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Abstract

In this paper, the latest approaches for automated history matching (AHM) were applied to a real brown field 
having 14 active wells with multiple responses (production rate, bottom hole pressure and well block 
pressure) located in the south of Iran. A modified support vector machine was employed to create a proxy model 
incorporated based on design of experimental. Thereafter, all model parameters were adjusted to reproduce the 
observed history within the created proxy model. Accordingly, the proposed proxy model was successfully 
constructed using 1086 samples based on an R2 coefficient of about 0.9 for the trained and test dataset. Finally, the process 
was optimized by two main algorithms to reach the best solutions, which are genetic and particle swarm optimization. 

Keywords: Cubic centered face; fast history matching; Least square support sector; optimization.

1. Introduction

Scenario planning and production strategies for oil 
and gas reservoirs are highly dependent on the accu-
racy of the dynamic reservoir model and definite ini-
tial properties. History matching is one of the main 
important tasks in reservoir studies. Study evaluation 
and quality check of reservoir parameters depend on 
how fast and accurate history matching is done. In re-
cent decades, compared with manual history matching, 
some techniques are introduced to achieve automat-
ic matching, which is very advantageous. A study of 
methodologies for assisted history matching was done 
by Arief (2013). In this paper, the newest algorithms 
for proxy modeling were used for automated history 
matching.

The main components of automatic history matching 
are identification of uncertain reservoir parameters to be 
history matched, a definition of a suitable objective 
function, and a selection of a suitable optimization 
technique. There are some techniques (e.g.experimental 
designs) that can be used for parameter screening and 
sampling. After screening and selection of parameters 
(based on experience and sensitivity analysis), the ob-
tained results are used as input to build a reliable proxy 
model.One of the main categories in the experimental 
design is the central composite design (CCD) (Ar-
ief, 2013; Bhark & Dehghani, 2014; Arwini & 
Stephen, 2011). Cubic centered face (CCF) is a type of 
the CCD which is acceptable with the principle of this 
study because of its coverage of all points and spaces.
Regarding the acceptable results of the support 
vector machine (SVM) in function estimation 
(such as a proxy model), the appliance of this
 algorithm can be used in the field of oil and gas reservoir 
modeling (Suykens   et al., 2002; Ahmadi & Bahadori, 
2015).In this paper, a proxy model is introduced for re-
ducing the run time of history matching and speed up 

the reservoir study. The acceptable outcomes of the 
presented optimized proxy model were applied in one of oil 
reservoirs. 

2. Least square support vector machine (LS-SVM)

LSSVM is a modified support vector machine which 
maps nonlinear problems into multi-dimensional aspect 
space and solves the problem by decomposition into 
summations of some kernel functions. A simple format 
of a relationship which is used in LSSVM follows in 
Equation 1:
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where the function φ(x) takes the parameters 

into a high dimensional space to reduce the 

complexity and speed up the process, b is 

the bias value and w is a weight vector with 

similar dimension with the defined space 

dimension.  

The main LSSVM function results in 

𝑦𝑦𝑦𝑦(𝑥𝑥𝑥𝑥) = ∑ 𝑎𝑎𝑎𝑎-
.
-/0 exp 4− ‖(7879)‖:

;: < + 𝑏𝑏𝑏𝑏 ,    (2) 

where 𝑥𝑥𝑥𝑥 and 𝑥𝑥𝑥𝑥- are vectors of size p (number 

of parameters) and	‖(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥-)‖> =

∑ (𝑥𝑥𝑥𝑥? − 𝑥𝑥𝑥𝑥?,-)>
A
?/0 .  

Kernel width parameters (𝜎𝜎𝜎𝜎>) and 

regularization parameter (𝛾𝛾𝛾𝛾) affect the 

LSSVM the performance of generalization. 

3. Optimization  

Optimization algorithms, especially 

genetic algorithm (GA) and particle swarm 

optimization, are extensively utilized in 

different applied sciences and fields. For 

example, GA has been used to solve  
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            Kernel width parameters (σ2) and regularization parameter 
(γ) affect the LSSVM the performance of generalization.

3. Optimization 

Optimization algorithms, especially genetic 
algorithm (GA) and particle swarm optimization, 
are extensively utilized in different applied scienc-
es and fields. For example, GA has been used to solve
Problems related to parametric design of aircraft, robot 
trajectory generation and nonlinear dynamical systems.

3.1.1.Particle swarm optimization (PSO)
PSO, as a stochastic optimization technique, is 
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the model of the proposal of a group of birds and 
fishes (Wang & Qiu, 2013; Reynolds et al., 2015). 
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algorithm is one of the most popular methods for 
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Fig. 2. 3D view of reservoir porosity

for history matching (Firoozjaee & Khamehchi, 2014).

4. Methodology workflow

As discussed in Section 2, several techniques are 
available for assisted history matching. These  consist  of 

at  least   three    main    factors:   experimental    design 
(screening parameters), proxy modeling, and optimi-
zation. However, in this work, the proposed workflow 
for automated history matching differs. (See Figure 1.)
To save computational time and accelerating the simu-
lation runs, LS-SVM (a proxy model) was applied for 
the substitution of the simulation model. Proxy con-
struction was repeated many times in order to attain an 
acceptable model. Accordingly, all these main steps for 
automated history matching were analyzed and then test-
ed in a real model. The criteria to verify the validity of 
the built model are Lambda, Sigma, errors and R2. The 
GA and PSO optimization techniques were applied to 
the proxy model to discover the best solutions. The same 
situations for both algorithms were employed. To find 
a solution for the matching problem, an objective func-
tion (OF) should be identified. In this case, the objec-
tive value for a function defines the divergence between 
the simulated value and observed data. The OF also 
considers the different time steps for parameters, if any. 

5. Model description

The dimension of the reservoir under study is about 
6.5×23 km. The exported up-scaled reservoir model is 
square shape, meauring 100×100 m. A 3D schematic view 
of the  grid property of porosity is illustrated in Figure 2.

5.1. Selected parameters
With regard to the available information on the reservoir 
under study, 44 main parameters were considered for 

proxy generation.
 

6. Results

6.1. Sample generation
For this study, 1086 runs were produced using the 
CCF design by means of the parameters defined in 
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Table 1. In Table 1, the 44 parameters used for the proxy 
generation are described. Maximum and minimum val-
ues were selected based on the information from near-
by studied fields and reservoir engineering concepts. 
In this study all 1086 runs were succefully executed.

6.2. Proxy construction
Training, validation, and testing sets are three 
main steps for proxy generation. To reach these 
three steps, 70%, 15%, and 15% of the input data
set (1086 samples) were defined, respectively. 
Based on the 1086 samples and the identified objec-

Fig 3. Comparison of actual and predicted data in a 
constructed proxy model

tive function, an acceptable proxy model was created. 
Figure 3 illustrates the comparison between the actual and 
predicted data from the proxy model for training tests. 

6.3. Optimization
The optimum control parameters are shown in Table 2.
Hence GA exhibits a faster convergence with less com-
putations.

Optimum intervals for all 44 parameters are shown 
in Table 3. These were selected based on reservoir 
engineering experience from the field. It sholud be 
noted that the value of the parameteres are entirely
different for most parameters, revealing the solution 
diversity for history matching as an inverse problem.

6.4. Applying best solutions
In this section, the optimum solutions acquired by both 
optimization algorithms were run by a commercial sim
ulator. Figures 4 to 7 demonstrate the results of the 
automatic history matching for both field 
scale and well scale. Using the discussed 
methodology, all wells that have observed data are 
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Table 1. Uncertain parameters used for sample generation, proxy construction and optimization 

Factor Parameter Parameter name in the 

model 

Min Max  

A Compressibility(1/psi) RockComp 2×10-6 6×10-6 

B Permeability Ratio PermRatio 0.5 0.9 

C Aquifer Permeability (md) AquPerm 1 200 

D Aquifer Porosity AquPoro 0.1 0.2 

E Aquifer total compressibility (1/psi) AquTotComp 2 8 

F Aquifer thickness (ft) AquThick 300 400 

G Permeability Multiplier 1 PermMult1 0.5 3 

H Permeability Multiplier 2 PermMult2 0.5 3 

J Permeability Multiplier 3 PermMult3 0.5 3 

K Permeability Multiplier 4 PermMult4 0.5 3 

L Permeability Multiplier 5 PermMult5 0.5 3 

M Permeability Multiplier 6 PermMult6 0.5 3 

N Permeability Multiplier 7 PermMult7 0.5 3 

O Permeability Multiplier 8 PermMult8 0.5 3 

P Permeability Multiplier 9 PermMult9 0.5 3 

Q Permeability Multiplier 10 PermMult10 0.5 3 

R Permeability Multiplier 11 PermMult11 0.5 3 

S Permeability Multiplier 12 PermMult12 0.5 3 

T Permeability Multiplier 13 PermMult13 0.5 3 

U Permeability Multiplier 14 PermMult14 0.5 3 

V Well PI Multiplier1 WPIMULT1 1 15 

W Well PI Multiplier2 WPIMULT2 1 15 

X Well PI Multiplier3 WPIMULT3 1 15 

Y Well PI Multiplier4 WPIMULT4 1 15 

Z Well PI Multiplier5 WPIMULT5 1 15 

A' Well PI Multiplier6 WPIMULT6 1 15 

B' Well PI Multiplier7 WPIMULT7 1 15 

C' Well PI Multiplier8 WPIMULT8 1 15 

D' Well PI Multiplier9 WPIMULT9 1 15 

E' Well PI Multiplier10 WPIMULT10 1 15 

F' Well PI Multiplier11 WPIMULT11 1 15 

G' Well PI Multiplier12 WPIMULT12 1 15 

H' Well PI Multiplier13 WPIMULT13 1 15 

J' Well PI Multiplier14 WPIMULT14 1 15 

Table 1. Uncertain parameters used for sample genera-
tion, proxy construction and optimization

8 

 

K' Well PI Multiplier15 WPIMULT15 1 15 

L' Well PI Multiplier16 WPIMULT16 1 15 

M' Well PI Multiplier17 WPIMULT17 1 15 

N' Well PI Multiplier18 WPIMULT18 1 15 

O' Well PI Multiplier19 WPIMULT19 1 15 

P' Well PI Multiplier20 WPIMULT20 1 15 

Q' Well PI Multiplier21 WPIMULT21 1 15 

R' Well PI Multiplier22 WPIMULT22 1 15 

S' Well PI Multiplier23 WPIMULT23 1 15 

T' Well PI Multiplier24 WPIMULT24  1 15 

 

Table 2. Comparison of the solution for GA and PSO. 

Optimization Method Best Solutions – Objective 

Functions 

GA 0.00003 

PSO 0.00012 

 

Table 3. Optimum parameters after implementation of an optimized proxy model. 

Factor Name Min Max 

A RockComp 2.22E-06 2.75E-06 

B PermRatio 0.51 0.86 

C AquPerm 10.46 98.38 

D AquPoro 0.10 0.12 

E AquTotComp 2.15E-06 3.81E-06 

F AquThick 305 349 

G PermMult1 0.71 2.76 

H PermMult2 0.71 2.76 

J PermMult3 0.71 2.76 

K PermMult4 0.58 0.67 

L PermMult5 0.54 0.70 

M PermMult6 0.71 2.82 

N PermMult7 0.71 2.87 

O PermMult8 0.54 0.76 
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P PermMult9 0.54 0.57 

Q PermMult10 0.62 0.72 

R PermMult11 0.63 2.90 

S PermMult12 0.71 2.72 

T PermMult13 0.54 0.52 

U PermMult14 0.54 0.65 

V WPIMULT1 2.19 14.82 

W WPIMULT2 2.19 14.99 

X WPIMULT3 2.17 14.87 

Y WPIMULT4 2.19 14.92 

Z WPIMULT5 2.12 14.62 

A' WPIMULT6 1.24 1.10 

B' WPIMULT7 1.70 9.37 

C' WPIMULT8 1.56 1.06 

D' WPIMULT9 1.79 14.25 

E' WPIMULT10 1.29 1.48 

F' WPIMULT11 1.21 1.23 

G' WPIMULT12 1.50 10.90 

H' WPIMULT13 1.35 1.34 

J' WPIMULT14 1.82 12.18 

K' WPIMULT15 1.21 1.30 

L' WPIMULT16 1.21 1.28 

M' WPIMULT17 1.23 1.14 

N' WPIMULT18 1.80 14.37 

O' WPIMULT19 2.19 14.89 

P' WPIMULT20 1.21 1.12 

Q' WPIMULT21 1.73 9.51 

R' WPIMULT22 1.32 1.33 

S' WPIMULT23 1.26 1.41 

T' WPIMULT24  1.23 1.05 

 

Table 3. Optimum parameters after implementation of 
an optimized proxy model.
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Fig. 7. History matching results for oil production rate 
in well 1

illustrated below with an acceptable match. As can 
be seen, the obtained solution has acceptable results. 

7. Conclusions

In this study, a new methodology was applied to the 
analysis of one giant Iranian oil reservoir. The first step 
in the developed methodology is screening using CCF to 
generate samples for a proxy model. A large number of 
parameters (44) were used to generate the mentioned 
proxy model, and 1086 runs were conducted to pre-
pare data for the LSSVM algorithm. The process of 
proxy generation was repeated many times to achieve 
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L' WPIMULT16 1.21 1.28 

M' WPIMULT17 1.23 1.14 

N' WPIMULT18 1.80 14.37 

O' WPIMULT19 2.19 14.89 

P' WPIMULT20 1.21 1.12 

Q' WPIMULT21 1.73 9.51 

R' WPIMULT22 1.32 1.33 

S' WPIMULT23 1.26 1.41 

T' WPIMULT24  1.23 1.05 

 
the appropriate proxy model parameters and criteria us-
ing a simplex optimization technique. Next, after pro-
viding validation criteria, the accepted proxy model 
was used instead of simulation software in order to get 
the best parameters using optimization methods. This 
was done by two important optimization algorithms: 
GA and PSO. The results demonstrated that GA pro-
duces more acceptable results in comparison to PSO. 
This study shows the capability of CCF, LSSVM and 
GA in the process of automatic history matching. All 
of this procedure was done using codes on a mathe-
matical toolbox linked with a simulator and optimizer.
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تطبيق نموذج أمثل منخفض المخاطر للمواءمة التاريخية السريعة في خزان نفط عملاق
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الملخص

فــي هــذا البحــث، تــم تطبيــق أحــدث طــرق المواءمــة التاريخيــة الآليــة (AHM) علــى حقــول جدبــاء حقيقيــة تحتــوي علــى 14 بئــر نشــط مــع 
اســتجابات متعــددة (مــن حيــث معــدل الإنتــاج، ضغــط القــاع وضغــط كتلــة البئــر) تقــع فــي الجــزء الجنوبي من إيــران. تــم اســتخدام خوارزمية 
آلــة متجــة الدعــم المُعدلــة لإنشــاء نمــوذج بروكســي مُدمــج علــى أســاس تصميــم تجريبــي. ومــن ثــم، تــم ضبــط كل معلمــات النمــوذج لإعــادة 
إنتــاج التاريــخ المرصــود فــي نمــوذج بروكســي الــذي تــم إنشــاؤه. وبالتالــي، تــم بنــاء نمــوذج بروكســي المُقتــرح بنجــاح باســتخدام 1086 
عينــة بنــاءً علــى معامــل R2 لحوالــي 0.9 مــن مجموعــة البيانــات المســتخدمة فــي التدريــب والاختبــار. وأخيــراً، تــم تحســين هــذه العمليــة 
ــة اســتمثال عناصــر الســرب. ــة وخوارزمي ــة الوراثي ــول وهــي الخوارزمي ــى أفضــل الحل ــن رئيســيتين للوصــول إل مــن خــلال خوارزميتي
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