used to generate hydroxyl radicals (OH●, 
E=2.8 V) in ambient conditions. Then OH● oxidizes, 
emerging contaminants to H2O and CO2 end products. 

Many studies discuss the removal of antibiotics from 
different water sources (see Trovó et al., 2011; Li et al., 
2012; Dimitrakopoulou et al., 2012; Oros-Ruiz, 2013; 
Sheydaei et al., 2014; Santos, 2015; Dehghani et al., 
2015). Fenton and photocatalytic processes are highly 

applied methods of AOPs. Fenton technology is based on 
an electron transfer between ferrous ion (Fe2+) as a catalyst 
and H2O2 as an oxidant in acidic conditions (Dehghani 
et al., 2015). In photocatalytic process, ultraviolet light 
(UV) is used to excite the electrons with a semiconductor 
catalyst (such as TiO2, ZnO etc.), having valance and 
conduction energy bands, based on the action of positively 
charged holes. These holes react with water on the surface 
of a photocatalyst and generate oxidants such as OH● 
and a superoxide (O2

-●) radical (Meeroff et al., 2012). 
     Penicillins, as a classification, are the most widely 
consumed antibiotics in Turkey and other countries 
(Turkdogan & Yetilmezsoy, 2009; WHO,2011-2014). 
AMO belongs to the penicillin, used as a β-lactam 
antibiotic for human and animal health for the prevention 
of bacterial infections caused by gram-negative and 
gram-positive organisms such as various allergies, 
infections (Jung et al., 2012; Napoleao et al., 2015). 

This study evaluated the advanced oxidation of 
antibiotic amoxicillin in aqueous solution by Fenton and 
photocatalytic processes in terms of amoxicillin and COD 
removal and to see if these systems could be a pertinent 
way to eliminate the drug in wastewater treatment plants. 
The effects of pH, initial antibiotic, Fe2+, H2O2, and 
TiO2 concentrations, reaction time, and the Fe2+/H2O2
molar ratio on the degradation of AMO and COD 
were investigated. Optimum values of these operating 
parameters were determined. The Fenton and 
photocatalyitc reagent dosages were specified 
based on the initial COD value for the efficient 
treatment because COD is a specified oxidant 

Kuwait J. Sci. 46 (2) pp 85-93, 2019 



reacting with the sample under these conditions. 

2. Materials and methods

2.1. Chemicals
Amoxicillin (C16H19N3O5S 365.4 g mol-1) was 
purchased from Sigma-Aldrich and used as received. 
The chemical structure of AMO is given in Figure 1.
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Fig. 1. Chemical structure of AMO 

    Other chemicals were obtained from 
Merck. COD test kits (0-1500 mg O2 /L) 
were supplied from Hach Lange, USA.  
2.2. Experimental procedure 
A stock solution of AMO (500 mg L-1) was 
prepared in ultrapure water and stored at 4° 

C. The experiments were performed at 
different pHs 2-7 for the Fe2+/H2O2 process 
and 3, 7, 11 for the UV-A/TiO2 process, 
different concentrations of Fe 2+ (28-280 mg 
L-1), H2O2 (170-1700 mg L-1), AMO (10-
100 mg L-1), TiO2 (200-1000 mg L-1), and 
for time ranges from 5 to 60 minutes. 
     For the Fenton experiments, synthetic 
wastewater samples contained in 100 mL a 
dark Pyrex reactor were stirred at 120 rpm 
with a magnetic bar at 25° C for 30 min 
(Figure 2). To prevent the interferences of 
H2O2 on COD removal, 1 M of MnO2 was 
also added. After sedimentation, 15 mL of 
the sample were centrifuged (6000 rpm, 15 
min) and filtered using a membrane filter 
(0.45 µm) to measure of AMO and COD 
amounts. 

 
Fig. 2. Fenton process setup 

 
     A volume of 1000 mL of the sample was 
introduced into 2000 mL of water in a 
jacketed pyrex glass UV reactor. The 
sample was then exposed to a UV-A black 
light bulb (T5 6 W, 24 cm, 315- 400 nm) 
with an irradiation time of 30 min at 150 
rpm (Figure 3). During the experiments, the 
temperature (25° C) of the reactor was 
controlled by using a thermometer. The 
samples were analyzed at the same 
conditions as the Fenton experiments to 
determine the removal of AMO and COD. 
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Fig. 5 Effect of pH on (a) AMO and (b) COD removal in UV-A/TiO2 process  
 
3.2. Effect of Fe2+ concentration 
The removal efficiency of AMO and COD 
increased from 68.4% to 82.06% as the 
concentration of Fe2+ increased from 28 to 
112 mg L-1. It did not change significantly 
above this value.  

    
    On the other hand, the minimum COD 
removal efficiency was 82.26% at 28 mg L-1 
Fe2+, and the mineralization of COD was 
completely achieved at 280 mg L-1 Fe2+ 
dosage at 30 min.  
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Fig. 6. Effect of Fe2+ on (a) AMO and (b) COD removal in Fe2+/H2O2 process 

Fig. 4. Effect of pH on (a) AMO and (b) COD removal in Fe2+/H2O2 process
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3.2. Effect of Fe2+ concentration
The removal efficiency of AMO and COD increased 
from 68.4% to 82.06% as the concentration 
of Fe2+ increased from 28 to 112 mg L-1. It 
did not change significantly above this value. 
   

On the other hand, the minimum COD removal 
efficiency was 82.26% at 28 mg L-1 Fe2+, and 
the mineralization of COD was completely 
achieved at 280 mg L-1 Fe2+ dosage at 30 min. 
As shown in Figure 6, the oxidation of AMO and COD 
increased with an increasing Fe2+ value. As the dosage 
of Fe2+ increases, the redox reaction and coagulation 
become complete. When Fe2+ is above 112 mg L-1, it 
is consumed rapidly or regenerated slowly and then 
oxidized to Fe3+ at the end of the reaction (Kavitha & 
Palanivelu, 2004). Moreover, Fe3+ may react with OH● 

and precipitate as Fe(OH)3 above 112 mgL1. 
Therefore,   112   mg  L1   of   Fe2+  was  reported  as  the 
optimum concentration.
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3.3. Effect of H2O2 concentration and residual H2O2
The effect of H2O2 concentration on AMO and COD 
removal is shown in Figure 7. The best removal of AMO 
and COD concentration was observed at 1020 mg L-1 of 
H2O2  (78.55%). AMO removal did not change 
significantly for 1020 mg L-1 H2O2 dosage and higher. 
At higher peroxide concentrations, the excess H2O2 can 
act as a scavenger for OH●, forming hydroperoxyl (●HO2), 
which is a free radical that has a lower oxidation capacity 
than OH● (Arslan-Alaton & Dogruel, 2004; Tony et al., 
2009a). 

 A higher dosage of H2O2 increases in percent 
degradation. However, some organic compounds, which 
are hard to oxidize, reduce the performance of H2O2 (Kang 
& Hwang, 2000; Lin & Lo, 1997). Furthermore, residual 
H2O2 in water can be toxic to microorganisms, and require 
a different water treatment process to deal with biological 
debris (Barbusiński & Filipek, 2003; Wang et al., 2017) 
Therefore, the additional concentration of H2O2 into a 
sample reduce the system’s efficiency. A lower dosage 
of H2O2 does not product sufficient OH● radicals to cause 
full decomposition. For this reason 1020 mg L-1 H2O2 were 
accepted as the optimal value. After Fenton oxidation, 
the residual concentration of H2O2 interferes with COD 
analysis in the treated water, which causes the COD value 
to increase. Table 1 shows the change in the amount of 
H2O2 during the reaction. It was observed that an Fe2+ 
ion reacted with 85% H2O2 after approximately 20 min.
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Fig. 7. Effect of H2O2 on (a) AMO and (b) COD removal in Fe2+/H2O2 process 
 
Table 1. The results of the residual hydrogen peroxide concentration of AMO for optimum 
conditions 

Parameter 
 

Initial H2O2 
(mg L-1) 

Residual H2O2  
(mg L-1) 

pH, 3 1020 102 
Fe2+,112 mg L-1 1020 153 
H2O2, 1020 mg L-1 1020 289 
Conc.,100 mg L-1 1020 85 
Time, 20 min 1020 153 

3.4. Effect of TiO2 concentration 

Fig. 7. Effect of H2O2 on (a) AMO and (b) COD removal in Fe2+/H2O2 pro-
cess

Table 1. The results of the residual hydrogen peroxide 
concentration of AMO for optimum conditions
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concentrations, the excess H2O2 can act as a 
scavenger for OH●, forming hydroperoxyl 
(●HO2), which is a free radical that has a 
lower oxidation capacity than OH● (Arslan-

Alaton & Dogruel, 2004; Tony et al., 
2009a).  
     A higher dosage of H2O2 increases in 
percent degradation. However, some organic 
compounds, which are hard to oxidize, 
reduce the performance of H2O2 (Kang & 
Hwang, 2000; Lin & Lo, 1997). 
Furthermore, residual H2O2 in water can be 
toxic to microorganisms, and require a 
different water treatment process to deal 
with biological debris (Barbusiński & 
Filipek, 2003; Wang et al., 2017) Therefore, 
the additional concentration of H2O2 into a 
sample reduce the system’s efficiency. A 
lower dosage of H2O2 does not product 
sufficient OH● radicals to cause full 
decomposition. For this reason 1020 mg L-1 
H2O2 were accepted as the optimal value. 
After Fenton oxidation, the residual 
concentration of H2O2 interferes with COD 
analysis in the treated water, which causes 
the COD value to increase. Table 1 shows 
the change in the amount of H2O2 during the 
reaction. It was observed that an Fe2+ ion 
reacted with 85% H2O2 after approximately 
20 min. 

  
                                (a)                              (b) 

Fig. 7. Effect of H2O2 on (a) AMO and (b) COD removal in Fe2+/H2O2 process 
 
Table 1. The results of the residual hydrogen peroxide concentration of AMO for optimum 
conditions 

Parameter 
 

Initial H2O2 
(mg L-1) 

Residual H2O2  
(mg L-1) 

pH, 3 1020 102 
Fe2+,112 mg L-1 1020 153 
H2O2, 1020 mg L-1 1020 289 
Conc.,100 mg L-1 1020 85 
Time, 20 min 1020 153 

3.4. Effect of TiO2 concentration 
3.4. Effect of TiO2 concentration
Data regarding the effect of the TiO2 concentration is given 
in Figure 8. The results reveal that as the concentration 
of TiO2 increased from 200 to 1000 mg L-1, there was a 
decrease in the removal of AMO and COD. Hence, the 
optimum value of TiO2 was determined to be 200 mg 
L-1. This is advantageous in terms of cost for the use of 
chemicals. 

Dimitrakopoulou et al. (2012) reported that Degussa 
P25, a catalyst consisting mainly of anatase and rutile, 
could achieve total degradation of AMO after 25 min. 
The researchers also showed that 93% could 
be mineralized after 90 min of reaction.

Elmolla & Chaudhuri (2010b) found 42% AMO 
degraded after 300 min with UV-A irradiation and at 
500 mg L-1 pure anatase TiO2. However, in this study, 
the best efficiencies of AMO degradation and COD 
removal were 90.96% and 98.32% using 200 mg L-1 
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Data regarding the effect of the TiO2 
concentration is given in Figure 8. The 
results reveal that as the concentration of 
TiO2 increased from 200 to 1000 mg L-1, 
there was a decrease in the removal of AMO 
and COD. Hence, the optimum value of 
TiO2 was determined to be 200 mg L-1. This 
is advantageous in terms of cost for the use 
of chemicals.  
     Dimitrakopoulou et al. (2012) reported 
that Degussa P25, a catalyst consisting 
mainly of anatase and rutile, could achieve 
total degradation of AMO after 25 min.  

The researchers also showed that 93% could 
be mineralized after 90 min of reaction. 
     Elmolla & Chaudhuri (2010b) found 
42% AMO degraded after 300 min with 
UV-A irradiation and at 500 mg L-1 pure 
anatase TiO2. However, in this study, the 
best efficiencies of AMO degradation and 
COD removal were 90.96% and 98.32% 
using 200 mg L-1 pure anatase TiO2 at 30 
min. This is completely related to the 
experimental design factors, such as 
antibiotic and TiO2 concentrations, reaction 
times, mixing speeds, type of catalyst, 
reactor geometry, and light source. 
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Fig. 8. Effect of TiO2 on (a) AMO and (b) COD removal in UV-A/TiO2 process  
 

3.5. Effect of antibiotic concentration 
The initial concentration of AMO has an 
important role due to the performance 
limitation of Fe2+/H2O2 and UV-A/TiO2 
processes.  
     Figure 9 shows that AMO degradation 
efficiency improved from 52.92% to 
82.01% with the increase of AMO 
concentration, and the COD removal 
efficiency also increased from 23.08% to 
79.67% from 10 to 100 mg L-1 within 30 
min. It was shown that the removal 
efficiency of AMO and COD increased with 
the increase of initial concentrations by the 
Fenton process. Thus, high doses of H2O2 

and Fe2+ may be required to degrade AMO 
effectively. 
     According to Figure 10, the efficiencies 
of AMO degradation and COD removal 
slowly decreased while the initial AMO 
concentration increased from 10 to 100 
mgL-1 in the photocatalytic process. The 
increase of antibiotic concentration also 
increases the amount of antibiotic adsorbed 
to the photocatalyst surface. However, the 
photoactive regions on the catalyst surface 
are reduced and finally the rate of 
degradation of antibiotics is decreased (San 
et al., 2002). 
 

Fig. 8. Effect of TiO2 on (a) AMO and (b) COD removal in UV-A/TiO2 process 
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pure anatase TiO2 at 30 min. This is completely related 
to the experimental design factors, such as antibiotic 
and TiO2 concentrations, reaction times, mixing speeds, 
type of catalyst, reactor geometry, and light source.

3.5. Effect of antibiotic concentration
 The initial concentration of AMO has an 
important role due to the performance limitation 
of Fe2+/H2O2 and UV-A/TiO2 processes. 

Figure 9 shows that AMO degradation efficiency 
improved from 52.92% to 82.01% with the increase of 
AMO concentration, and the COD removal efficiency 
also increased from 23.08% to 79.67% from 10 to 100 
mg L-1 within 30 min. It was shown that the removal 
efficiency of AMO and COD increased with the increase 
of initial concentrations by the Fenton process. Thus, high 
doses of H2O2 and Fe2+ may be required to degrade AMO 
effectively.

According to Figure 10, the efficiencies of AMO 
degradation and COD removal slowly decreased 
while the initial AMO concentration increased from 
10 to 100 mgL-1 in the photocatalytic process. The 
increase of antibiotic concentration also increases the 
amount of antibiotic adsorbed to the photocatalyst 
surface. However, the photoactive regions on the 
catalyst surface are reduced and finally the rate of 
degradation of antibiotics is decreased (San et al., 2002).

Gamze Koyuncu Türkay, Halil Kumbur 

 
(a) (b) 

Fig. 9. Effect of AMO concentration on (a) AMO and (b) COD removal in Fe2+/H2O2 process 
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Fig. 10. Effect of AMO concentration on (a) AMO and (b) COD removal in UV-A/TiO2 
process  

 
3.6. Effect of initial COD 
The initial COD is one major factors for 
determining the reagent dosages for the 
efficiency of Fenton and photocatalytic 
processes. For this reason, in this study the 
effect of COD removal was also studied for 
both processes. The experiments showed 
that although AMO degradation was quite 
efficient, the removal efficiency of COD 
was lower than AMO. This may be due to 
the solution of OH● at high Fe2+, H2O2 and 
TiO2 doses and/or formed metabolites. 
 
3.7. Effect of reaction time 
For the 60 min reaction time, the 
degradation of the initial AMO 
concentration and COD removal with two 
processes are given in Figure 11(a) and (b). 
In the Fenton process, the reduction rate of 
AMO increased in 20 min (82.67%) when 

AMO and H2O2 concentrations were high, 
which was due to OH● destruction.  
     On the other hand, the removal efficiency 
did not significantly increase from 20 to 60 
min because of low AMO and H2O2 
concentrations. COD removal also increased 
slowly during the 60 min reaction time. 
Belal et al. (2000) reported that the 
hydrolysis of penicillins increases with time. 
     According to the photocatalytic results, 
AMO and COD removal efficiencies 
slightly went up due to the fact that having 
higher AMO concentrations can cover the 
active regions on a TiO2 surface. In 
addition, the formation of OH● can decrease 
so the reduction of AMO may be degraded.  
     Finally, it was observed that the Fenton 
process may efficiently separate organics of 

Fig. 9. Effect of AMO concentration on (a) AMO and (b) COD removal in Fe2+/
H2O2 process
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TiO2 doses and/or formed metabolites. 
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For the 60 min reaction time, the 
degradation of the initial AMO 
concentration and COD removal with two 
processes are given in Figure 11(a) and (b). 
In the Fenton process, the reduction rate of 
AMO increased in 20 min (82.67%) when 

AMO and H2O2 concentrations were high, 
which was due to OH● destruction.  
     On the other hand, the removal efficiency 
did not significantly increase from 20 to 60 
min because of low AMO and H2O2 
concentrations. COD removal also increased 
slowly during the 60 min reaction time. 
Belal et al. (2000) reported that the 
hydrolysis of penicillins increases with time. 
     According to the photocatalytic results, 
AMO and COD removal efficiencies 
slightly went up due to the fact that having 
higher AMO concentrations can cover the 
active regions on a TiO2 surface. In 
addition, the formation of OH● can decrease 
so the reduction of AMO may be degraded.  
     Finally, it was observed that the Fenton 
process may efficiently separate organics of 

Fig. 10. Effect of AMO concentration on (a) AMO and (b) COD removal in 
UV-A/TiO2 process 

3.6. Effect of initial COD
The initial COD is one major factors for determining 
the reagent dosages for the efficiency of Fenton and 
photocatalytic processes. For this reason, in this study 
the effect of COD removal was also studied for both 
processes. The experiments showed that although 
AMO degradation was quite efficient, the removal 
efficiency of COD was lower than AMO. This 
may be due to the solution of OH● at high Fe2+, 
H2O2 and TiO2 doses and/or formed metabolites.

3.7. Effect of reaction time
For the 60 min reaction time, the degradation of the 
initial AMO concentration and COD removal with 
two processes are given in Figure 11(a) and (b). In the 
Fenton process, the reduction rate of AMO increased in 
20 min (82.67%) when AMO and H2O2 concentrations 
were high, which was due to OH● destruction. 

On the other hand, the removal efficiency 
did not significantly increase from 20 to 60 min 
because of low AMO and H2O2 concentrations. 
COD removal also increased slowly during the 60 
min reaction time. Belal et al. (2000) reported that 
the hydrolysis of penicillins increases with time.

According to the photocatalytic results, AMO and COD 
removal efficiencies slightly went up due to the fact that 
having higher AMO concentrations can cover the active 
regions on a TiO2 surface. In addition, the formation of OH● 
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can decrease so the reduction of AMO may be degraded. 
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AMO than a photocatalytic process can in a 
short time.  
     COD removal is also efficient by 
Fe2+/H2O2. This occurs because some 
intermediate compounds are resistant to 
mineralization byproducts. The optimal 
values of both processes are summarized in 
Table 2. 
 

Table 2. Optimum values of AMO for 
fenton and photocatalytic oxidation 
processes 
Parameter Fe2+/H2O2  UV-A/TiO2  
pH 3 7 
Fe2+, mg L-1 112 - 
H2O2 , mg L-1 1020 - 
TiO2, mg L-1 - 200 
Con., mg L-1 100 50 
Time, min 20 30 

 
(a) (b) 

Fig. 11. Effect of reaction time on (a) AMO and (b) COD removal 
 

4.Conclusions 
The study results revealed that optimum 
values vary with the type of oxidation 
process employed. The best removal of 
AMO and COD was 83% and 66%, 
respectively, in acidic pHs by the Fenton 
process. The next best was 62% and 52% 
respectively, in neutral pHs by the 
photocatalytic process. The efficiency of 
the Fenton process increases with 
augmented  concentrations of AMO, which 
depends on H2O2 and Fe2+ doses for 
maximum COD removal. Thus, the molar 
ratio of Fe2+ and H2O2 is also significant in 
order to avoid scavenging effects, increase 
COD removal, reduce final sludge volume, 
and in terms of overall cost. Therefore, the 
optimum molar ratio of Fe2+/H2O2 was 
determined to be 1/15.  
     After the Fenton reaction Fe3+ formed 
could also contribute to COD removal with 
coagulation and flocculation. 

     The efficiency of the photocatalytic 
process increases with rising doses of 
AMO and TiO2. Advantages of using pure 
TiO2 are that it is inexpensive, available, 
non-toxi. and photochemically stable. 
     The results indicated that initial AMO 
and COD could be effectively destroyed by 
both oxidation processes in a short reaction 
time, meaning that Fenton and 
photocatalytic processes could be used as a 
preliminary treatment or as an alternative 
to existing treatment systems. 
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Fig. 11. Effect of reaction time on (a) AMO and (b) COD removal
Finally, it was observed that the Fenton process 

may efficiently separate organics of AMO than 
a photocatalytic process can in a short time. 

COD removal is also efficient by Fe2+/H2O2. This 
occurs because some intermediate compounds are 
resistant to mineralization byproducts. The optimal 
values of both processes are summarized in Table 2.

4. Conclusions

The study results revealed that optimum values vary with 
the type of oxidation process employed. The best removal 
of AMO and COD was 83% and 66%, respectively, in 
acidic pHs by the Fenton process. The next best was 
62% and 52% respectively, in neutral pHs by the 
photocatalytic process. The efficiency of the Fenton 
process increases with augmented  concentrations 
of AMO, which depends on H2O2 and Fe2+ doses for 
maximum COD removal. Thus, the molar ratio of Fe2+ 
and H2O2 is also significant in order to avoid scavenging 
effects, increase COD removal, reduce final sludge 
volume, and in terms of overall cost. Therefore, the 
optimum molar ratio of Fe2+/H2O2 was determined 
to be 1/15. After the  Fenton  reaction Fe3+ formed could 
also contribute   to   COD   removal   with    coagulation   
and flocculation.

The efficiency of the photocatalytic process 
increases with rising doses of AMO and TiO2. 
Advantages of using pure TiO2 are that it is inexpensive, 
available, non-toxi. and photochemically stable.
     The results indicated that initial AMO and COD could 
be effectively destroyed by both oxidation processes 

in a short reaction time, meaning that Fenton and 
photocatalytic processes could be used as a preliminary 
treatment or as an alternative to existing treatment 
systems.
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تحري انتزاع الأموكسيسيلين من محلول مائي
بواسطة عمليات فينتون والأكسدة بالتحفيز الضوئي

كامزه كويونجو توركاي، خليل قمبر

قسم الهندسة البيئية، جامعة مرسين، 33343، مرسين، تركيا

الملخص

Fe2+/) بواســطة عمليات فينتون (COD) ومطلوبية الأوكســجين الكيميائية (AMO) هدفت هذه الدراســة إلى تحري انتزاع مضاد الالتهاب أموكسيســيلين
H2O2) والأكســدة بالمحفــز الضوئــي (UV-A/TiO2) فــي محلــول مائــي. تمت معاينــة التراكيز ومعايير مدة التفاعل في التجــارب لكل من الـ pH، مضاد 
الالتهــاب، Fe2+، H2O2 و TiO2. بلغــت كفــاءات الإزالــة للتراكيــز الأوليــة لـ AMO و COD في عملية فينتــون %83 و%66 على التوالي. وقد تحددت 
النســبة الموليــة لـــ Fe2+/H2O2 بـــ 1/15. وبلغــت كفــاءات الإزالــة لـــ AMO و COD فــي عملية التحفيــز الضوئي %62 و%52 على التوالي. وأشــارت 
النتائــج إلــى أن هاتيــن العمليتيــن قــد تحســنان مــن نســبة إزالــة الـــ AMO فــي المــاء الملــوث وقــد تســتخدم كعــلاج أولــي بديــلاً عن أنظمــة العلاج الســارية.
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