
Simple empirical models of classifying patients from microarray data

Alan Oxley
Engineering, Design and Information & Communications Technology (EDICT), Bahrain Polytechnic, PO Box 

33349, Isa Town, Kingdom of Bahrain
*Corresponding author: alan.oxley@polytechnic.bh

Abstract

There have been tremendous advances in bioinformatics in recent years. One of these is the use of microarrays for 
collecting Big Data. This paper reports on the work carried out by the author in devising models to classify patients 
by conducting microarray data analyses. The problem is to determine, for each patient, which class he/she belongs 
to. For example, one class may be “has the disease” while the other class is “does not have the disease.” Member-
ship of a class can aid in giving a patient a prognosis. Often only a small number of genes are significantly affected 
by the presence of a disease, so it is possible to classify a patient by looking at this small number of genes. Two
models for classifying patients from gene expression microarray data were developed. One model involves an 
existing algorithm, while the other involves a new algorithm. The models involve some simple mathematical techniques 
(the two sample student’s t-test, Diagonal Linear Discriminant Analysis) and a newly developed technique which 
shall be called Multiplicative Probabilistic Discriminant Analysis. Each model has been implemented as a computer 
program. The research restricted itself to one dataset. Prior to using the models, the raw data must be pre-processed. 
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1. Introduction 

Computer-aided medicine comes in many forms (Thom-
as, 2016). One of these is the use of computer sys-
tems to trawl through huge datasets to find patterns. 
This data-driven approach to medicine is a type of ar-
tificial intelligence (AI). It has the potential to speed 
up and improve the accuracy of disease diagnosis.

1.1 Research rationale 
This paper builds on the work of Einbeck et al. 
(2015). Oxley (2017) notes, “This describes the 
processing of two datasets. Both datasets
contain numerical values that describe the genes of 
medical patients. One dataset is for breast cancer 
patients, while the other is for irritable bowel dis-
ease (IBD) patients. Einbeck et al. (2015) describe the 
development of a tool that learns from the patterns in 
the gene values of known patients. The finished tool can 
take a new patient’s gene values and” determine which 
class of patients the new patient is most likely to belong 
to. “The cancer dataset is readily accessible. The author 
replicated the work done by Einbeck et al. (2015).” The 
IBD dataset is not very accessible, and so the author 
did not undertake any work with the IBD dataset. Ox-
ley (2017) states “WhilstEinbeck et al. (2015) describe 
the processing of the dataset; the paper does not describe 
the pre-processing of the dataset. The author found that 
a considerable amount of work was involved in pre-pro-
cessing the dataset.”Einbeck et al. (2015) used a trio of 
basic statistical methods (t-test, correlation threshold, 
DLDA). Their accuracy rates of around 90% for breast 
cancer ER classification are comparable to the rates 

obtained in other studies. Similarly, they achieved 
accuracies of close to 70% in IBD studies, which is 
in line with the literature that deals with complex 
techniques.Much research has been undertaken into 
analyzing microarray gene expression data in order to 
classify patients. Before classification can commence, 
we must learn how the expression value patterns relate 
to each of the classes in question. For patients’ gene 
expression values, different genes contribute 
different amounts to classification. A microarray dataset 
comprises a sample of subjects (patients). Consider a 
dataset, discussed later, of breast cancer patients whose 
lymph node status is negative. The dataset includes the 
expression values for the genes and which of two 
classes the patient belongs to—oestrogen-receptor pos-
itive (ER+) and oestrogen-receptor negative (ER-). We 
use this dataset to learn how patterns in the expression 
value data relate to the membership of the classes. As 
seen in Table 1, the expression values for the ER- class 
are generally higher than those for the ER+ class. There-
fore, the expression values for the gene 201201_at can be 
used, along with other genes, to classify a patient whose 
expression values are known but whose class is not. In 
contrast, the expression values for gene 221706_s_at have 
a very similar spread, and so are of no use in predicting 
to which class a new patient (a future subject) belongs.

1.2 Research objectives 
The objective was to develop two models for 
classifying patients from gene expression microarray 
data. One model was to involve an existing algorithm, 
whereas the other was to involve a new algorithm. 
A model for classifying patients from gene expres-
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Table 1. Gene expression values for two genes. Left 
gene’s values are generally different for ER+ and 
ER- groups; right gene’s values are generally similar.
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TABLE 1. Gene expression values for two 
genes. Left gene’s values are generally 
different for ER+ and ER- groups; right 
gene’s values are generally similar. 

 
 Gene 201201_at Gene 

221706_s_at 

 ER- ER+ ER- ER+ 

Min 1571.3 2277.4 68.4 30.3 

1 quart 5317.9 3838.2 229 220.5 

Median 7462.1 4635.7 281.5 286.7 

3 quart 10722 5523.2 350 356.6 

Max 30962 15626 542.7 648.5 

 

1.2 Research objectives  

The objective was to develop two models for 

classifying patients from gene expression 

microarray data. One model was to involve 

an existing algorithm, whereas the other was 

to involve a new algorithm. A model for 

classifying patients from gene expression 

data consists of two main steps: a procedure 

for identifying a group of significant genes 

from “known” patients (gene selection) and a 

sion data consists of two main steps: a procedure for 
identifying a group of significant genes from “known” 
patients (gene selection) and a classifier that decides to 
which class each “new” patient belongs (classification).

We obviously needed to validate each model, i.e. see 
how good it is at classifying patients. A complication 
was that each model has two parameters whose optimum 
values were unknown. The research intended to run each 
model many times to see the effect of different parameter 
values on the accuracy with which ‘new’ patients are clas-
sified. One of these parameters is the number of significant 
genes to be considered. The other parameter is the value 
of the correlation coefficient. It is important to gain some 
insight into the optimum values to be used in a model.
Only one dataset was used that included details of 
286 patients who have suffered, or are suffering, from 
breast cancer. The number of genes that the microar-
ray recorded as being present is 17,816. The ER sta-
tus of each of these patients is known, i.e. either class 
ER+ or ER-. In addition, we know which patients have 
had a relapse and which patients have not. Thus, the 
“relapse” status of each patient is known, i.e. 
either “relapsed” or “not relapsed.” We therefore can 
conduct two sets of independent experiments, one using 
the ER status data and one using the relapse status data.

1.3 Proposed solution 
A microarray dataset is of a high dimension. Statistical 
methods exist to analyze the dataset for patterns and 
retain the number of dimensions, i.e. the number of 
genes. These methods can take a substantial amount of 
time to process, and, therefore, incur a high cost. Some 
methods reduce the number of genes before continuing 
with the processing. This latter strategy was selected.
Both proposed models had the same gene 
selection step. This was to find the g most 
significant genes from the patient cohort. In this 
project, the approach used a two-sample t-test which 
identifies effects of the type shown in Table 1, as well as a 
correlation threshold to eliminate highly correlat-
ed genes. The gene selection step comprised three 

sub-steps:

a)    Genes were first ranked according to their sig-
nificance using the two-sample t-test. A gene whose 
values were generally quite different for one group 
of patients (e.g. ER+) than they were for the other 
group (e.g. ER-) had a high rank. Similarly, a gene 
whose values were generally the same for both 
groups of patients had a low rank (see Table 1). 
A list of significant genes could then be created.
b) The top ranking 100 or so genes were selected.
c) The expression values of some genes were close-

ly related to the expression values of other genes. 
One explanation for this is that the genes have a re-
lated function. As only a small number of genes were 
selected in this study, then they should have been 
independent of one another. Therefore, starting from 
the second most significant gene, each gene in the 
list was compared in turn with those genes of higher 
rank. If the gene expression values of the pair of genes 
were closely correlated, the lower ranking gene was 
removed from the list. For closely correlated genes, 
each class of patients also had to be closely correlated. 
For example, for gene x and gene y, if the “relapse” 
class was closely correlated for both x and y, and the 
“not relapsed” class was closely correlated for both 
x and y, then genes x and y were closely correlated.

The classification step predicted the status of a new 
patient. For this step, one model used an existing 
algorithm—diagonal   linear discriminant analysis 
(DLDA). Despite its name, DLDA is a simple statistical 
method. The other model used a new algorithm called 
the multiplicative probabilistic discriminant analysis 
(MPDA).

1.4 Description of the paper 
This paper begins with a section on Background Work, 
which describes related theory, the technology used in 
the research, and related research. The Design section 
describes the creation of the two models. The 
Implementation section briefly discusses the use of large 
files. The discussion summarizes what results and their 
implications. 

2. Background work
As the fields of Big Data and Bioinformatics are relatively 
new, this section provides some background information 
that will help with understanding the basis for the research.

2.1 Related theory
For an introduction of the subject of genetics see, for 
example, University of Utah (n.d.) and The Nemours 
Foundation (2017). The human body is made up of 
cells. Most cells have one nucleus. Within each cell 
nucleus are spaghetti-like structures called chromosomes. 
These come in matching pairs. There are 23 pairs of 
chromosomes, but not every living thing has 23 pairs. 
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Chromosomes have different lengths and patterns. 
Hundreds of thousands of genes are found on every chro-
mosome. Each gene has a specific function, and genes too 
come in pairs. Genes are often associated with a person’s 
traits. For example, if both of an individual’s parents have 
green eyes, then the person might inherit green eyes from 
them. If a person’s mother has one gene for brown hair 
and another for red hair, and the person has red hair, then 
it might have been inherited from the person’s mother. 
Genes also account for traits in other animals, such as dogs.

Several years ago, scientists devised numerous 
ways to study genes: analyzing the proteins they en-
code, cloning them, making mutations in them, map-
ping them, and sequencing them. Scientists usually ap-
plied their studies to one or a small number of genes. 
Today, scientists can study all the genes in the human 
body at the same time. This is the science of genomics.

Almost every cell in the human body con-
tains copies of the 25,000 to 35,000 genes. Each 
cell type has some genes turned “on” while oth-
ers are turned “off”. This list of what is on and what 
is off is referred to as the gene expression of a cell. 

DNA microarray analysis is a highly active area 
of genetic research. A DNA microarray (aka ‘DNA 
chip,’ ‘gene array,’ and ‘genome chip’) is a device that. 
One such devise created by a biotechnology compa-
ny is called GeneChip. A microarray is about the size 
of a packet of cigarettes. The device is created by 
a robot and contains about 20,000 different probes. 

First, a patient’s cells are collected. Then, through 
a complex laboratory process, the cells are analyzed. 
Thereafter, “it is possible to measure how each gene 
expresses itself” “Oxley (2017). The microarray mea-
sures how all of a patient’s genes expresses themselves. 

After microarray analysis, a single value associated 
with each gene is available. Consider a certain disease. 
If we look at the gene expression values of a group of 
people who have a disease and compare it with the values 
for a group of people who are well, then different patterns 
in the data emerge. A relatively small group of genes 
may be affected by the presence or absence of a disease. 

Cancer is a disease where something has 
gone wrong with some of one’s genes. We can 
perform an experiment to use a DNA microarray to 
measure the gene expression levels of cancer cells 
and compare them with the levels for healthy cells.

Mackintosh (2017) states, “Data saves lives… If 
health data is liberated and can be analyzed by the best 
minds and machines, warning signs could be spot-
ted before they become full blown crises… Your data 
can save your friend, family and neighbor’s lives and 
that needs communicating.” Data has the ability to 
transform healthcare. Mackintosh (2017) argues that we 
need to espouse the sharing and probing of health data, 
and there is a cost to not doing so. We must ensure that 
the public is at ease with the idea of its data being shared.

Large databases which record the disease and 
treatment history for most patients in the developed world 
are available to the general public (Hall, 2016). 
The presence of big data allows us to use nov-
el approaches, such as machine learning. Deep-
Mind is one company that undertakes AI research 
into healthcare. Its parent company is Alphabet. 

 Consider the problem of trying to predict whether a 
recovering cancer patient is going to relapse. One way 
to do this is by consulting a dataset of patients. For each 
patient, the gene expression values are given together 
with the outcome of that patient, i.e. whether or not the 
patient relapsed. With this approach, we have developed a 
prediction model of patient outcome by learning from 
past patient data. An alternative approach might be to 
understand what part significant genes play in causing 
relapse, or not. A model can thus be built    based on the 
resultant    theory. If we had a data-based   model  and a 
theory-based   model, then   more  accurate  predictions 
could be made. 

Empirical models (data-driven) and substantive 
models (theory-driven) require the values of some 
parameters to be set. The availability of big data 
encourages researchers to seek a data-based 
model by studying the patterns in the data. One author 
(Anonymous, 2016) has concerns about empirical 
models. A difficulty with the empirical model is that we 
do not know to what extent the model can be applied 
to different kinds of dataset. This is because we do not 
understand the underlying theory of how the model works. 
With an empirical model, a “black box” approach is used, 
and we rely on its performance at correctly classifying, e.g. 
whether a patient will/will not relapse, from known data.

There is also an ethical question with the 
empirical model. We use a model that we only 
superficially understand to tell a patient “You are 
likely to have a relapse,” or the alternative. Anon-
ymous (2016) argues that in patient prognosis, an 
automated decision-making system based on pat-
terns of data, where little usage has been made of un-
derlying theory, would seem to be inappropriate.
 

2.2 Related work
Oxley (2017) notes: “Einbeck et al. (2015) and 
Jackson et al. (2016) describe a project that … involves 
processing of the same cancer dataset that is 
being used in this paper (NCBI, 2016). It also involves 
processing an IBD dataset. Anyone can download the 
cancer dataset. However, downloading the IBD dataset is 
more complex and requires the use of a proprietary pro-
gram. The papers by Einbeck et al. (2015) and Jackson et 
al. (2016) are understandable to the general reader who is 
unacquainted with microarray data analysis. The papers 
assume that the dataset has been pre-processed. The data-
set contains gene expression values of several patients 
who have suffered/are suffering from breast cancer. For 
each patient, a variable specifies whether a patient has/
has not relapsed. Furthermore, for each patient, a variable 
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specifies whether the patient is oestrogen-receptor 
positive (ER+) or oestrogen-receptor negative (ER-).” 
The papers described above make use of Discriminant 
Analysis.

The t-test is a null hypothesis testing procedure of the 
type known as a parametric test. In the context of this 
research, we have a sample of patients belonging to class 
A and a sample belonging to class B. (The two classes 
could be, for example, ER+ and ER-). For any gene, we 
look at the gene expression values of patients in A and 
compare them with the values of patients in B. We use 
the t-test to establish how likely it is that the difference 
between the samples is due to chance alone. In the gene 
selection step of this research we use the t-test to select 
those genes where the values in A differ so much from those 
in B that there is something of potential biological interest.

Discriminant analysis is a statistical technique that 
identifies the properties of two or more groups of objects 
with the aim of distinguishing between the groups. Having 
done this, when presented with a new object, a decision can 
be made as to the group to which the object should belong. 

Consider DLDA as used in the context discussed 
here. For each gene, it is assumed that the gene 
expression values for all “known” patients in one 
class follow a normal distribution. Similarly, it is 
assumed that those in the other class follow a 
normal distribution. A description of DLDA now follows.
DLDA involves:

Consider several patients whose statuses are known. 
Each is either in class A or B. Assume that we also know 
the gene expression values for each patient. We can rep-
resent this information as a table in which each row cor-
responds to a specific gene and each column corresponds 
to a specific patient. Each cell of the table contains a 
number. Cell (i, j) holds the expression value of gene i 
of patient j. Assume that all patients in class A occupy 
the left-hand side of the table, and all class B patients 
occupy the right-hand side. Note that we only use a small 
number of genes (g genes), those which our analysis
 indicates are responsible for classifying a patient’s status.

1. Gene i, which is one of g significant genes, is 
considering. We have two normal distributions of the 
gene expression values: one for patients belonging 
to class A and one for those belonging to class B, as 
shown in Figure 1.
2. Each distribution is moved independent-
ly so that its mean is zero, as shown in Figure 2. 
Consider a value x from the original distribution. 
For New Group A, its x’-value is (x – μA), where 
μA is the mean of the original class A distribution.
3. The standard deviation is calculated for the 
combined distributions, σAll,i.
4. The x-values of the original distribution is 
taken and a normalisation process is performed to 
give x’’-values. Each x-value (the original gene 
expression value) is divided by σAll,i, as shown in 
Figure 3.

5. Steps 1 to 4 are repeated for all g significant genes.
6. Calculate whether a new patient is a member 
of class A or a member of class B. We take the nor-
malized gene expression values for the new patient 
(x1’’, x2’’, …, xg’’) and calculate dA

2 and dB
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where µA’’ and µB’’ are the means of the 

normalised class A distribution and 

normalised class B distribution, respectively. 

If dA2 is smaller than dB2, then the patient 

belongs to class A. Otherwise the patient 

belongs to class B. 

 

FIGURE 1. The original two normal 
distributions.  
 

 

FIGURE 2. The two normal distributions each 
with their means moved to zero. 
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where μA’’ and μB’’ are the means of the normalised 
class A distribution and normalised class B distribution,
 respectively. If dA

2 is smaller than dB
2, then the patient 

belongs to class A. Otherwise the patient belongs to 
class B.

Fig. 1. The original two 
normal distributions. 

Fig 2. The two normal distri-
butions each with their means 

moved to zero.

Fig 3. The original two normal distributions 
after being normalized.

2.3 Technology 
Oxley (2017) describes the dataset: “The dataset 
prior to pre-processing comprises a single file of 46 
Mbytes. Pre-processing involves three main steps. The 
dataset contains much extraneous data and information, 
so the first step is to get rid of the surplus information, 
leaving only a table where each column represents 
a patient and each row represents a gene. In addi-
tion, the body of the table comprises gene expression 
values—one value per table cell. The second step is to
remove some of the genes, i.e. some of the rows of the 
table. This is done because when the microarray was used, 
for certain genes it could not detect anything for almost all 
the patients. However, in another database (244 Mbytes), 
information on which genes these are is available. 

The third step involves creating two files. Initially, 
each file data is in one table, as just described. Let us 
call these files the “relapse table” and the “ER table.” 
Consider the “relapse table.” There is information on 
a webpage showing the relapse status of each patient, 
i.e. whether the patient has had/ has not had a relapse. 
Using this information, we sort the columns of the relapse 
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table representing the patients, according to their relapse 
status. For the ER table, there is information on the same 
webpage showing the ER status of each patient, i.e. 
whether a patient is ER+ or ER-. Using this information, 
we sort the columns o according to the ER status. After 
pre-processing, two files each of size 29 Mbytes have 
been created.

Processing involves writing computer programs to 
study the table and developing tools that give a prognosis 
for a new patient. Each program can be executed inde-
pendently with both the relapse table and the ER table. The 
required technology for the research is shown in Table 2.
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Stage Purpose Resource / Technology 
 The database containing 

the dataset 
Website 

 The dataset A 46-Mbyte file that the author has downloaded 
from the website and installed on his computer’s 
hard disk. 

Pre-
processing 

Step 1: Tidying up Spreadsheet program, e.g. Microsoft Excel 
Step 2: Removing some 
genes 

A 244-Mbyte file that the author has downloaded 
from the website and installed on his computer’s 
hard disk. 
Spreadsheet program. 
Programming language, e.g. Octave 
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table and ER table files 

Website  
Spreadsheet program 

Processing Processing the relapse 
table file 

A 29-Mbyte file that the author created; it is the 
result of pre-processing the dataset. 
Programming language 

Processing the ER table 
file 

Another 29-Mbyte file that the author created; it is 
the result of pre-processing the dataset. 
Programming language 

 

All the processing work done in this 
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programs. The diagrams in this paper 
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Wang et al. (2005) state that the data is in the 
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table have over 17,000 rows, each 

corresponding to a specific gene. 
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diagrams in this paper involved taking program 
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Wang et al. (2005) state that the data is in the 
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2034). The URL is https://www.ncbi.nlm.nih.gov/
genbank/. At the completion of the whole of the pre-
processing tasks, we end up with the relapse and ER 

Table 3. Representation of the dataset. (‘g.e.v.’ means 
‘gene expression value.’)
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TABLE 3. Representation of the dataset. 
(‘g.e.v.’ means ‘gene expression value.’) 
 

 Patient 1 Patient 2 … 

Gene 1 g.e.v. g.e.v.  

Gene 2 g.e.v. g.e.v.  

…    

 

3.1 Gene selection 

In order to come up with a list of significant 

genes, the genes are first ranked. There are 

many ways in which ranking can be done. 

Many of these involve ranking according to 

the value of a statistic. The method chosen is 

the two-sample t-test; the higher the test 

statistic the higher the significance of the 

gene. 

Only a relatively small number of table 

rows account for the status of a patient. 

Furthermore, genes that are closely 

correlated with a higher-ranking gene are 

removed. Thus only g genes are selected 

prior to subsequent processing.  

For a pair of genes to be correlated, the 

gene expression values for one class must be 

closely correlated and the gene expression 

values for the other class must be closely 

correlated. The optimum value of the 

correlation coefficient is not known. 

Similarly, the optimum number of significant 

genes to be used is not known. In order to 

ascertain the optimum values for these 

parameters, the models were executed 

several times for different correlation 

coefficients and different numbers of 

significant genes. The correlation coefficient 

varied from 0.6 to 1 in steps of 0.1. The 

number of significant genes varied from 5 to 

60, in steps of 5. 

 

3.2 Classification  

After a small number of genes have been 

selected, a classifier needs to be used. There 

will be expression values at its input, for 

selected genes, for the “known” and “new” 

patients. The class that the “new” patient 

belongs to will be at its output. 

The DLDA model uses the existing 

algorithm for classification. The MPDA 

table files. The relapse table and ER table have over 
17,000 rows, each corresponding to a specific gene.

3.1 Gene selection
In order to come up with a list of significant genes, 
the genes are first ranked. There are many ways in 
which ranking can be done. Many of these involve 
ranking according to the value of a statistic. The 
method chosen is the two-sample t-test; the higher the 
test statistic the higher the significance of the gene.
Only a relatively small number of table rows account for 
the status of a patient. Furthermore, genes that are closely 

correlated with a higher-ranking gene are removed. Thus 
only g genes are selected prior to subsequent processing. 
For a pair of genes to be correlated, the gene 
expression values for one class must be closely 
correlated and the gene expression values for the other 
class must be closely correlated. The optimum value of 
the correlation coefficient is not known. Similarly, the 
optimum number of significant genes to be used 
is not known. In order to ascertain the optimum 
values for these parameters, the models were executed 
several times for different correlation coefficients and 
different numbers of significant genes. The correlation 
coefficient varied from 0.6 to 1 in steps of 0.1. The 
number of significant genes varied from 5 to 60, 
in steps of 5.

3.2 Classification 
After a small number of genes have been 
selected, a classifier needs to be used. There will be 
expression values at its input, for selected genes, 
for the “known” and “new” patients. The class that 
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the “new” patient belongs to will be at its output.
The DLDA model uses the existing algorithm for 
classification. The MPDA model uses the new algorithm 
for classification.

3.3 Algorithm
This algorithm processes the same table as is described in 
Section 2.2, at the start of the DLDA algorithm description.
MPDA involves:

1. Consider gene i, which is one of g significant 
genes. We have two normal distributions of the gene 
expression values, one for patients belonging to 
class A and one for class B, as shown in Figure 1.
2. Normalize the gene expression values as with 
DLDA (see steps 2 to 4 of the process described earlier).
3. Divide the axis into equally sized intervals. 
4. Locate the interval which contains the 
new patient’s normalized expression value, xi’’. 
Calculate the area of a strip under the 
normalized normal distribution of class A for this 
interval, as shown in Figure 4. Denote this area by areai. 
5. Repeat steps 1 to 4 for all g significant genes.
6. Calculate the product of the areas
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7. Repeat steps 1 to 6 but now for the normalized 
normal distribution of class B. 
This gives 

8. Calculate whether a new patient is a 
member of class A or a member of class B. PA and 
PB relate to the probabilities that the new patient 
is a member of classes A and B, respectively. If 
PA > PB then the new patient is a member of class 
A, otherwise the patient is a member of class B.

Fig. 4. Identifying the area of a strip under the nor-
malized A distribution.

4. Testing 

4.1 Participants 
The dataset only contains the statuses of 
patients whose ER and relapse statuses are known. In 
order to get “new” patients, the statuses of some of the 

patients were assumed to be “unknown”. 
Approximately a quarter of the patients were randomly
 re-categorized as “new.” Let us refer to the two groups 
of patients as “known” patients and “new” patients, or 
training set and the test set, respectively. The list of genes was 
formulated only using the statuses of the “known” patients.

4.2 Test plan 
Having selected a list of genes and a method of 
classification, the next step is to test the 
models to see how accurately each classifies ‘new’ 
patients. In other words,. the models must be 
validated. To summarize, the following tests were 
carried out:

• Model using DLDA
o ER status data: 60 combinations (12 different gene 
list lengths; 5 different correlation coefficients). Each 
combination repeated 1,000 times, each time the “new” 
patients were randomly chosen from scratch. For each 
of the 1,000 runs, the proportion of “new” patients 
whose statuses were classified correctly was recorded. 
The results for 1,000 runs of each combination were 
then averaged, and the standard error was calculated.
o Relapse status data: 60 combinations. For 
each combination, 1,000 runs, the results were 
averaged, and the standard error was calculated.

• Model using MPDA
o ER status data: 60 combinations. For each 
combination, 1,000 runs, the results were averaged 
and the standard error was calculated.
o Relapse status data: 60 combinations. For each 
combination, 1,000 runs, the results were averaged 
and the standard error was calculated.

4.3 Results 
The DLDA-based model was run 1,000 times for 
each of the relapse status data and the ER status data. 
Similarly, the MPDA-based model was run 1,000 times 
for each of the relapse status data and the ER status data. 
Figure 5 shows the results of varying the number of genes 
selected and the correlation coefficient value, for both 
models. Figure 6 shows all results of the mean per-
centage of “new” patients whose statuses has been 
correctly predicted.

The number of occurrences of each gene was
tallied. This was done by considering the the
highest-ranking 60 genes for each of the five 
correlation coefficient values (i.e. the 60 best genes 
after closely correlated genes had been removed). 
The result was a total of 300. This was 
repeated for each of the 1,000 times that the program was 
executed, equaling a cumulative total of 300,000.
 For the relapse table, the highest tallies occurred for 
the following genes (from highest tally to lowest):
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209380_s_at; 202324_s_at; 218252_at; 219312_s_at; 
222077_s_at; 206188_at; 212149_at; 212898_at; 
202824_s_at; 214853_s_at; 218478_s_at; 212900_at; 
209831_x_at; 218701_at; 219215_s_at; 201076_at; 
32088_at; 213391_at; 211004_s_at; 201368_at.Alan Oxley 
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FIGURE 5. Mean percentage correctly predicted (left column) and standard error (right column) 
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FIGURE 6. Mean percentage correctly predicted for DLDA (left) and MPDA (right). Lower graphs 
are for relapse status; upper graphs are for ER status. 
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For the ER table, the highest tallies occurred for the 
following genes: 

209602_s_at; 205225_at; 200600_at; 209791_at; 
206074_s_at; 200827_at; 218211_s_at; 202088_at; 
212956_at; 212195_at; 204862_s_at; 200711_s_at; 
203256_at; 200670_at; 204667_at; 201231_s_at; 
219497_s_at; 216237_s_at; 209191_at; 201579_at.

5. Discussion 

5.1 Summary of achieved objectives 
The objectives of this research have been achieved. 
The difficulty with writing this paper has been not to 
overwhelm the reader with the minutiae of how the dataset 
is pre-processed and processed. The work is current as it 
emanates from a recent publication Einbeck et al. (2015).

5.2 Future work 
Future work should include upgrades and modifications 
to the program. When formulating a list of genes, prior 
to classification, a high-ranking gene will not be added to 
the list if it is closely correlated with a high-ranking gene 
already in the list. Rather than using this approach one 
could, at the outset, find groups of closely correlated genes 
and then, for each group, decide which of the genes is to be 
selected—it may be the gene that best represents the group.
Irritable bowel syndrome (IBS) is a disorder affecting a 
large number of people. It would be useful to run both 
models with IBS data.

5.3 Conclusion
One microarray dataset has been studied. To 
classify the relapse and ER statuses of “new” patients, 
two models have been used. One used the t-test, a 
correlation coefficient, and the DLDA algorithm. The 
other used the t-test, a correlation coefficient, and the 
MPDA algorithm. For the MPDA-based model, the 
proportion of “new” patients whose statuses were 
correctly predicted is comparable to the DLDA-based 
model.

There are two parameters in each model that are 
used in gene selection: the number of genes to be select-
ed (g) and the value of the correlation coefficient. Both 
parameters have been varied in order to see their 
effects on the results. The smaller the value of g, the 
more important it is to remove correlated genes, i.e. 
redundancy is costlier with a shorter list. It is possible 
that the magnitude of the correlation coefficient is not 
important when g is large. It may be that the optimum 
value of the correlation coefficient is dependent on the 
dataset, and so it must be estimated for each dataset. 
The research shows that the DLDA-based model 
and the MPDA-based model, even though they are 
relatively simple, can be used with a small 
number of genes. They produce prediction rates for the 
relapse and ER statuses of breast cancer patients that are 
comparable to more complex methods found in previous 
studies. The prediction rate for ER status is particularly
 high.
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الملخص

فــي الســنوات الأخيــرة، كان هنــاك تقــدم هائــل فــي المعلوماتيــة الحيويــة، مثــل اســتخدام المصفوفــات الدقيقــة لجمــع البيانــات الضخمــة. ويقدم 
هــذا البحــث تقريــراً عــن الأعمــال التــي تــم تنفيذهــا لابتــكار نمــاذج لتصنيــف المرضــى مــن خــلال تحليــل بيانــات المصفوفــات الدقيقــة. تكمن 
المشــكلة فــي تحديــد الفئــة التــي ينتمــي إليهــا كل مريــض. فعلــى ســبيل المثــال، قــد تنقســم الفئــات إلــى "مصــاب بالمــرض" و "غيــر مصــاب 
بالمــرض". وغالبــاً مــا يتأثــر عــدد قليــل مــن الجينــات بشــكل كبيــر بالمــرض وبالتالــي يمكن تصنيــف المريــض بالنظر إلــى هذه الجينــات. تم 
تطويــر نموذجيــن لتصنيــف المرضــى مــن خــلال تحليل بيانــات المصفوفــات الدقيقة الجينيــة. ويتضمن أحد هــذه النماذج خوارزميــة موجودة 
بالفعــل بينمــا يتضمــن النمــوذج الآخــر خوارزميــة جديــدة. وتتضمــن النماذج بعــض التقنيــات الرياضية البســيطة، مثل: اختبار "تــي" للطالب 
ذو عينتيــن، وتحليــل التبايــن الخطــي القطُــري وتقنيــة مُطــورة حديثــاً يطُلــق عليهــا تحليــل التبايــن الاحتمالــي الضربــي. تــم تنفيــذ كل نمــوذج 
كبرنامــج حاســوب. واقتصــر البحــث علــى مجموعــة بيانــات واحــدة. ويجــب معالجــة البيانــات الأوليــة مســبقاً قبــل اســتخدام هــذه النمــاذج.


